Oceanic Convection in the Greenland Sea Odden Region as Interpreted in Satellite Data

Frank D. Carscy
California Institute of Technology, Jet Propulsion Laboratory, Pasadena CA 91109

and

Andrew T. Roach
Applied Physics laboratory, University of Washington, Seattle WA 98105

ABSTRACT
Satellite and in-situ data for the "Odden" region of the Greenland Sea are discussed with respect to describing regions of convection. The convection is discussed in terms of regional ice retreat, observed in passive microwave data, that has previously been associated with convection observed in ocean mooring data. These regions are tentatively identified in SAR data which shows plumes of about 300 m separation in an area about 20 km by 90 km immediately north of the rapidly retreating ice edge at the southern end of an ice edge embayment, taken to be the consequence of the flow of warm, saline Arctic Intermediate Water to the surface during convection. Although there is no way to determine the depth of the convection it is assumed to be to intermediate depths. The embayment in 1989 is seen in passive microwave data to expand downwind at the rate expected of wind-forcing of either ice or surface water, but a propagation along a salinity gradient is also possible; the actual mechanism at work is not known.

1. INTRODUCTION

1.1 Background
Ocean convection is seen as a globally important process in which air-sea interactions influence oceanic circulation through the production and ventilation of deep and intermediate waters. A key site of convection, active at least some winters, is in the Greenland gyre, and the convection seems to be related to the development of an ice feature called Odden ("the icy Cape" in Norwegian), an eastward extension of the ice edge in the latitude range 710 to 75°N as shown in Figure 1 for the winter of 1989. Previously published results from the 1988-89 winter (Roach et al, 1993) showed that convection near the Odden ice edge at 75°N, 4°W immediately preceded the formation of the Nordbukta ("North Bay"), the large embayment or central retreat in Odden, occurring nearly every winter.

The key dynamic elements of oceanic convection are taken to be the individual plumes, the clusters of plumes called chimneys, the eddies that are the consequence of chimneys aging in a rotating frame, and, in the Greenland Sea, the embayments and polynyas resulting from the outcropping and spread of intermediate-level convective-return water on the surface. Recent numerical work, which has not included surface wind driving, has suggested that the chimneys, of scale 10-60 km, should grow through increase in plume numbers, decay through baroclinic instability, and circulate cyclonically with the gyre. Plumes are expected to have dimensions in the range of 100-1000 m; chimneys in the range 20-60 km; and eddies
in the range 5-60 km (Jones and Marshall, 1993; Garwood, 1991; Gascard, 1991). The processes of plume formation and convection are not well understood, and other mechanisms have been proposed for initialization of convection, notably that of ice-edge upwelling (Iläkkinen, 1987; Johannessen et al, this issue). Additionally, eddies have been observed in other parts of the Greenland Sea, and numerous dynamic origins have been proposed for them (Johannessen et al, 1987).

In this paper we discuss features seen in satellite data; these features are hypothesized to be the surface signals of the plumes, and possibly the eddies, which have been numerically simulated. Specifically we present an interpretation of passive microwave data for 1989 and 1992 in the context of a simple model of convection-driven ice-edge retreat causing Nordbukta growth; constraints are imposed by processes associated with the formation and migration of a small polynya. We also present imaging radar data which seems to describe the surface structure resulting from convecting plumes and supports our hypothesis that convective action in an area at the ice edge controls the ice edge motion in this region. The satellite data interpretation, especially of the radar image, is conjectural; there has been insufficient in-situ oceanic and ice-cover data collection for conclusive interpretation of either the satellite data or the processes of the upper ocean.

1.2 The Odden Region

The oceanography of the Greenland-Iceland-Norwegian Seas has received much attention throughout the century, and here only a very quick overview is supplied; a comprehensive discussion of the region can be found in Hurdle (1986). The principal water masses involved in the Odden processes are the upper Arctic Intermediate Water (uAIW), a warmer saltier water of Atlantic origin, and the Polar Water (PW), a cooler fresher water of Arctic origin (Johannessen, 1986). The uAIW approaches the Greenland gyre from the northeast after moving north past Norway and recirculating west beneath Spitzbergen. Some of this flow is bathymetrically turned again to the cast and forms the Greenland gyre with its center approximately at the location of GSP-4 in Figure 1. PW flows along the northwest side of the gyre moving in a southeasterly direction along Greenland as the East Greenland Current (EGC). Filaments of uAIW and PW forming the lower and upper branches of the Jan Mayen Current (JMC) flow to the south approximately along the ice edge before turning with the gyre to the cast, as shown in Fig. 1, to cut across the southern half of the gyre, and PW, freshened by seasonal sea ice melt, also forms the surface water of the Odden area (Bourke et al, 1992).

