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ABSTRACT

This paper presents the development aud analysis of a wavefront control strategy for the Space l.aser
Ilectrie Energy (SELINE) power beaming system. SEILNE represents a substantial departure from most
conventional adaptive optics systews in that the deformable elemnent is the segiented pritnary mirror and
the signal that is fedback includes both the local waveflront tilt and the relative edge mismatch between
adjacent segments. The major challenge in designing the wavefront control system is the Jarge number of
subapertures that must be conmnanded. A fast and near optimal algorithin based on the local slope and
cdge measurcments is defined for this system.

1. SUMMARY

This reporl presents the development and analysis of a wavefront control scheme for SELENE. The
controller is derived from the assumption that the wavefront is locally flat over each subaperture. This
assumption leads to a strategy that involves a two step implementation requiring first the local correction
for wavefront tilt for each subaperture, followed by a global correction for the piston error. Conventional AO
systems employing a continuous deforinable mirror as the correcting optical element achieves the piston cor-
rection via a wavefront reconstruction process based on local gradient (tilt) information. The reconstruction
process typically leads to adiscretized Poisson equation with normal boundary conditions to estimate the
wavcfront. Because the adapti ve optical element for SELENE is not a continuous surface, a dightly different
path must be taken to reconstruct the wavefront. The reconstruction process for SELISNE entails the usc
of edge displacement measurements to supplement the tilt measurements to fill in the gaps, so to speak,
created by the discontinuous surface. SELIINIS wavefront reconstruction is shown to lead to a discretized
I’oisson equation as well. The derived control law turns out to be identical to the control strategy that has
been pursued since the inception of the SELENE program: (i) correct for wavefront tilt., (2) miuimize the
edge mismateh error in aleast squares sense! . Thus our analysis essentially provides a new interpretation
ofthis control strategy,

This new interpretation facilitates several developmenits. Firstly, we show the optimality of the algorit} i
(i.e., the conditions under which it is optimal). From there we are able to establish some error bounds for
the control algorithm. This in turn allows us to set requirements on the edge sensor. Basically what is shown
here is that the rins piston error due to edge sensing is approximately of unity magnitude. We also show
that the piston error grows logarithmically with the nurber of subapertures. Hence, reducing segiment size
places tighter requirements on the edge sensor, although rather mildly. The effect of reducing segiment size
actually has amore substantial effect on the reconstruction error duc to tilt error. This growthturns out to
be linear with decreasing subaperture size.

An eflicient implementation of the reconstruction algorithm is developed that requires O( N2logN)
floating point operations to jmplement, where N° denotes the number of subapertures. The algorithin is
based on embedding (regularizing) the Poisson problem into a problem defined on a square. Fast solvers
(i.e., those requiring O( N2logN))flops exist for solving this probleri2 Bo unds on the increased covariance
of the wavelront estimate introduced by the embedding procedure arc presented. These bounds indicate the
increased error to be rather benign, perhaps a .13 increase for systemns the size of SELENE. (The larger the
systemn, the sinaller the error. )




2. AN IDEFALIZED PROBLEM

Let w(z) denote the instantancous wavefront, and let the segmented primary surface be represented by

the piecewise linecar funclion u(z),

u(a) = D x(Aduil), M

where A, denotes the it segment, x(+ ) = characte ristic function (x( Ai)(z) =1 if = ¢ A, zero otherwise),
and wu,(z)is lincar. Let i be the centroid of A, Ideally we would like to minimize the wavefront error J,

J = //‘\ fw(z) - u(z)|’dr, A= UA,. (2)

From (2) we write

T >j/A lu(x) - wia))dr, -

and note that it is suflicient to independently minimize the error for each segment.
Now given that i is linear, and assuming that w is C? (two continuous derivatives), a reasonable

objective for the control scheme is to choose Ui so Lthat

ui(@) = wwg), and Vu; (@) Vu(x). 4
By satisfying (4) wc have for z¢€ A,

() - wl)] <1/2max < (- 00, WO~ =) >, (5)

where W (£)denotes the Hessian of w. hTow if we assume that the distance between adjacent centroids is b,
and the area of the total aperture is d?, the mumber of seginents comprising the primary, call it N is of order
N =O(d?/k?). The error Jin(2) is now approximated as
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and N = O(d?/h?).Hen ce, the normalized ris wavefront er ror is
VI OR?) (7)

where the constant is of the order supee & W(€). We note that this controller essentially corrects for the
piston, tip, and tilt across each subaperture. Noll* has dervied an expression for the error as afunction of
the residual uncorrected Zernike terms of the disturbance, and in this case has shown the residual error to
be app1 oximately .13 radians? of phase based on a Kolmogorov turbulence spectrurn.

