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ABSTRACT

In this article we revisit the G allager and van Voorhis optimal source coding scheme
“for geometrically distributed non-negative integer alphabets and show that the various
subcodes in the popular Rice algorithm canbe derived from the Gallager and van Voorhis
code. Next we modify and generalize t he Gallager and van Voorhis code for 2-sided ge-
ometrically distributed integer alphabets (positive and negative), which are typical input
sainples to the back-end entropy coding stage of lossless predictive coding schemesand loss,y
transform coding schemes. Based (m this code we propose an adaptive coding scheme with
low implementation complexity and present experimental results on compressing planetary
images using the proposed method.
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Adaptive Source Coding Schemes for Geometrically
Distributed Integer Alphabets

EXTENDED ABSTRACT

I. Introduction

Predictive coding schemes predict the present sample valuc based on the previous
samples. The error samples, which are the difference between the predicted and actual
values, are either sent direct ly to an entropy coder in the case of lossless compression, or
are quantized before they are sent to an entropy coder in the case of lossy compression.
‘Transform coding decorrelates the original signal and this decorrelation generally results
in the signal energy being redistributed among a smaller set of transform coeflicients.
The transform coefficients are quantized bhefore they are sent to an entropy coder. It
is well-known that the error samples and the transform coeflicients before quantization
can be modelled with a Laplacian distribution [1, 2]. In [3] and [4], we introduced an
improved modified Laplacian distribution for the unquantized outputs and wc showed
that the probability distribution of the quantized output integers derived from the modified
Laplacian distribution is geometric for all integers except zcro. This discrepancy canbe
shown to be small and the quantized output integers can be modelled using a simple
single-parameter discrete 2-sided geometric probability distribution.

In Scction 11 we revisit the Gallager-van Voorhis-Huffman (GVH) optimal source
coding scheme for geometrically distribuited non-negative integer alphabet s [5] where

pn()=@Q -0 v # >0, (1)

where @ = 1 - r(0),7(0) is the fraction of zeros in the sample set, and ¢ is a non-negative
integer. 7(0) can beestimated directly from theimage data. We show in Section IT1
the various subcodes in the popular Rice algorithm can be derived from the GVH code.
In fact, the Rice! subcodes are also a subsct of the class of optimal codes for runlength
encodings proposal by Golomb [6]. In Scction IV we modify and generalize the GVH code
for 2-sided geometrically distributed integer alphabets (positive and negative), which have
the following distribution

pea(i) = —— 0l Vi, (2)

where § = {—ﬁ—%, and »(0) is the fraction of zeros in the sample set. The 2-sided geo-
metrically distributed integer alphabets are typical inputs to the back-end entropy coding
stage of lossless predictive coding schemes and lossy transformn coding schemes. In Section
V we develop an adaptive coding scheme which has low implementation complexity. We
present some experimmental results for this scheme using planctary images.
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Il. Background on GVH Codes

Gallager and Van Voorhis presented an optimal binary prefix code for the set of
geometrically distributed nonnegative integers [5]. Here we call this code the Gallager-
van Voorhis-Huffman-l (GVH1) code. This code is a generalization of Golomb’s optimal
codes for runlength encodings for the special case when 6'-— 1/2 [5]. Let 1 be the integer
satisfying

o'+ 611 <1< b 0, (3)

where § = 1 — r(0) as defined in (I). It is easy to see that for any 6,0 < 6 < 1, there
is a unique positive integer [ satifying (3). Let a non-negative number ibe represented
by 7 =15 -t  where j =[1/l], the integer part of i/1, andr = [;] mod l.Gallager and
Van Voorhis derived the optimal [ (hence the optimal Huflman code) as a function of 6
to minimize the code redundancy. They also showed thatan optima code for the non-
negative integers is the concatenation of a unary code which is used to encode j, and a
Huffiman code which is used to encoder, 0<r <l — 1.

