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Determination of the Eigenfrequenciesof a

FerriteFilledCylindricalCavity Resonator using

the FiniteElement Method
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Abstract— We present a formulation of the Finite Element
Method (FEM) particular to axisymmetric problems containing

‘s ani~otropic media, f 111parti~u]a~ the r-onant frequeficl~ Of a

longitudinally biased ferrite tilled cylindri@ cavity are exam-
ined. For comparison, a solution of the characteristic equation
for the Iossless, ferrite filled cylindrical waveguide was modi-
fied to give the resonant frequencies of the cylindrical cavity.
This analytical solution was then used to examine the error in
the FEM formulation for the anisotropic case. It is noted that
the FEM formulation for an isotropic material presented, based
on both node and edge-based elements, is found to be free of
spurious solutions.

1, INTRODUCTION

When analytical solutions are not available the Finite
Element Method is commonly used to solve for the eigen-
frequencies of inhornogeneously filled electromagnetic cav-
ities and phase constants of inhomogeneously filled waveg-
uides. Formulations using tangential vector elements avoid
the problems associated with spurious modes that were
common in previous nodal and vectorial based finite ele-
ment approaches [1-3]. Alternative methods, such as the
penalty-method, can also reduce the non-physical modes
by explicit enforcement of the divergence free condition.
The use of the tangential vector elements has the advan-

tage that no additional penalty term is needed. Also vec-
tor elements can be chosen to satisfy tangential continuity

at material boundaries as a natural boundary condition.
Therefore the use of vector elements often simplifies the
analysis.

Thus it is natural to extend tangential vector finite ele-
ments to not only inhomogeneities, but to the anisotropic
case. Specifically, Wang and Ida [4] were able to ShOW
that this extension also can be free of spurious modes.
Their method, which was based on the use of tetrahedral
and hexahedral elements, was compared to solutions for
the inhomogeneous cylindrical cavity. They noted that for
permeability tensors without ofl-diagonal terms, symmetry
could be applied to simplify the analysis. A procedure not
suitable for ferrite filled cylindrical cavities.

For a ferrite filled cylindrical cavity Dillon et. al. [5] ap-

plied periodic boundary conditions. This reduces the order
‘of the solution to one-half of the original three dimensional

problem, when the appropriate boundary conditions for
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the modes is applied. A more specific application of the
above methods, applied explicitly to axisymmetric cylin-
drical geometries is detailed here. By applying a Fourier
mode expansion to these azimuthally invariant geometries,
simplification is inherent. The Fourier modal information
is retained, important for the ferrite filled case where the
resonant frequencies of the ~:n modes can differ. The FEM
analysis is thus effectively reduced to two dimensions.

Axisymmetric geometries of interest in the past included
circular waveguides filled with longitudinally biased fer-
rites. Solutions for the phase constants of these ferrite-
filled circular waveguides can be modified for the specific
case of the ferrite-filled cavity of interest here. Application
of the appropriate boundary conditions then gives a char-
acteristic equation which is solved for the eigenfrequencies.
This solution will be outlined here, and used as comparison
for the FEM analysis.

II. FINITE 13LEMENT FORMULATION

The weak form of tt~e vec~or wave ecluation for time har-
monic electric fields, E = E(p, ~, z)e~~, is well known [1].
In the presence of perfectly conducting metallic walls, the
weak form becomes:

/Q{(-v’) (P;’.(vxq)-

““r(w’”i)}dQ=O(1)

where ko2 = w2poe0 and tit are test functions. Use of
Galerkin’s method sets the test functions ,tit, equal to E“.

Taking into account the axisymmetry of the problem, the
weak form equation is rewritten in electric field components
normal and transverse to the @ direction. This results in
the following bilinear functional:

L,{(vxfi’)(@(vxti))_

where:

+A4V’x‘i’)

(2)
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The tensor characterizing a longitudinally biased ferrite
is given by:

“=(% ‘~ :2) ‘4)

The electric field is expanded as a Fourier sum over the
harmonics of the azimuthal variable, #, and a sum of finite
elements in the PZ plane [6]. This allows the eigenvalues,
corresponding to the eigenfrequencies here, to be found
independently for each value of n. Also, E@ is considered a

scalar field over the modelling domain while Et is a vector
field.

N.wdes
‘%(0#lq+

Ed(p, #, z) = ~ ~ C@(i)T
n i=l

N-edges

J%(A O, ~) = ~ ~ C~(i)G(i)e~”4 (5)
n 1=1

The finite eIement basis functions, ed, of the Ed field are
chosen to be first order triangular nodal elements [7] which

are” suitable for modelling scalar fields. First order edge-
based finite elements [8] are used as the expansion func-

tions, E$, of the fit field. In order to avoid spurious modes
it should be noted that the expansions a given in (5):
1) model the range space and null space of the curl opera-
tor sufficiently, and 2) obey tangential continuity boundary
conditions between elements [3].