The uAIW is underlain, below about 500 m, with deeper waters that are cooler and slightly fresher than the uAIW, the Greenland Sea Deep Water (GSDW) and Norwegian Sea Deep Water (NSDW). These are the end-point waters for the Greenland Sea deep convection; their salinity ranges from 34.88 to 34.94 psu, and their temperatures from -0.5°C to -1.3°C, with the GSDW the fresher and cooler (see e.g. Johannessen, 1986).

1.3 Winter Processes in the Odden region

in winter the waters of the Greenland Sea are cooled by cold, mostly northerly and northeasterly winds but with some strong northwesterly cold air outbreaks (Roach et al, 1993). The waters at the surface of what will be Odden are buoyant with a mixed layer of uncertain depth, but in the range SO-100 m at end of summer (Bourke et al, 1992), and this area will be cooled enough, in most winters, to form an ice cover. The uAIW to the north has enough sensible heat that it does not form an ice cover. As Odden ice grows, brine is injected into the upper water increasing its salinity and density. This water will, if enough cooling and brine are supplied, convect into and sometimes through the uAIW water, and this process brings up convective return water with enough heat to stop ice formation or even melt ice.

2 ice-ocean interactions, Carsey and Roach, Nansen symposium
thus liberating fresh water (Killworth, 1979). If conditions are right convection will continue and deepen until it extends to the bottom, but this step is apparently not as simple as it sounds. As a consequence of greater compressibility of lower salinity waters, surface waters fresher relative to the uAIW probably convect through a progressive mixed-layer deepening while surface waters more saline can undergo abrupt deep convection (see Aagaard and Carmack, 1989). For deep convection, dynamical constraints must be met (Gascard, 1991). The issues of convection and deep water formation are examined in detail by Chu and Gascard (1991).

"There is a temptation to think that the Odden ice growth simply converts the fresher surface PW to uAIW by brine generation, but this is not the case. The Bourke et al (1992) section shows a surface salinity change of about 1 psu/100 km; to remove this layer by brine from ice growth with the surface fluxes available is not practical. Specifically if we use a mean flux of 200 watts/m2 and a mixed layer of 50 m mean thickness, the retreat of the edge of meltwater front (lighter than the warm intermediate water below), and thus of the ice edge, would occur at a maximum (if all heat lost at the surface is latent heat, which it is not) of only 3 km d$^{-1}$, 20% of the observed rate (Roach et al, 1993, and below). Thus, the heat and salt in the convective-return uAIW is required. The fact that most of the surface heat loss goes into ocean cooling is also apparent in the salivation record in figure 2 of Roach et al (1993) which shows a winter brine change of about 0.004 psud$^{-1}$, appropriate for about 1 cm d$^{-1}$ of ice growth (on a 50 m mixed layer) or a heat flux of only 30 watts/m2; this result is consistent with those of Schott et al, (1993). This seems to indicate that, in part, Odden ice growth may serve to generate negative buoyancy to stir the uAIW up into the mixed layer.

1.4 "The Convective Events of 1989

As part of the Greenland Sea Project, oceanographic data from the upper 200 m at two locations were examined (Roach et al 1993; see also Schott et al, 1993). The growth of sea ice in the central Greenland gyre injected brine into the upper water column locally and reduced the vertical stability profile during December and January. Subsequent cooling increased the density of the surface waters to a critical point and a cold air outbreak in late January 1989 provided enough buoyancy loss to convectively overturn at least the upper 200 m. Replacement water then rose from the warmer pool of intermediate water at mid-depth causing an increase in the heat available in the upper layer. The surface signature of that warming was the retreat of the ice cover near GSP-4 and then along the Greenland shelf edge to the southwest, where the warmer water apparently was advected. As will be discussed below the meltback estimated from sequential satellite images is about 11 km d$^{-1}$ (or 13 cm s$^{-1}$), comparable to both the 10 cm s$^{-1}$ mean current (measured by Foldvik et al. [1988] in the EGC at 79°N) and wind forcing of ice or surface water (McPhee, 1990).

2 THE SATELLITE DATA

2.1 Data

To generate regional sea ice distribution we used image data from the Special Sensor Microwave Imager (SSM/I), an instrument designed to make a variety of oceanic and terrestrial observations (Hollinger et al, 1990), including the concentration and type of sea ice. SSM/I brightness temperatures (T_b) are acquired at 19, 37, 22 and 85.5 GHz at both polarizations except at 22 GHz. To obtain fine-scale data on ocean surface processes we used SAR data from the AMI on the ERS-1 (Carsey, 1992); these radar images have resolution of about 30 m with swaths of 100

3 ice-ocean interactions, Carsey and Roach, Nansen symposium
and have been used in other air-sea-ice studies in this region (Johannessen et al, this issue).