3. THE NONIDFALIZED PROBLEM

The idealized situation above is characterized by perfect reconstruction of the wavefront w (=) followed
by the itnplemnentation of the control law defined in (4). This controller presupposes both global knowledge
of the wavefrontand of the aperture function u(z). In the true SIELIINE configuration neither of these is



available, But before belore consideting this configuration, we will first treat an intermediate case between
the ideal and actual to show how edpe sensing contributes to the wavefront reconstruction problern.
The SELINI hexagonal segments are arranged as in the figure below:

Wi+ 1,§- 1) Y uli+ 1,j)

We take the distance between adjacent centioids to be b, Now we make the following assumptions:

(i) w(z) must be estimated from the wavefront tilt measurements V= Vw(ay;).
(ii) ui5 can only be estimated from edge displaceinent mncasurements, ¢;;, and segiment tilt measurcients

. ) . s s Lo 14 .. - SR RNMD
Ty ¢ Vu(z;). Here ¢;; and 735 are both 2 - wvedlors, ;= [y ), and 252 [ 1Y), (In the SELENE
setling we only measurce the difference Vawy; - 755, This case will be taken up shortly.)

Let 41 denote a least squares or minimum variance estimate of w. (Without loss of generality we will

assumne that @ has been normalized so that )j‘.j uy; = 0.) The geometry in the figure leads to the edge
displaceinent relationship
(;’-Tj U5 1 v Ui - )L/?.(7z7-,” -] 7;}) (8)
for horizontally adjacent segients; and for diagonally adjacent segments

(8a)
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Because each segiment of SELENE has edge sensors on every side, there is another measurement corresponding
to the southwest diagonal,

ko, \
("J 2U4y 15- 1~ ’l[».'j -1 :?\/? (7‘-"7" 13- 1 -1 75:;- - (75; 17- 1 -1 7:;)) (gb)

(We will ignore this measurement in the analysis and algorithin developrnent that follows, but revisit it
later.) Introduce the difference operator A,

AI
a4 (10
where
A’u S UGzp 10 Uy (]OG)

and
(lob)

Ayu: Uiy 1y - Uy

for u= [uy  wyp.., (i.e, stacking u by rows in the array). Then (8)-(9) can be written as

Au: b (11}

where b is a linear combinatio n of the measured tilts. Now let &t denote a least squares estimate (or minimur,
variance estimate) of wu. We will assurne again that 4 has been normalized SO that 3 %= 0. In this
intermediate case a compensation scheme can be defined by the local tilt cornrnand, Ar

A1 = viti-7, 7 %t 74 A7 (12}




(ollowed by the differential piston cormmand, Au,
Au: w- 4, 4': @4 Au. (13)

llere 7!, 4! denote the updated tilt and piston vectors. Note againthat the differential command Au

requires the global reconstruction of the waveftont w, while A-l only requires local measurcinents.
Next we will treat the more general SELENI case where we do not have independent measuremnents of

Vw and 7, but only their difference v,
Yij = Vg 1i5 . (14)

Note that wc still have the differential tilt cornrand via (12)
M=oy, (15)

but we cannot use (13) for the diflerential piston cornmand because the estimates 4, W cannot be formed.
] Towever, observe that to implernent (13) it is only necessary to have an estitnate of the difference w - u. To
this end let's assume that (15) has been immplemented so that we may write

vu): 7. (16)
Now since Wi - s
age - T T Loy, (a7
h
substituting (17) into (8) gives (neglecting the O(h?) term)

howisqo- uy; Wijy1 - Wij
T 13- 2 1541 i1 ij
A L LR (18)

= uiJg'] - U’I'J' - ]/2[11},']‘,‘2 . 'U),'j].