Substitution of the field components expressed in terms
of finite elements of (5) in the bilinear functional of (2)
along with the inverse of the ferrite tensor given in (3),
yields the generalized eigenvalue equation for the cavity:

[SI{CZ}= &[Tl{a}

where

(6)

[s1= /,2(v x a“)(/%’o (v x i)) (K) (7)

Here, {a} is a vector comprised of the unknown weight
coefficients Co and Ct. We note that our formalism yields
sparse real-symmetric [S] and [T] matrices for lossless, Her-
mitian p tensors. Consequently, we were abIe to use stan-

dard mathematical library routines to solve the generalized
eigenvalue equation.

III. &IARACTERISTIC EQUATION

The analytic characteristic equation for cylindrical fer-
rite structures is due to Kales [9]. In this section, a brief
summary of its derivation for the particular case of a metal-
lic cavity is presented. The cavity under consideration has
a radius of R. and a length of L.

Application of the boundary conditions at the ends of the
cavity requires the longitudinal electric field co~ilponent,

Ez, and the transverse nmgne~ic field component, ~lt, to
vary as cos(~z) while H2 and Et must go as sin(~,z) where,

7 = (Pn/L). Clearly, there arises two distinct possibilities.
First, there are the p = O modes which have neither Hz nor
Ez components. This case wi}l be considered later. Second
there exists the p >0 modes which have both Ez and HZ
components present. These modes are named HE (EH) if
they become TE (TM) modes in the limit when the off
diagonal component of the ferrite tensor goes to zero.

The Maxwell equations, for the HE/EH modes, give rise
to a pair of coupled wave equations in Ez(p, ~) and Hz(p, 1#):

V;H. -t CHZ+ dEz = O

V;E. -t-aE. + bH. = O (9)

where

Again, it is assumed that the fields vary as e~’”t.
This pair can be decoupled by letting:

Q = C71’ul-t-C72U2

Hz = ~ul + ~ZJ2

where al and U2 are given by

(lo)

(a+c)+/(a-c)2+4bd
f71,’2=

2
(11)

This transformation yields a pair of uncoupled wave equa-
tions for the functions U1 and U2:

V;ul + fflu~ = o

V:U2+ U2U2 =0

The solutions to these equations in cylindrical coordi-
nates gives

U1,2= A1,2Jn(@@)d”@

where Jn is the Bessel function of order n.
The longitudinal fields are then found by substitution:

(13)
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The transverse fields can also be expressed in terms
U1 and U2 and thus J.:

of

fit(P, @) = ~vt [(x41Jn(@P) + A2Jn(@iP))dn9 +

.?()p Vt [((m – a) AI J;(@p)+
m’

(as - a) AsJn(/Zp)) eY@] x iiz (14)

()HJp,(b) = -+ Vt [((K2 – aI)AIJn(fip)+

(K’ - 02)A2Jn(@p))#n’q i-

y.A7t ((AIJti(/71p) + A2Jn(@p))e~nd] x & (15)

where K2 = W2qJ– y2.
The boundary conditions on the side walls of the cav-

ity are now enforced which results in the following pair of
equations:

qAIJn(fiR) + c72A7,Jn(/&R) = O

and

f@(AIJ,,(@i )R + AIJn(fiR)) –
pR

As usual, the nontrivial solutions are found by setting the
determinant of the coefficients of AI and Az equal to zero.
Hence the characteristic equation for the HE/EH modes is

(16)

where al,2 and a are functions of frequency via equations

(10) and (11) and -Y= (pm/L). To determine the HE/EH
mode eigenfrequencies, .f~,,71,P,we simply plotted the value
of this equation as a function of frequency to determine the
zero crossings. Simple bisection was then used to determine
the eigenfrequencies to the accuracy desired.

Now consider the p = O modes. These modes are identi-
cal to the TM,,,,~l,o modes of the empty cavity. Their eigen-
frequencies, however, are modified due to the presence of
the off-diagonal terms in the ferrite tensor,

fn,,n,o=,xR/*la

where Zn,m is the m-th zero of the n-th order
t ion.

IV. NUMIZRICAL RESULTS

(17)

Bessel func-

(4) will be exanlinccl. The resonant frequencies hm’e been
normalized to the lowest order empty cavity (p = poI)
resonance: the TMO,l,O mode.