2.2 SSM/I Interpretation

The interpretation of microwave radiance for new and young ice types is complex, and is different from the interpretation for thick first-year ice or older ice. The observed \(T_b \) for new and young ice depends on thickness according to whether the ice grows in calm or rough conditions. This situation has been examined using surface and satellite data (Grenfell et al, 1992) and with satellite data alone (Steffen and Maslanik, 1988). Essentially, nilas growth in calm water is characterized by a change from the low open sea \(T_b \) to the high ice \(T_b \) as a consequence of growth to only a few millimeters of thickness (Wensnahan et al, 1993), depending on frequency, while pancake ice growth in rough conditions is characterized by a nearly linear (albeit noisy) increase in \(T_b \) with ice thickness over the range 0 to about 15 cm, largely independent of frequency. Grenfell et al (1992) also noted that the vertically polarized radiance was enhanced for pancakes. Pancake ice has previously been indicated as the dominant form in the regions of the ice edge in the Odden region (see e.g., Tucker et al, 1991; Sutherland et al, 1989), and the meteorological conditions of this site are appropriate for this kind of growth (Weeks and Ackley, 1986). We assume that the Odden ice is principally pancake form. In a microscopic sense the microwave signal from pancake ice (as discussed in Grenfell et al 1992) may be the consequence of some variable, e.g., pancake wetness, that is correlated to ice thickness rather than the consequence of ice thickness itself; on this there is no definitive data set or applicable model.

2.3 SSM/I Variables

To further examine the ice condition record we form the Polarization Ratio (PR) and the Gradient Ratio (GR), these variables have proven useful in the examination of the major ice types of the polar seas (Cavalieri et al, 1984).

\[
PR(\lambda) = \frac{(T_{bV}(\lambda) - T_{bH}(\lambda))}{(T_{bV}(\lambda) + T_{bH}(\lambda))}
\]

\[
GR = \frac{(T_{bV}(37\text{ GHz}) - T_{bV}(19\text{ GHz}))}{(T_{bV}(37\text{ GHz}) + T_{bV}(19\text{ GHz}))}
\]

where \(T_{bV} \) and \(T_{bH} \) are the vertically and horizontally polarized microwave brightness temperatures at the frequency indicated.

In the formation of PR and GR we have variables that have reduced sensitivity to surface temperature and weather, and we have also generated somewhat “tuned” variables as PR is more sensitive to open water or fractional coverage or pancake thickness while GR is more sensitive to the presence of old ice although it is sensitive to open water as well (Cavalieri et al, 1984). From the definition of PR and GR their sensitivity to weather is reduced approximately by half, but it still can be appreciable. PR and GR are shown in figure 2 for January 17, 1993 for a data set in which the 37 GHz data have been expressed on a 5 km grid which preserves the resolution at about 30 km. These data sets are consistent with the data for the entire winter, and they show that PR and GR arc redundant variables of this ice cover, and we will use only PR to describe ice conditions.

2.4 The SSM/I Ice Edge
There are several interpretation schemes for Odden ice PR values. We could use the traditional approach in which thick ice is assumed and ice concentration is solved for (Steffen et al. 1992); we could utilize the Grenfell et al. (1992) result and interpret PR as a pancake thickness for an area covered to some concentration by uniform-thickness pancakes; or we could acknowledge that there is a concentration ranging from 0-100% of variable thickness pancakes. While none of these is wholly satisfactory, the last category is doubtless more correct, but we do not have the information to pursue it quantitatively. The approach open to us is to assume, strictly for purposes of locating the ice edge, that the actual concentration and pancake thickness profiles along lines normal to the ice edge are essentially constant over the winter so that a given PR value is the locus of ice of essentially invariant spatial relationship to the ice edge by any definition.

3. THE 1989 and 1992 ODDEN EXTENT RECORDS

3.1 The 1989 Odden

The timing and strength of development of Odden is different in every year, and, in fact, it has not formed in some years (see Sutherland et al. 1989: Wadhams, 1986). The Odden in 1988-89 formed in November, reached maximum extent in December (Figure 1), and began to retreat in late January. The retreat took on its typical pattern as the formation of the Nordbukta at its northern edge near 75°N, 4°W, in the late winter-early spring time frame the Nordbukta can, as it did in 1989, separate Odden from the EGC ice. Ice conditions in early spring were highly variable in 1989, and this is also typical.

