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Absticf:  The cylindrical cavity resonator loaded with an anisotropic  dielectric is
analyzed as a two-dimensional problem using a finite element approach that assumes
sinusoidal dependence in azimuth. This methodology allows the first finite element treatment
of the technically important case of a resonator containing a sapphire element with a
cylindrically aligned c axis. Second order trial functions together with quadrilateral elements
are adopted in the calculations. The method was validated through comparisons with the
analytical solutions for the hollow metal cavity and a coaxial cavity, as well as through
measurements on a shielded sapphire resonator.

1. Introduction

Although the analytical determination of resonant modes and frequencies of the metallic
cylindrical cavity has a well established history, a solution for the cavity partially filled with an
anisotropic  dielectric generally requires computationally  complex, three-dimensional numerical
analyses, Approximate analytical means of analyzing the dielectric resonator have been
proposed throughout the years [1, 2], and with some degree of accuracy the theoretical
estimates have agreed well with experimental results. However, because of the inherent
shortcomings of the approximate analytical models, numerical methods have continued to
receive a great deal of attention during the past years [3, 4].

Recently, so called “whispering gallery” resonators consisting of a sapphire dielectric
element in a metallic container have made possible new capabilities for microwave oscillator
phase noise and frequency stability [5,6]. With high azimuthal mode numbers, these
resonators isolate radio-frequency energy to the dielectric element and away from the metallic
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container, thus providing extraordinary low losses and high quality factors (Q’s). However,
these widely disparate field magnitudes pose a challenge for any methodology to accurately
calculate (e.g.) conductive losses due to small evanescent fields at the wall of the containing
can. In particular, a three-dimensional finite element method allowing full treatment of
sapphire’s anisotropic  dielectric constant, would require such a large number of nodes as to
become impractical. Analytical methods are unattractive, with new approaches required for
every geometrical configuration change, A two-dimensional finite element approach, however,
would allow easy treatment of any cylindrically symmetric resonator geometry.

Because the dielectric constant for sapphire shows cylindrical symmetry, a two
dimensional treatment is allowed for the important case where its crystal c axis is aligned with
a physical axis of axisymmetry. In terms of the field intensities, the problem is governed by
the three-component vector Helmholtz equation which can be treated as an axisymmetric
problem only for modes with no azimuthal (or $) dependence. Such zero-order modes can be
obtained from a two-dimensional approach to the cavity in the r-z plane using a variety of
techniques which yield reasonable accuracy, Higher order solution for isotropic dielectrics are
still obtainable in two dimensions if the azimuthal dependence of the modes is assumed a
priori [7]. In the work presented here, the authors reduce the finite element analysis of the
anisotropic  dielectric resonator to two dimensions by assuming an exponential $-dependence,
and limiting the permittivity tensor to posses longitudinal and transverse components only.
While ruling out most anisotropic  dielectric configurations, this approach makes possible the
first two-dimensional finite element treatment for sapphire “whispering gallery” resonators.

Il. Fundamental Equations

In terms of the magnetic field intensity /-/, the vector Helmholtz equation with the penalty
term included is given by [8]

v x[k]-f VXH -a V(V”H)-k:H = O (1)

in which [k] is the tensor dielectric constant, a is an empirical coefficient of the penalty term
V (V”l#), and lq is the free-space propagation constant. The variational energy functional
associated with (1) is given by [8]

F{ H} = ( { (VXH)* .([k]-l  VXH) - k20 H*.H + CX(V.H)*O(VOH)} d~ (2)
h

where X2 is the volume of the resonator. In a finite element solution, H is normally chosen
instead of E because of the discontinuity of the latter at dielectric interfaces.
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At the interface between a perfect conductor and a Iossless  dielectric with a unit normal
vector an the use of (2) implies that

a, x[k]-l  (VXH) =() , (3)

as a naturally satisfied condition, while the condition

an. H=O, (4)

needs to be enforced. There is no axis of axisymmetry for the higher order modes (n>O) and,
hence, no perfect magnetic conductor with its associated boundary condition needs to be
invoked along the z axis.

Ill. Finite Element Analysis

Inside the volume of the cylindrical resonator the magnetic field vector maybe described
as

[

H,(r,$,z)’

{ H (r,$,z) } = H$(r@,z)

HZ(r,o,z),

where

{ H (r,z) }T = 1 H,(r,z)

=’{ H (r,z) } ejn$ , (5)

j H$(r,z) HZ(r,z)  ] , (6)

and Fi,(r,z), fl+(r,z)  and FIZ(r,z)  are functions describing the variations of the components of the
field vectors in the r-z plane. The n in (5) denotes the azimuthal mode number (1, 2, 3,. . .)
while j is used to establish the component 1-l+ to be in phase quadrature with the transverse
components H, and Hz, In this manner, H,(r,z), H4(r,z) and HZ(r,z) are real functions.