Table 1 shows the first 10 resonances of the cavity and

the eigenfrequencies of 2 higher order modes as found by
the FEM. The two higher order modes are included for the

examination of error related to mesh density in the next
section. We generated FEhl data on two different meshes,
referred to here as Mesh 1 and Mesh 2. hfesh 1 results in
360 unknowns for the n # O modes and 370 unknowns for
the n = O modes, The difference is due to the fact that E.
is completely known on the axis of rotation for the n # O

modes, where it is equal to zero. Similarly, Mesh 2 gives
3686 unknowns for the n # O modes and 3752 unknowns

for the n = O modes, The two meshes used the following

relative permeability/permittivity values: P = 1.0, p= =

1.0, p’ = 0.1 and e = 1.0.

TABLE 1

COMPARISON OF CAVITY RESONANCES BETWEEN

CHARACTERISTIC EQUATION AND FEM DATA FROM

TWO DIFFERENT MESHES

I I EQ II Mesh 1 I I
HE;”I , 0.9960 0.9987 0.88 0.9909 0.09
TMO,l,O 1.0050 1.0040 0.10 1.0050 0.00
HE;, , 1,0257 1.0342 0.83 1.0266 0.09.,, ,,
EHO,l,l 1.1991 1.2092 0.84 1.2002 0.09
HEJI ~ 1.4177 1.4261 0.59 1.4187 0.07
HE;, , 1.4403 1.4492 0.62 1.4414 0.08

HE;;,; 1.4697 1:4943 1.67 1.4719 0.15
HE;, .-, 1.5643 1.5853 1.34 1.5664 0.13

EHO,l ,4 2.7682 2.8303 2.24 2.7733 0.18
HE0,3,J 2.9903 3.0666 2.55 3.0182 0.93

Table 1 shows the FEM solution agrees to within l%
of those predicted by the analytical solution for h4esh 2.
Moreover, no spurious solutions were present in the solu-
tion set. We note that modes with higher values of p or m
suffer more error. These modes ,have higher field variation
in the z and p directions, respectively.

Figure 1 exhibits the resonant frequencies of the first six
modes as a function of the magnitude of the ratio [p’/pl,
The magnitude of this ratio is, of course, proportional to
the dc biasing field on the ferrite. The solid line curves
come from the characteristic equation. The relative per-
nwability/permittivity values used were: c = 1.0, ~ = 1.0
and pZ = 1.0.

A cavity that has a length to radius ratio of 2.0 with a
longitudinally biased ferrite tensor permeability given by
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V. FEM ERROR AS A FUNCTION OF MESH D~IWTY

In this section we look at the error as a function of mesh
density for two particular resonant frequencies of the ferrite
filled cylindrical cavity: the EH0,1,4 mode and the HEo,s,l
mode. These modes are chosen because they have more
field variation in one direction, with a simple first index
variation in the other direction. The effects of varying the
sampling density in one direction, while keeping the density

constant in the orthogonal direction, is to be determined.
The HEO,S,l mode has 5 half-wavelength variations in the

p direction and a single half-wavelength variation in the z
direction. Figure 2 considers the error as a function of the
sampling density in the p direction. The two curves corre-

spond to the cases where the sampling is 40 and 48 nodes
per wavelength in the z direction. Figure 2 shows that both
these densities allow similar resolution of the z component

of the fields. Assuming that the field is properly modelled
in the z direction, Fig. 2 shows that a sampling density of

approximately 5 times per wavelength in p achieves 1.0%
accuracy.

The EH0,1,4 mode has 4 half-wavelengths of field varia-
tion in the z direction but only one in the p direction. The
two curves in Figure 3 correspond to the cases where we
have sampled 5 and 10 times per wavelength in the p di-
rection. Here again increasing the sampling density in the

direction of higher field variation leads to more accurate
results. Although, Fig. 3 more clearly shows the effect of
the sampling density in the orthogonal direction. Thus in-

creasing the sampling density from 5 nodes per wavelength
variation to 10 in the p direction significantly decreases the
error.

VI. CONCLUSIONS

We have determined the eigenfrequencies of a ferrite filled
cylindrical resonator using the FEM. An FEM formulation
which exploits the inherent axisymmetry of the problem
has been developed. This method expands the electric
field using both node and edge-based elements on a two-
dimensional mesh. The resulting solutions are compared to
the analytical eigenvalues and found to be free of spurious
modes. A brief discussion of the accuracy and the error in
this formulation has been provided.
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Figure Titles

Fig. 1. Normalized resonant frequencies of the first six modes of the ferrite filled cylindrical cavity as a
function of the ratio of lp’/pl.’

Fig. 2. Error as a function of the sampling density in the p direction.

Fig. 3. Error as a function of the sampling density in the z direction.
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