Also observe that
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Hence,
V2 ;
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And consequently,
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T Uy - Uy ]/?'[U"H?j - ‘Ul,'j].
Now, Wij4 1 - Wij and Wiq 15 Wi arc close approximations to 1 /Q(U’ijm' wiz) and 1/2(wiy 25 i),

respectively. In fact all of these quantities are just difference approximations to either dw/8z or {hi)/dL/.
The wagnitude of their dillerence is consequently O(A?), with constantagainof order mazec o, |W(€)], i€

for example
l |/2(71,\, ?j,,w‘.)_) ) (’Uf“_ﬂ 1 ‘U?‘j)l < }L? S\l})lW({)]. (?3)
£

Putting (18), (22), and(23)together we get

€57 uijen - Wiy (whian o ung) O(K?) (24)




(?j 2wty - wig - (W - wgy L O(KY). (25)

Heuce, for small|k],
f o~ A(u - w), (26)

and the least squares (or minimum variance) cstimate of u - w can be obtained directly from the edge
measurements after thelocal tilt corrections have beenmade. Thus the compensation scheme becormnes:

(i) huplement the diflerential tilt comnmand via (15)

(ii) Estimate ,v: u - w, from (26) (more on this step in a little bit)

(iiii) hmplement the diflerential piston connnand via (13)

It is worthwhile to note that this two step control law ean also be interpreted as minimizing the least
squarcs error in the adjacent edge mismatch after Lilt cor rection has been made. To sce this suppose the
differential tilt correction has been made, and now the objective is to implement a piston comrand to
minimize the edge error. Let % denote the vector of cur rent centroid displacements. Now recall (8)-(9):

U gy h/2(1d5, 0 ) (8)
h
0 0 ,
(?j BT RN '?\/?(7,-!{, 151 15 (s 15) (9a).

After applying the differential command Au the adjusted edge error is simply
- (:-rj = (‘-7.7- -} Au,-j.,] - A‘ll,‘j,

and

-

-l v ,
Gy c}.’j 4 v - A,

tev]inthe least squares sense leads to the problem

-.

Minimizing the vector 7¢ , [! €

minjc - AAu)?,
Au

which is precisely the control law defined in Steps (i)- (i) above.

This controllaw is very necarly optimalif the wavefront is locally flat over each subaperture. The proof
of this is sketched below. 1,ct w(z)denote the instantancous wavefront, andlet the seg mented primary
surface berepresented by the piccewise linear function w%(z),

W) ) Ix(AN)

t

(cf (1)), The objective is to implement a diflerential command Au(z) of the form
Au(z) = ) x(A)Aui(e)
witheach Aua linear functionon A to minimize the error
B(J) - /A|w(g.-)- ul(z) 4 Au(a)?dz, A UA;,

(cf (2).) Here /7 denctes the expectation operator, and the requirement is that Au is measurable with
respect to the observed data, that is it must be a function of the tilt and edge sensor measurcrnents, Write

‘U.‘(T) . ‘U’(T) - u?(j‘)’ oo

U,'(I) B >7; (I,‘j:“j(:l?),
j- 0



where for each i, {75;}57 is a complete orthronotmal system of functions on Ay with 7o = piston, 7;, -
tip, and 7o = Lilt. Since Au;(2) is linear,

AM,(r) @ wioTio bunT i tupTio

Thus we have
x 2 K o
‘V N ™ ~ " . ? ™~ ~ ,‘ ?
Y= 303 Eag - uglT 4 >0 T Blagl?,
i-135-0 i 15:3
I et u dcnote the vector with comnponents s, and let «

where x denotes the number of subapertures.
O, 1, ‘2. The solution to the optimization problem is

d cnote the vector with cormnponents ai3,t=1, . . . . K; 7=
to choose u to be the conditional expectation, &, Of o giventhe measurements. Assuming €0 = v(xi), and

[ai,  @iz]= Vu(ay), (this is the assumption that the wavefront is locally plauar), it can beshown that & is
the minimum variance solution to the problem