This finite element formulation considers the use of general ring elements to solve for
the magnetic field vectors. These elements are defined in the r-z plane and have m nodes.
Within each finite element, lf(r,z) is approximated in terms of the standard shape function
matrix [Nj as

{ H(r,$,z) } = [N(r,z)]T  { H }e # $,

in which

[ N(rlz) ] =

[ N(r,z)} { o } {0}
{O} j { N(r,z)} {o}
{o} {o} { N(r,z)

(7)

(8)
1



{ N(r,z) }T = 1 Nl(r,z) Nz(r,z) . . . . N~(r,z) J ,. (9)
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and

{H}: = [{H~: ~,$ {HZ}: j . ( lo)

Here, {H’). is a collection matrix of order 3m W I containin9 the unknown nodal values
of the field arranged as in (10), and Ni(r,z) is the shape function associated with the i’h node
of the element. The specification of the azimuthal dependence in (7) allows for a trivial
analytical integration of the functional in (2) from $=0 to $=2nwhen  the dielectric properties are
~-independent.

The substitution of the field approximation in (7) into the functional expression (2) leads
to the element matrix equation

Fe = { H }~T [ [S]. + [U]a - k: [T]a]  { H }. , (11)

where

[S] e = ( [A]* [K]-’ [A]T df2 ,
h

[U]e = ( [C]* [C]T d~ ,
‘n

[A] =eln$

{o} {g} ;: {N}

j  {g} {O} j ~{N} +j {~

j  $!{N} -$$ {o}

(12)

(13)

(14)

(15)
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and

(; +${N}

-;{N}

I a {N}z

(16)

The integrations of (12), (13) and (14) over the azimuthal direction are done analytically,
requiring that the dielectric properties [~ in” (12) be @independent.  This is satisfied when [~
has zero value off diagonal coefficients, and when the radial permittivity is equal to the
azimuthal permittivity. The integrations of (12), (13) and (14) over the element area in the r-z
plane areevaluated numerically using the standard Gauss-quadrature technique generally used
for isoparametric  elements with non-rectangular and curved shapes [9].

The global form of the functional in (11) may be expressed symbolically as

F={ H}T[[S] +[U]-k;  [ T ] ]  { H }  , (17)

where [S], [Ul and [71 are global matrices resulting from the superposition of the corresponding
element matrices, and {H) contains all the unknown nodal values of the magnetic field vector.

Applying the Rayleigh-Ritz criterion, (17) “yields the eigenvalue equation

[[ S]+[U]]  {H}-k~[T]{H}=O, (18)

which needs to be solved for the resonant frequencies Or = ckO and for the nodal values of the
corresponding mode intensities {H). The parameter c is the velocity of light in free space.

IV. Comparison to Analytical Solution

(

The proposed method was tested by solving for the resonant frequencies and modes
of a metallic hollow, cylindrical cavity resonator with a radius of 3.8 cm and a height of 4.5 cm
since the exact analytical solution is well-known. The resonator was modeled using
rectangular ring elements with four corner nodes and bilinear shape functions. Solutions were
obtained using 16, 36, 64 and 100 elements. A penalty factor of a = 1 was assumed in (1)
throughout the calculations. The identification of the modes and the removal of spurious modes
was assisted by computations of the cosine of the angle p between the eigenvectors from the
finite element solution and the exact eigenvectors. The cosine of this angle is given by [8]
as:
where {H) is the eigenvector solution of (18), {H.}  are the nodal values calculated from the
exact analytical expressions, and the factors in the denominator are Euclidian norms. If the
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{H}’  {Ha} (19)c@=l{H}T~2i{Ha}12  ‘

value of cos pin (19) is close to one or minus one, then the field vectors {1-l) and {H,} are the
same. Equation (19) was evaluated using each {H.} and all {~ vectors to find the
correspondence between each analytical vector and the numerical eigenvector.

Figure 1 shows convergence curves for or obtained from the finite element solution for
the transverse magnetic TMG~l series modes, where the subscripts represent the number of
oscillations in & r, and z, respectively. The abscissa corresponds to the order of mode
extraction in the finite element solution. For 100 elements the resonant frequencies converged
to about 0,12% from the exact values for both the TE and TM modes, Fig. 2 shows a sample
of the results obtained through the use of the cosine of the angle between vectors in (19) for
mode identification. The true TEO~l modes are shown on the top of the figure, with a cosine
close to one, while the spurious modes have values much lower than one. Fig. 3 shows the
frequencies of various families of TE and TM modes of the cavity resonator as functions of the
azimuthal index.
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Figure 1. Convergence curves of the finite element frequencies for the first six modes of the
hollow cavity with n=6.
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Figure 2. Finite element frequencies of modes obtained for the hollow cavity. The modes with
cosines close to unity are physical, while those with smaller values are spurious.
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Figure 3. Sample families of modes obtained from the finite element analysis of the hollow
Cavity with 100 quadrilateral elements.
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Figure  4. Frequency error for several mode families of coaxial resonator.