Each integer r, 0 <r < I — 1, represents an equivalence class modulo 1. Gallager and
Van Voorhis showed that the integer set {r : () <r<1-1} has a distribution p, = —11_;:7()",
and the sum of the two least likely letters exceeds the probability of the most likely. The
length of the optimal codewords can differ by at most one. It can be shown that the optimal
coding for this integer set is to use codewords of length |log, | for ¢ < 2 llog2t41)_ 1 angd
codewords of length |log,!] + 1, otherwise.

In [3, 4] wc proposed a simple construction to generate a Huffman code for the integer
set {r :0 <r <! — 1}. The construction algorithin is as follows:

1. Generate the preliminary list L of 2U9%2 U hinary sequences {00, Lo, ..., 11. .. 13, cach
of which has length |logy 1].

2. Append to cach of the lastl — 2 Hoge U hinary sequences in L either 4 ora 1 to
generate two binary sequences of length [log, (] + 1, and call the new list L.

L’ hasa list of { prefix-condlitioned codewords, with 21524 -1 codewords of length
llog, 1, and the rest of length[log,[]+1. L' isan optimal Huffinan code fOr {r : 0 <
r <{—11}. Thus, each 1-sided geometrically distributed integer can be efliciently encoded
using a concatenat ion of aunary code and a Huffman code. “For the particular case when
I = 2% it is not hard to sec that an integer ¢ encoded by the GVH1 code consists of it
¢ oncatena tion of a unary code of length [-2—'—7:J + 1 ( Ly ] Os followed by a 1) and a
k-tuple (L' consists of' 2L k-tuples), where e is the length of a symbol in bits (e.g., typically
n = 8inimage transmission). This particular code construction WILS also described in [6].
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I1l. Relationship Between the I-sided GVH Code and the Rice Code

Rice developed a predictive losslms coding scheme [7] that consists of two separate
stages. the front-end pre-processor is a predictor followed by a symbol mapper, while
the second part performs adaptive entropy coding. The first stage takes the difference
between the actual values and the predicted values and maps the differences, positive or
negative, to a sequence of non-negative integer numbers. The second stage encodes the
sequence by adaptively selecting the best of several easily implemented variable length
coding algorithms for non-negative integers, The software Rice code was used inthe
interplanetary Voyager Mission, and the hardware Rice implementation has been basclined
for the Cassini Mission (scheduled for launch int he late 1990°s timeframe). Recently a new
VLSl implementation of the 1o sslcss Rice agorithm was reported [8]. The encoder/decoder
chip set supported 4 to 14 bits/sample.It was reported that under laboratory conditions,
the encoder chip compresses at a rate in excess of 50 Msamples/s, and the decoder operates
at 25 Msamples/s. A second Rice encoder has been designed as a gate array and is being
fabricated in a 1.2 puM RAD-hard CMOS process.

Using Rice's notation in [7], it was shown in [9] that the various variable length codes
that consists of the fundamental sequence (FS) code ¥ and the split-sample codes ¥ 4
are optimal Huffman codes for data sources that have Laplacian distributions. For a non-
negative integer i,

5ot ) * LSB() 3)

\Pl’k(’lz) =g’1(t
where

Yi(m)=000 . ..001 |, 4

m zeros
and where *  denotes the bit-pattern concatengtion operation and LSBj denotes the &
least significant bits of i. From the results of Section Il, we can thus observe that the
fundamental sequence code ¥1is equivalent to the GVH1 code and the Gololitn) code for
1 = 1, and the split-sample codes ¥, arc equivalent tothe GVH 1 code and the Golomb
code for | = 2%, Hence, one can stat e that t he well-know~l Rice code can be int erpreted as
a special case of Golomb’s code, which in turn is a special case of the GVHL code.

IV. Efficient Coding Based on the 2-sided Geometric Model

Constructing an optimal prefix code, say by using the Huffinan algorithm, is quite
a complex operation in hardware. In this section weintroduce a class’ of near-optimal
prefix codes to encode data (e.g. differentials of waveforin data and image data) with
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probability distributions that resemble the 2-sided geometric models discussed in Section
I1. The construction of this prefix code is simple. For most well-behaved data, frequency(i)
~ frequency(—1) for ¢ = 1,2,..,. Thus in order to construct a code for both the positive
and negative values, we use the GVH 1 codes for the non-negative integers. An addit ional
bit is appended to each codeword, except the codewords representing O, to indicate whether
integer 4 or integer — i is sent. We call this code the G allager-van Voorhis-Huffran-2 code.