1 0 Ve [y

¥ A ( v ) ()'
Here y and e are the tilt and edge displaccemnent measurements before correction, and ¥ is a matrix that
kinemnatically links the tilt measurement to the edge displacements. 1'he coutrol strategy of first correcting
for the tili, followed by piston correction (or equivalently, minimizing the edge displacements)is t}rc solution
obtained by estimating Vo from the tilt mcasurement ¥ alone and ignoring the edge sensor measurement
altogether. The optimal (i.c., minimum variance) solution couples the tilt and edge sensor measurements at
the considerable expense of comnplicating analysis and inhibiting the development of fast solution techniques.

Thus wc opt for the suboptimal least squares solution.
Along these same lines we note that although incorporating the data ¢* from(9b) is straightforward,

this too has a deleterious effect in tenns of algorithin deisgn and analysis. The next two sections describe
implementation and anaysis of the algorithim described in (i)- (iii) above, sans the sensor data ¢®. Wc will
show later how to restore this data in an eflicient manner.
4, 1STIM ATINGu - w
The implementation of the control law outlined above requires solving the least squares problem

mzin Az - €, (27)

where A is the the difference operator defined in (1 O) and ¢ is defined in (24)-(25). On a sqguare grid this
can be accomplished via the usc of fast Poisson solver techniques implemented on serial or parallel parallel

machines since (27) reduces to the discretized Neumannu problemn
AT Az - A’I'c; Az 210 €poundary 17 boundary normnal

Although the SFLENE peometry is not square, with alittle care the resulting least squares problem

can be transforred to a square.

B

Let 2 denote the region occupied by the SELENE aperture, arid let i denote the region occupied by
a circumscribed square. Now A is trivially extendedfrom§} to K. However, extending the forcing terme




requires a little more consideration. In the deterministic setting there are constraints on how ¢ extends since

it is derived from a potential. Spectfically, ignoring O(h?) terins,

>‘: (")' = 0.

closed  contour

This constraint can be incorporated in the following way. Suppose we begin with a solution .. defined on

R, then ¢, 1s determined from
Cext = A-Tczt-

Now if ey =2in§d, theneqe, ¢in§), and ¢,y iS an extension of ¢ satisfying the vclocity constraints. If

we can determine the boundary values of = on 962, call this function zygq, then the potentiat o, can be

defined arbitrarily on /1t - £, and thereby determining an extention ¢, 10 ¢.

From this discussion we sce that the vector field € can be extended (nonuniquely) to the square once an
estimate on the boundary is obtained. This approach also works for annular regions since Hartmann sensor

data is suflicient to reconstruct these boundary valucs as well,
To sce how this is done let %0, up, . . .~ denote the boundary values of = 011 82 The uls are related by

the d ifference equation
Uigy: U -} 05y, 120, ,N- ] (28)
(0 : slope mcasurement, 7, = noise) with the periodic condition
ug = UN J oy -1 NN (29)
Theleast squares solution to this probletn is obtained by solving the systemn
Ru: f, f - J% (30)
where
2 -1 0 1 -1 0
-2 -1 ... 0 0
1( B " . : 1
“1 o0 . . 24 2 “1 -1 1
Now R has null space consisting of the vector [1 ... 1]", corresponding to a piston. Ilow’ever, solutions to

this problem arc easily obtained by imposing a constraint onu. Once u is obtained, €., can be defined with
Just |6§2] (the number of points on the boundary 052) adds by taking z..,= O on R - 2, and we can procecd

to solve the Poisson equation.
This embedding procedure will increase the covariance of the estimate. On an N x N square grid, this

covariance grows proportionally to sy,
N . :
7 -

I N T UL S )
Sy T }J ’\U,. Aij= A4 ?c.osN i ZcosN R



Asymptotically, sa : O(N%logN). To get a handle onhow this error grows with the cinbedding we calcul ated
the ratios sg/sq, $80/ 840, 8160/ 380, and sy0/5160. 1Wach of these ratios corresponds to the error variance
increase resulting from embedding a square region into another square region of twice the size (four times

the arca). These results are shown below

ss/s4: 1.1914, sso/sa0 = 11617, Si60/ss0 = 1.1458, sa20/s160 = 1.1300.