3.2 Ice Retreat in 1989

In figure 3 the PR(37GHz) is shown for the Odden box of Figure 1 for the entire winter. According to Roach et al. (1993) the convective events start about January 20. Shortly thereafter an embayment forms at the ice edge in the upper center of the Odden box, and the embayment grows by steady ice retreat of 10-15 km to the southwest (down in the box). The retreat continues steadily until about day 66 when there is some episodic alternation of PR increase and decrease. The tongue of ice that is the most persistent is seen to lie along the axis of the Jan Mayen Current (see figure 1) as observed by Bourke et al. (1992). In our analysis we assume that the Nordbukta growth (the ice retreat) is the consequence of convection, to at least intermediate depth, beginning near the center of the Greenland gyre, occurring essentially annually.

Near day 30, three small scallop-shaped embayments appear in the ice edge, and these features migrate down the box, approximately to the southwest. We initially interpreted them to be the chimney features as discussed by both theoretical (Jones and Marshall, 1993) and observational (Gascard, 1991) investigators, although the scale of the scallops is larger than has been discussed at 60-100 km (the uncertainty arising from SSM/I resolution). Another difficulty in the identification of the scallops as chimneys is that chimney drifts should retain the cyclonic sense of the gyre, but the scallops simply move to the southwest at the rate of the Nordbukta retreat. Finally, embayments on all sorts of scales are common in ice edges, and this particular geometry could be due to any number of causes.

The scallop which appears on the eastern side of the convective embayment dots not simply move SW on the embayment fringe as the others do; it closes into a migrating open-water feature which we argue is a convective sensible-heat polynya, in figure 3 a yellow spot of 60-90 km diameter. When it has moved some 120 km to the SW of its formation another scallop forms at its origination site. The migrating polynyas “fill” with ice at approximately the northern edge of the JMC. It may be

5 ice-ocean interactions, Carsey and Roach, Nansen symposium
that the upper PW filament of the JMC supplies enough fresh water to terminate the convection and permit formation of an ice cover once the heat pulse brought to the surface by the convection has been lost to the air. These polynyas are large enough that the SSM/I data should reasonably resolve their character, and the Tb data indicate a polarization intermediate between open water and a high concentration of thick pancakes; thus, this eastern polynya may be partially or completely filled with thin pancakes and may be difficult or impossible to observe in radar or visible-light data sets or even visually from a ship’s deck.

All the scallops move at within 10% of the rate of the Nordbukta growth and arc thus likely to be controlled by a common mechanism. At the same time, this tendency to move to the southwest is not universal to Odden-area features; the far northeast tip of Odden, for example, moves to the north-east; its behavior is uncorrelated with the embayment features.

3.3 The 1992 Odden

Figure 4 shows the 1992 Odden from SSM/I data. This was a winter in which the Odden formed late and was small, but there was the formation of Nordbukta a bit later than 1989. This data set is being used for comparison with ERS-1 SAR data, and in what follows SAR data for the rectangular area outlined in 4B will be discussed.

4. ODDEN ICE COVER BEHAVIOR

4.1 A Simple Model of Ice Retreat

We would like to develop a quantitative picture of the processes at work in Greenland Sea convection. From the discussion of Roach et al (1993), it seems that the rapid ice retreat is a signal feature of the convection and that this process must be the consequence of the sensible heat brought to the surface by the convective-return AIW. The first question to address deals with the rate of ice retreat. From visual inspection of Figure 3 the ice retreat has a rate of about 12 km d⁻¹. The chimney growth rates suggested by theoretical analyses are 2-3 km d⁻¹ (1 egg and Marshall, 1993), and the currents of the region arc negligible (Roach et al, 1993). Thus we have only the wind as external source for the rapid ice edge motion. If we speculate that the convective-return water terminates ice growth exactly, i.e., no ice at the ice edge is formed or melted after the convection begins, then the last ice that formed will move under simple wind forcing, and the open-water area will grow at that rate. To examine that prospect we use the Norwegian Hindcast winds for the location of GSP-4.

According to Moritz (1988),

\[\mathbf{U} - \mathbf{c} = \mathbf{BG} \]

where \(\mathbf{U} \) is the (complex) ice velocity, \(\mathbf{c} \) is the current, \(\mathbf{G} \) is the geostrophic wind, and \(\mathbf{B} \) is a complex constant which contains the drag coefficient and Coriolis turning. We will use \(\mathbf{c} = 0 \). Further, we will concern ourselves only with the ice motion component down the center of the Odden box. Following Moritz (1988) we use

\[|\mathbf{B}| = 1.21 \times 10^{-2} \]

\[\Theta = \arg(\mathbf{B}) = -3^\circ \]
In the above we are specifically modeling ice motion, but the modeling of the motion of warm surface uAIW would use equivalent terms (see McPhee, 1990). "'Bus, we are examining the motion of the ice edge to see if it is controlled by wind-driven properties, but we are not specifying what is being driven.