Based on the above code construction, we can evauate the performance of the GVH2
codes and give closed form analytic expressions as a function of @ for the redundancy 7z, the
mean codelength l2, and the entropy H (.X2) of the 2-sided integer geometric distribut ion,
where X,is the discrete random variable corresponding to the 2-sided geometric source
[3, 4]. Hence, from Appendix 1 and 2, we write down a closed form expression for the
redundancy of our coding scheme as a function of 19 and 1, namely,

72 = Iy — H(X,)

2 ok 146 26 log, () .
=1+ llogy(1). + 1+9(9+ 14)!) "1°g2(1—9> + (1+9)(21—9) 5)

We find the value of [ which minimises 72 for given 6 by minimising the termsin 72 which
depend on 1, namely

=1 2 o 6
f(l) = llogo )} + 75 (7—71) (6)
We find the optimal [values (over al ranges of § of interest) by direct search, and we
tabulate in Table 1 the ranges of #(0) = - for which each value of I is optimal, 1< 1 <30.

Note in particular that some values of [ arc not used in Table 1, and that the ranges are
different from the 1-sided case (for small values of 1)as given in [5).

V. An Adaptive Coding Scheme Based on the 2-Sided Geometric Distribution

The GVH codes described in previous sections arc static compression schemes, and
the efficiency of a code depends on how well the code (as a function of [)matches the
source statistics (e.g., r(0)). In practi ce, dueto the uncertainties associated with the
data, a static data compression scheme may ¢ wse source-model mismatch. The source-
model mismatch can reduce the efficiency of the compression scherand an some cases,
may cause dat aexpansion. In light of this, we have developed an adaptive lo ssless data
compression scheme that does not require prior knowledge of the source statistics. The
only requirement is that the source statistics should resemble a 2-sided geometric model.
This scheme uses the same basic adaptation strategy as the Rice algorithin: use a munber
Of different codes to compress the data and choose thebest one. The GVH-based adlaptive
data compression method was developed for the Galileo Low Gain Antenna Mission [10]
and alt hough is not being used as part of the flight software bascline for G alilco, it may
be considered for future missions,




The adaptive lossless data compression scheme is differential-pul se-code-modulation
(DPCM) based and uses a Huffrnan coding strategy similar to the one used to compress the
DC differentials of the JPEG [11] and ICT [10] [12] compression schemes. We developed
threec Huffman codebooks that are hased on the ‘2-sided geometry model: one for low-
activity data (I = 1), one for medium-activity data (I=2),and one for high-activity data
(I=4). The data are first partitioned into blocks of fixed length (e.g.,16 samples per
Mock). The first sample of each block is used as a reference point and is not coded. For
the remaining samples the differences between adjcent samples are calculated. The encoder
then computes the number of hits that are required to compress the block using each of
the predefine codebooks and chooses the codebook that gives the best compression. If al
code books give dat a-expansion, the block is sent unencoded. Each block is preceded by a
2-bit tag: 00 for the low-activity codebook, 01 for the medium-activity codebook, 10 for
the high-activity code book, and 11 for no compression.