For comparison the asymptotic estimates are
88/34 ~ 1.5, Sgo/S,m =~ ]]879, 816.0/5'30 == ]158?, 83?()/81(‘,0 = 1.1366.

In addition to this analylical analysis, we also did Monte Carlo simulations of the sg/s4 case. 500
simmulations were runand we emnpirically obtained

s8/s4 = 1.0698 (Monte  Carlo).

This result is slightly better than anticipated by the analytical estimmate. Thereason for this is that the
embedding procedure deterministically adds data. Thus a truc mininnnn variance esthinator should very
nearly yicld a unity ratio for sg/s4. The least squares estimator is suboptimal for the embedded problem
but should nevertheless produce better results than given by the analylical estimate. As another test
wc conducted these same simulations without properly embedding the problem. We merely extended the
gradicut ficld by using zero values outside of the 4 x 4 square. Theresulls of these Monte Carlo runs were

disaslerous,
sg/sq = 1.3779 x 10% (Monte Catlo, improper embedding).

This extrapolation approach suggests another fast solution to our problem. SELENE occupies an annular
region that can be interpreted as a sequence of rings, sy U°,....UY where U? is the outermost ring and
U¥ is the innermost. Note that, U°represents the solution on the boundary 8¢, and we have already solved
this problem in the paragraph above. Clearly we canimpose the same solution form for every ring U
However, it iS necessary to enforce the connectivity between rings. S0 suppose we have obtained estimates
for U, U, . ... U*Yand now seek an cstimate for U*. One diflerence equation for U* cornes directly from

(7)- (29),
Uk 1= UFdoft ol Ub: Urg okt di: 0., 0(k) (31)

1

where (k) denotes the number of scginentsin the k" ring.  With the values {U;' ! };‘(k1 D and slope

mcasurements conneceting the successive rings, aditional equations arc developed for the k* ring. These take
on the general form
Ul 15(0% Y0t (32)

3
where /% 1is the est imate of U* ¢, o"is the vector of slopemeasurements, and7; is a filtering  operator.
The bottom line here is that (31) and (X?) can be massaged into a form

[]’ } us @ (33)
leading to a “ Hehmholtz” equation
(I -1 RU* - [J7 I (34)

where the right side now contains the estirnate U* ! as well as the slope measurements.

This looks very much like a filtering operation v, here inforination is prop agatedinwardly, i.e,, U* depends
on previous information fromthe rings l7°, .G 1T complete the solution, information should flow in the
other direction as well, just as in simoothing. Thus once the entire filtering solution is obtained, 0°,..., U™,
we should actually repeat the process, going backward from U to U0 to utilize all the information available.



3. BRROI ANA LYSIS

Let 4i(z) denote the corrected primary surface. From (3) the error J is given by

J = >:/;\‘ [w(zg) - a(ay) | V(o) - V(e (@ - w)d <z - 3, WE(z - 2y) > Pdr

: >:/ i -+ 70+t qi|*d,
i A

where Pi denotes the piston error (pi = w(xi) - 4 (7)), 7¢ denotes the tilt error (i = Va(z ) Vi(2,)), and 4
denotes the quadratic remainder terim. Let 5 denote the expectation operator. Assuming F2(pi) = 15(25) - 0,
and that ¢iis deterministic wc obtain

I(J) < ):/ (BG4 1G24 2B@D?EGEHY? 4 ¢f)d.
i YO .
The individual tenins in the integrand above will be treated in more detail now. We first analyze the

piston error
™~ 1
Jpiston = > / ]"/(p?)d_:n.
e
i Y
L et v(z;) = w(@i) - u(=:). Recall that the control law has the form Au = u -1 9. Let o denote a zero mean
random variable representing the actuator piston positioning error. Then
I S
T V- Yy “'a,‘ .
Assumning a! is independent from the reconstruction error v; - 9;, we have
]’1‘(])?) = }’/'(]’U,; - ‘i’,‘lz) -} OZ;,,

where 02, is the variance of the actuator positioning error. Thus,
- 1.2 2 42 S ' ~
>1/ E@p:): ofed®- >4/ E(lvi - 9]?)dx,
i U IR

where d? denotes the aperture area. Thesccondterm 011 theright aboveis the reconstruction error associated
with (26). Write (26) as
e:Av- 7,

where we assume that F() =- 0, and 19‘(7]7/7'):agdgcl.ll(zrcozdm denotes the variance of the edge sensor

measurement. Normalizing by the total aperlure area d*we have the mean square error

