Microgravity Test of Universality and Scaling Predictions Near The Liquid-Gas Critical Point of 3He - Progress Report

M. BARMATZ, INSEOB HAHN, Jet Propulsion Laboratory, California Institute of Technology---Large gravity induced density gradients present in ground-based experiments prevent an unambiguous test of universality and scaling predictions near the liquid-gas critical point. A microgravity environment could provide measurements up to an additional two decades in reduced temperature closer to the transition. This ground-based research program will develop and test an experimental system capable of simultaneous measurements of several static and dynamic scaling parameters near the 3He critical point. Measurements of the constant volume specific heat and isothermal compressibility along the critical isochore will be used to determine the critical exponents α and γ, respectively. The sound attenuation and dispersion will be measured to test the dynamic scaling predictions. We are fabricating a cryostat for precision control of temperature ($1:10^9$), pressure ($1:10^{11}$), and density ($1:10^7$). We are now collaborating with R. Duncan to evaluate his superconducting flexible membrane design as a pressure sensor and plunger for volume adjustment. A new 3He critical point high resolution thermometer is also being developed using a GdCl$_3$ salt and advanced SQUID technology. Progress in the design and fabrication of the cryostat and critical point measurement cell will be presented, [Work supported by NASA].