Figure 5 shows the geometry including a sample of geostrophic wind and ice motion down the box. Positive x-component of wind and ice motion are taken to be down the box. We generated daily average wind-forced and observed ice edge positions where the observed ice edge is the location, on the line down the box center, of PR=0. 12. Both resulting displacement series were smoothed for 7 days over the whole season. Figure 6 shows the resulting ice edge retreat velocity component by both SSM/I and the wind-forced calculation.

In interpreting Figure 6 errors must be considered, there are errors in the winds; there are geophysical variations in the parameters of 1 and 2; there may be local surface currents so that c ≠ 0; and there are errors in Earth-location for the SSM/I data. For and uncorrelated uncertainty of 25% for each, a fairly conservative estimate (Brown, 1990), there is an uncertainty of about 45% in the comparison. '1'bus, the specifics of the curves cannot be interpreted closely. In Figure 6 the ice edge is seen to be going upwind to NI; early in the winter, consistent with expected early-season thermodynamic ice advance. Beginning at about the time of convection onset the two indications of ice edge motion agree within the error estimates. During this period there is a tendency for negatively correlated departures in the two curves; an increase in predicted wind-driven retreat occurs with a decrease in SSM/I retreat, and vice-versa, suggesting an additional loss of ice cover by wind-induced mixing. In the late winter the SSM/I ice edge becomes erratic as ice covers and retreats from large areas very quickly, in this situation the wind-forced model is too simple.

This calculation fails to disprove that wind advection is a control of ice retreat in mid and later winter, but it is neither strong enough to confirm wind-forcing nor to specify whether the ice at the edge is moving a bit faster than or more slowly than the edge itself, or if the ice itself might be growing or becoming thinner near the edge. These considerations are important to the surface salinity budget.

4.2 Refinements of Odden Behavior

Two features of the Odden are thus arguably convective, the Nordbukta and the eastern polynya. It would be possible for the Nordbukta to be formed entirely by a convective-return water source limited in geographic extent to an area at the gyre center immediately around GSP-4; the convective-return water would simply be blown downwind to lose heat to the air while it mixes with local surface water. However, the eastern polynya has to bring its source of convective-return water with it as it moves to the southwest down the box. Thus we speculate that the convection in both the Nordbukta and the eastern polynya is confined to a region near the ice edge. Additionally, since ice is found all around the eastern polynya, in particular to the northeast, there must be, to stabilize the column, surface water with reduced salinity after the convection has moved on. This fresh water could be residual PW, or it could be the consequence of the melt of ice advected from the NI. The ice edge may moving more slowly that the ice, so that ice is always forming at the lower edge of the polynya, providing brine for convection, and melting at the upper edge, ‘1’bus, the data lead us to hypothesize that the convective water is located in, and confined to the southern end of, the open water area; the remainder of the Nordbukta and the eastern polynya are modified uAIW of convective-return origin.

Figure 3 permits a rough but useful calculation. From the rate of motion of the polynya, a given spot on the ocean is in the polynya for 8-10 days as the polynya is 100-120 km across and is moving at about 12 km-d. For mean fluxes of about 200
wi"-2, a 1 °C change in temperature would indicate a mixed layer of 40 m. The actual change is not known and by water characteristics may be smaller that 1 °C by as much as half, and the mixed layer thickness is not well defined, but is in the range of 50-100 m (Bourke et al. 1992). Thus the heat loss by the ocean is consistent with the cooling of the mixed layer that has been warmed by mixing with uAIW as long as the uAIW-PW resultant water is fresh (stable) enough. At the point of origin of the eastern polynya the process of initiation of convection seems to be cyclical on approximately a 10 day period.