_Oe?,dgt‘A(Ai)

l o ] ~A 12 ~ N
’d«z >“J'/[‘\i 10( vy - ‘U," )d:r T 7 >1:1 iv‘_ _ 'vi’?
2
_ _omlgcA(Ai) e
: & tr(32),

where A(AN;) denotes the area of the subaperture At and 3! is the covariance matrix of the estimate 4,

Now embed the SELENE aperture into a square aperture with-N x N subapertures. An upper bound fon
tr(?) can be developed as4

N

N ni ]
=, Aij= 4- 2cos- - - 2cos-

o~ iy J ?CDQN 11 QCDQN 41

l!

tr(¥) <




Taking N - 400, the sum on the right above is calculated as
Mo
CLU 121 x 10°
>J /\1_1 ’
ij

leading to anrins piston error component

2.057 x 105
RMS;n'slon < \/‘ M Oedge,

where M denotes the number of subapertures.
To compute the wavefront error duc to tilt error, we will assuine that

Vuw(r): Via(r): iy

where Vi is a zero mean random variable with covariance ]'/(Vi”j) : 026i5. Note that v represents the
comnbined Harlmann sensor error and tilt correction error. Thus

/ Bwl)dz - 03/ la: - |?d.
FaY I ¥

This integral is computed over the hexagonal region A as

13 4
?O;hZA(A,').

/ E(l)de = -
N I

13
ICM.S'“u < J*]?OUL.

Combining these error components wc obtain the mcean square wavefront error

Thus the RMS tilt error is given as

13, , 1521x10° ,

1521 x 10° , 13
- 12 Oge - M acdgc)

#(J) f
- d? < 03? - M Oedge -1 ‘]’?‘03}1.? -} 2o,k

-1 fitting error.

] f wc shrink the size of the segmeuts so that & -1 0, weobserve that N grows linearly with k., And
hence because of the asymptotic relationship

> ] = O(N?logN),

the rs piston error will grow as /log/N. Thus the improvement needed in the edge sensors to maintain
the sarne error is rather benign. On the other hand if Hartmann sensors arc used for the tilt mneasurernent,
theerrorin this measurement is linearly related to the reciprocal of the segment size. “1'0 scc this ob.serve
first that for A< ro,oV:BnA/IG}L\//V,,hO,m,, where A= wavelength, and Nphotons = number of photons
captured over the subaperture®, Now Nyphotons 1S proportional toh, Thus o, is proportional to 1/A.

6. EXANEDING THE ALGORITHM

The algorithm design presented has not included the data ¢ (cf(9b)). A straightforward approach for in-
corporating these measurernents is to simmply average this data withthe other mecasurements. This approach,
although somewhat ad hoc, dots notintrude onthe algorithinic structure that has been developed, since the




modifications arc all absorbed in themeasurement equation. A more systermatic way for incorporating the
data is by introducing the difference operator

where A is defined asin (10) and A? is defined
Ay - U5 - Uqy,

and measurerment vector ¢*,

Formally, the analysis proceeds by replacing A and e wit h A* and ', respectively.
The crux of theimpletnentation problem involving these extended operators and vectors is to solve the

new least squares problem
min [A*z - 2
x
Using the representations for A* and e* above, the solution is obtained via the systemn

[ATA4 AT Az AV AT

A promising approach for solving this syslemn that captitalizes on our ability to rapidly invert A7 A is to
use a conjugate gradient method® with preconditioner (A%7'A)” /2, The resulting algorithin is based on
iteratively solving syslems of the forin A7 Az = b. We exp cct such an approach to be eflicient and have good

convergence properties.
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