Somewhat higher accuracy was found when the method was applied to a coaxial cavity,
where a more uniform geometry is obtained for elements near its geometrical center. The
coaxial resonator had an outer radius of 5 cm, an inner radius of 2.5 cm, and a height of 5 cm.
Figure 4 shows the difference in parts per million (PPM) between the finite element solution
using 220 elements and the analytic solutions for various mode families, Frequency errors for
the first five mode families are all less than 7 parts per million, with errors for the fundamental
T Enll mode family being less than 1 PPM.

V. Comparison to Measurements

The proposed finite element approach
was also tested by solving for the resonant
frequencies and modes of a cylindrical
sapphire resonator experimentally studied by
the Jet Propulsion Laboratory, Reference [5]
includes details of the experimentation and of
the measured frequencies for different
families of modes.

Figure 5 illustrates the geometrical
axisymmetric plane of the resonator tested.
The sapphire material was held together by
a copper core in the center and encapsulated
inside a copper cylinder. The resonator was
modeled using three finite element meshes
comprising of eight-node elements of
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Figure 5. Dimensions (in mm) of sapphire
resonator,
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sapphire and air materials. The dielectric propetiles  of the sapphire material were taken from
Ref. [2] as s,, = ~ti = 9.407 and Czz = 11.62. The coarse mesh consisted of 62 nodes and 15
elements, the medium mesh of 193 nodes and 54 elements, and the finest mesh has 709
nodes and 216 elements. The perfect electric conductor boundary condition reflected in (4)
was enforced at all metal boundaries of the finite element meshes. The eigenvalue solution
of (18) was obtained for azimuthal order values ranging from 3 to 12. Each solution yielded
a set of resonant frequencies with associated eigenvectors. The lowest frequency solution
corresponded to the fundamental mode for that nih azimuthal order.

Figure 6 shows the resonant frequencies of the fundamental family of modes WGH.ll
for the three meshes with n values ranging from 3 to 12, illustrating convergence of the
solutions as the finite element mesh was refined. The mode classification shown is based on
the notation of Jiao,  et al
feasible due to compute!
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[6] for whispering-gallery ‘modes. A finer mesh was not considered
memory limitations.

15 ELEMENTS

54 ELEMENTS

216 ELEMENTS

1
L----.-.. –—_____ ______

3 4 5 ’ 6 7 8 9 10 11 12
AZIMUTHAL MODE NUMBER (n)

Figure 6. Convergence curves of the finite element frequency for the fundamental WGH~ll
family in the sapphire resonator using different mesh sizes.

Figure 7 shows the frequencies of the families of modes that were identified and that
matched with the frequency measurements made at the Jet Propulsion Laboratory [5]. The
solid lines of the figure correspond to the finite element results and the dots are the measured
values, From this figure it is observed, that the finite element results agree well with the
measurements. The errors in the resonant frequencies of fundamental family WGHnll  modes,
obtained from the three meshes, with respect to the measurements are listed in Table 1.
Errors of the resonant frequencies of the rest of the families shown in Fig. 7, including
uncertainties in C, were all less than one percent.
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Figure 7. Comparison of resonant frequencies obtained from finite element analyses with
measurements made on a cylindrical sapphire resonator,

Table 1. Ewor of Resonant Frequency of Fundamental Family WGHnll with
Respect to Experimental Measurements

Azimuthal Error (%)
Number n

Coarse Mesh Medium Mesh Fine Mesh

6

7

8

9

10

11,0
12.0

13.1

14.0

14.9

1,9

2,3

2.7

3.1

3.6

0.15

0.16

0.22

0.26

0.28
11 15.7 4.1 0.55
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VI. Conclusions

A finite element method has been presented for treating a cylindrical resonator partially
filled with an anisotropic  dielectric as a two-dimensional finite element problem assuming
harmonic oscillation for the field dependence in azimuth, This technique allows the first
treatment of the technically interesting case of an anisotropic  but axisymmetric  dielectric
mounted in a cylindrical conducting container. The method was first validated with a hollow,
metallic, cylindrical resonator and with a coaxial cavity by comparing the numerically-obtained
results with the exact analytical expressions. The method was then tested with a cylindrical
sapphire resonator for which there are no exact solutions available. The numerical results
obtained from the method were grouped by families of modes and the frequencies compared
to experimental values obtained at the Jet Propulsion Laboratory. Excellent agreement was
found for all the cases, thus indicating that the method is valid.
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