Although the Greenland Sea situation is explicitly not covered by the simulation, Killworth (1979) has examined convection in the Weddell Sea, and has suggested that convection in the presence of ice can take on a form in which the ice cover is intermittent. In this mode surface cooling causes the ice surface to freeze, and ice grows until the stability is destroyed, and then convection begins. The convection brings up warm water from depth; the warm water melts some or all the ice, and the convection is terminated until the melt-induced buoyancy is destroyed by icc growth whereupon the convection restarts. In Killworth (1979) this sequence is called ABCDA. For the Weddell Sea data the predicted ice cover is cyclic with a frequency about 1.2 day⁻¹. In figure 7 we show a sample of individual passes of SSM/I over Qoddøn; there are about 3 per day that cover the region reasonably well, and this rate spans frequencies adequately, considering that no intermittency is visible in the daily data. The polynya is not seen to be changing in size or shape on the time scale of the satellite revisit schedule which suggests that the polynya is responding to mechanisms other than the intermittent-ice mode suggested by Killworth although the possibility of chimney-scale (5-10 km) intermittency on the polynya edge is not ruled out at the SSM/I resolution. The capability of the point of origin of the polynya to generate another polynya in about 10 days may be related to the Killworth processes in that the water at the ice edge has increasing salinity due to ice growth until convection is triggered.

5. POSSIBLE CONVECTIVE PLUMES IN THE SAR DATA

5.1 SAR interpretation

Figure 8 a,b, and d show IRS-1 Synthetic-Aperture Radar (SAR) data for the area in the Qoddøn region outlined in Figure 4, and 8c shows model results for deep convection (Carscy and Garwood, 1993). “This image is complex, and here we will present a brief and qualitative interpretation of the features as this is all that is needed for our argument, and a more concrete interpretation of the image calls for in-situ observations.

The interpretation to follow is reasonable, in our view, but is necessarily somewhat speculative. For other treatments of open-ocean SAR data see Johannessen et al (1993a and 1993b), Johannessen et al (1992), Johannessen et al (this issue), Johannessen et al (1983), and Tucker et al, 1992. In the upper portion are white puffy features interpreted as low winds on open ocean; wind speeds of about 3 ins⁻¹ would generate enough backscatter to make the image bright (see Donelan and Pierson, 1987), and ECMWF winds at this time were about 2ms⁻¹; thus one might expect visual evidence of regions of low (dark) and higher (bright) winds like these. Below the wind-puffs there is a zone of dark water followed by a zone of dark water with eddy-like features etched in narrow bright lines. We interpret the dark area to be open water and the bright lines to be ice streamers advected by the eddy currents. In the upper right near 73.5°N and again near 74°N there are scallops 1 S-20 km across; these appear to be trapped waves. Below the eddy field there is on the right a textured gray area; this is hypothesized to contain the plumes and will be discussed further below. To the left of that is a bright region that we interpret to be wind.
Below this area (below 72°N) there is a region that we interpret to be pancake ice, on the right, and ice bands, on the left. Pancake ice has been reported to be common in this region (Tucker et al., 1992 and Wadhams et al., 1993). In the bottom right is wind-roughened open water to the southwest of Odden. This interpretation is made upon inspection of the SAR image and is consistent, in general, with the SSM/I data of Figure 4 which shows ice, either thin pancakes or first-year ice in a concentration of about 50%, in a triangular area on the cast side of the SAR image frame and in the Odden ice tongue. Open water roughened by higher winds are at the edge of the frame at the southeast.

Quantitatively, there is only limited analysis that can be done to substantiate the interpretations: pancakes have inherently a wide range of possible backscatter as dots the wind-roughened sea (Tucker et al., 1991; Donelan and Pierson, 1987), and winds derived from even the best analyses have errors in the range of 2 ms⁻¹, large enough for ambiguous interpretations. Thus, with respect to the SAR image alone, no concrete conclusions are possible. The geometry of the plumes and eddies is concrete, but there has been no in-situ verification of the oceanic processes hypothesized to be at work.

S.2 The Hypothesized Plumes

The key element of oceanic convection, the active plume, has as yet not been convincingly observed or simulated. Some plume data have been acquired: from the temperature series on GS1′4 during the convective period, an upper bound on the vertical velocity of 3.1 cm s⁻¹ was noted. This is in general agreement with vertical velocities measured directly by Doppler profilers in the Mediterranean Sea and in the Greenland Sea (Schott and Leaman, 1991; Schott et al., 1993). The modeling community has recently predicted what one can expect to find in ocean convection. In particular, Jones and Marshall (1993) and Garwood (1991), through scaling arguments, have found the important terms in the convective process are buoyancy flux, Coriolis force and ocean depth. The Jones and Marshall (1993) calculations applied to our data with a nominal 500 W m⁻² peak heat loss (for initiation of convection) yield a plume of about 160 m diameter with a vertical velocity of 2.2 cm s⁻¹ while the Garwood approach finds that the plume array should have spacing dependent on convection depth and ranging up to 2 km for deep convection in the Greenland Sea.

ERS-1 SAR data, discussed above, and modeling results are shown in Figure 8 (see also Carsey and Garwood, 1993); these figures are hypothesized to represent modeled and observed plume surfaces. The model result is from Garwood (1991) for deep convection; thus the plume spacing in the SAR data would indicate intermediate convection to about 1000 m. In the blowups the dark regions are interpreted to be convective return water, and the bright regions are interpreted to be pancakes growing on the plumes. We recognize that the bright regions may be concentrations of small-scale surface waves herded onto the plume tops by surface convergence, and it is clear that no conclusive argument can be made from SAR data alone. The (hypothesized) plume-filled region is seen to be about 20 km by 90 km and to be located directly north the Odden ice edge. As discussed above the ECMWF wind analysis for this area indicated a day of very low winds, about 2 ins⁻¹; in more usual high wind conditions the plumes might have a very different appearance, as well as surface structure, and might not be visible at all.

We argue that the “ragged net” appearance is not commonplace and may well be the consequence of convection. In blowups of the other parts of the image we could find no zones possessing this appearance. Finally, the ragged-net features we have hypothesized to be due to plumes may be visible in other SAR data of the ocean (and convection is certainly present in other parts of the ocean), but we have not
observed them in examination of well over 100 ERS-1 SAR images of this area, and we find no reference to them in literature (see e.g. the summary in Johannessen et al., 1992, p283).

5.3 Convective Regions

Since the images of Figures 3 and 7 for 1989 indicate that the scallop-shaped embayments and the polynya are most likely all the same phenomenon at work, we can count embayments e.g., on day 38, to estimate that there are 3 or perhaps 4 regions of convection in Odden. In the images of Figure 4 for 1992 the scallop-shaped features are not as clearly shown, but one could argue that there arc 2 such features present. In the 1989 data the points of origin of the embayments arc apparently near the upper edge of Odden about 75°N, 4°W. The site of origin of the eastern polynya is capable of sequential generation of the transient convecting features. The retreat of the ice edge makes the SSMA data useless as to sequences of convection away from the ice edge, e.g., at GPS4 after the ice has started to retreat, but the association this convection with the ice edge seems to argue against sequences in the other locations. An interesting issue with respect to comparison of the 198'3 data with the model results of Legg and Marshall (1993) is whether the 3 embayments clearly visible in day 28 started off as one convective event which grew and subdivided into three as in their Figure 9.

6. CONCLUSIONS

in short, we conclude that the satellite data, taken together with the interpretation of mooring data from 1989 (Roach et al, 1993), strongly suggest that the Nordbukta as well as polynya-like features in the Odden ice cover arc the consequence of convection which is consequently confined to an area smaller than 100 km across located at the retreating ice edge of the Odden or the leading edge of a migrating polynya. Inspection of ERS-1 SAR data for this ice-edge region yields features which strongly resemble modeled plumes, and we hypothesize that these structures are the surface signatures of plumes. Clearly, these conclusions are tentative; further in-situ and satellite observations of ice and upper ocean are required.

Modeled and observed convection behavior are integrated in Figure 9 which shows in cartoon form the oceanic structure suggested by the satellite and ocean data for the central chimney and eastern polynya. The key features are the plumes, chimneys (aggregates of plumes), and open-water. The key difference between the eastern polynya and the Nordbukta is that the eastern polynya is advected as a closed, partially ice-covered, chimney-like feature while the Nordbukta (the central retreat of Odden) is an embayment; a difference probably arising from low initial surface salinity in the polynya area. We still have no model or strongly-indicative data on the mechanism for the propagation or wind-advection of convection although we hypothesize that the same mechanism is at work in both the Nordbukta and the eastern polynya, and we tentatively conclude that the Odden region of the Greenland Sca has convection at work only in a few small (< 100 km) regions near the ice edge, and is characterized over most of the open-water area by a well mixed layer at least 200 m and possibly 500 m deep. We speculate that the eastern polynya is a convective, sensible-heat polynya that may be partly filled with ice; in-situ observations of features of this sort would be interesting and useful. The plumes that we argue arc observed in the Nordbukta seem to be small structures, about 100 m across, organized in an “ragged-net” array with separation about 300 m, consistent with model results for intermediate convection. We would expect similar plumes to be active in the eastern polynya, and there may be in addition convective plumes in numerous other ice-ocean interactions, Carscy and Roach, Nansen symposium
areas of the Greenland Sea. These tentative conclusions call for more data, from both satellite and in-situ platforms. To verify the presence, densities, and scales of plumes, horizontal profiling over a range of depth is called for; this data acquisition is quite challenging in seas which are partially to fully ice covered and will require significant efforts.

7. ACKNOWLEDGMENTS

SSM/I data are from NSIDC in Boulder, and ERS-1 data are from ESA through ESRIN and the UK-PAF. We thank these archivists for their work and cooperative spirit. John Crawford and I-Lin Tang at JPL, performed analysis tasks on the data sets. Knut Aagaard has been a source of good advice. The modeling data of Figure 8 are from Roland Garwood. The research at California Institute of Technology Jet Propulsion Laboratory was supported by NASA under contract, and the work at the University of Washington was supported by NASA and ONR.

8. REFERENCES

Johannessen, O. M., S. Sandven, W. P. Budgell, J. A. Johannessen and P. M. Haugen, 1994, Observations and simulations of ice tongues and vortex pairs in the marginal ice zone, This issue).

12 ice-ocean interactions, Carsey and Roach, Nansen symposium

Wadhams, P., J. Comiso, E. Prussen, S. Wells, D. Carrie, M. Brandon and E. Aldworth, 1993, Active and passive microwave imagery of the Odden ice tongue in the Greenland Sea compared with field observations, EOS 74, 323.

Corresponding addresses:
Frank D. Carscy
California Institute of Technology, Jet Propulsion Laboratory, Pasadena CA 91109; 818-354-8163, F. Carscy/Omnnet

and

Andrew T. Roach
Applied Physics Laboratory, University of Washington, Seattle WA 98105; 206-685-7911; A. Roach/Omnnet

FIGURE CAPTIONS

Figure 1: Location map for Odden. The numbers at the margin are row and column numbers for a 5 km grid. The numbered circles are Greenland Sea Program Moorings as discussed in Roach et al, 1993. The box encloses the region known as Odden, and the satellite data discussed here arc within this box. The western edge of Odden itself is taken to be the dashed line at left. The dashed line that runs nearly up the box is approximately along the section of Bourke et al, 1992, and the solid hooking line outlines their JMC 1.5°C boundary.

Figure 2. SSM/I Data for the centerline of the Odden box on day 17 of 1989. In the upper frame is a plot of Tb vs distance down the box along column 208 of Figure 1. The heavy lines indicate the top and bottom of the Odden box. In the center frame the calculated PR and GR arc shown for the profile through the box only. Roth of these variables have minimum values in thick consolidated ice. In the bottom frame PR and GR in the box arc plotted against each other with different symbols used for different parts of the profile. The presence of old ice would draw GR down; the variation shown is due to either ice concentration or thickness of pancakes.

Figure 3. SSM/I values of 37 GHz PR {Where PR=(TbV-Tbb)/(TbV+Tbb)} for the winter of 1989; day of year numbers arc shown above each map. In part A the entire winter is summarized with PR data on 12 day separation, in part B the period of rapid evolution of the Nordbukta (the central ice retreat) is shown with PR data on 2 day separation. In these maps the reds and oranges are open water (with weather), and the blues and greens are ice while yellow is a transition color which can be oceanic if heavy clouds are present. The yellow spot to the cast of the Nordbukta in days 89034 and following is hypothesized to be a convective sensible-heat polynya.

Figure 4. SSM/I data for 1992 for the Odden region, as in Figures 1 and 3. In part A we show the outline of the region shown in Figure 6 ERS-1 SAR data.

13 ice-ocean interactions, Carscy and Roach, Nansen symposium
Figure 5. The geometry for the ice edge model. The centerline of the box is seen to have an offset from true nor-lb of 44°. G is the geostrophic wind, U is the modeled ice motion and Ux is the component of ice motion down the box centerline.

Figure 6. Ice retreat rates down the box of Fig. 5 in 1988-89 as measured in the SSM/I data and as predicted with a simple wind-driven model. The errors estimated for the model result are about 40% so that a nominal agreement is found.

Figure 7. The eastern polynya shown in single-swath 37 GHz SSM/I data over the Odden box for days 35-38 of 1989 with times in GMT. Empty areas were not covered, and empty arcs are bad data. The data are clustered around the times of the ascending and descending passes, near 0200 and 1900 GMT.

Figure 8. Plumes in the Greenland Sea as modeled (Garwood, 1991) and observed in ERS-1 SAR images (Carsey and Garwood, 1993). 8a is the ERS-1 SAR data at nominal swath of 100 km and reduced resolution, about 100 m; in the blowups of 8b and 8d the resolution is shown at 30 m. The model result only covers an area 3.6 km on a side; four identical such regions are grouped in Figure 8c.

Figure 9. Hypothesized processes in the Nordbukta (A) and in the eastern polynya (B) in cartoon form, not to scale. The role of ice is shown as providing brine for convection; this assumes that the convecting density is approached by adding brine to cold water so that the sinking water will be a bit fresher than the surrounding water.