This adaptive data compression scheme? has an escape code? that prevents data expan-
sion. Like the Rice algorithm, this scheme is adaptive to local statistics (one codebook per
block) rather than depending on global statistics (one codebook for the whole data file).
Hence, in principle?, it can avoid the source-model mismatch problem by choosing that code
(from a family of codes) which performs best on the actual data. The 1o sslcsscompression
performances of this scheme on 19 planetary images arc given in Figure 1. The planet ary
images (of Jupiter) were chosen by the Gdlileo flight project team to reflect the potentially
wide variety of realistic images which t he spacecraft may encounter at the planet. on
al images except one, the adaptive method outperforms the global non-adaptive GVH2
method of Section IV. The single image whine it performed worse wasin factanimage
of ncarly constant background sky; hence, not surprisingly the adaptive approach pays a
slight performance pendty over the global method. For some images (such as images 7,
8 and 9) the bits/symbol for the adaptive method are actually lower than the differential
entropy of the whole image This can be explained by the fact that the ditferential entropy
isaglobal image statistic, whereas the adaptive method is based on local statistics. Thus
the adaptive met hod can exploit local variations in entropy to improve overal comjpiression
performance.

The prototype compressor containg 173 lines of C code which includes three codebooks.
The coding architecture is exible cnough to accomodate different codebooks and different.
numbers of codebooks to fit different applications.  The scheme requires 44 bytes per
codebook (memory requirement), and one addition per byte per codebook (computational
requirement).

This scheme can be gencralized to an adaptive combined runlength/Hu flinan coding
algorithm for block transform coding schemes like JPEG, ICT, and Haddamard transformn.
Other than the DPCM-based schemes, the scheme can also be used as an efficient. hack-end
entropy coder for subband coding,.
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Appendix 1

We define the GVH2 code for the 2-sided model as described earlier, i.e., for ¢ # O
an extra sign bit is appended to the equivalent codeword for a single-sided source. If we
define 12(i) as the length of the codeword assigned to letter 7 by this scheme then we must
have

lo(i) = 1, () + 1, i#0
=l1(0)> 1=0

Let l2bethe mean codeword length for the GVH2 code. We have

1= 00

Iy = Z pa()l2(i)
T i= 0o 1= —1
=p2a(O)1(0) + D pe@D(Li(@D) + 1)+ Y pa(@(Li(i)) + 1)
1= 1 i.. —o0

=23 p (L) -+ 1= p2(0) = pa(0)12(0)

i=0

But by definition

i) = pr)
po(i) = T+ 0

which leads to

log = 1—_2;5/,] + 1 - pa(0) - p2(0)l2 (0),

wherel 1 is the mean codelength of the GVH1 code, and is given by the following expression
(5]: * is
()k

Iy = [log, ()] 41+ -

Since we also have in general that
1(0) = 1 + |log, ()]

and .y
0) = —r
P2(0) 7

* We note that this result is different from that given in G allager and Van Voorhis’
original paper [5] - there appears to bea typographical error in their equation for [,
they have the term [log, ({)] instead of [log,(l)].
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We can write

_ 2 g~ 1-601-9
b= g (loe®) +1+ =5) 41y 5 1 (1 Log )

29 9‘&)
+logs (D) + 7550+ T

Hence we sec that the mean codelength for the 2-sided GVH coding scheme is quite similar
in form to the |-sided GVH result. Clearly however the difference in the two forms may
lcad to different optimal values of the parameter 1, for fixed 6, i.e., Iy and l2 may be
minimised by different values of 1 over certain ranges of 4.

Appendix 2

We seek an expression for the entropy of a 2-sided geometric source as a function of
6. We have

H(X,) = - i pilogy(pi)

1=~ 00

CElel)
() (m(i50)(+757) w0 (5)

1= ]
1-0 1—-46 2log,(0)6
<1+e>(1082(1+e)(1+ 3) - T
- /146 20 log, (0
T %) @ 9)(1+a)

i

f
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‘[ Start of Range | End of Range | Optimal {|
r1(0) r2(0)
18000000 0.296176 1
0.296176 0.140251 2
0.140251 0.126126 3
0.126126 0.077586 4
0.077586 0.063264 5
0.063264 0.055966 7
0.055966 0.041124 8
0.041124 0. 036607 9
0.036807 0.033058 I
0. 033058 0. 030397 11
0. 030397 0. 027749 12
0. 027749 0. 026167 15
0. 026167 0. 021450 16
0. 021450 0. 019888 i
0.019888 0. 018849 18
0.018849 0.017812 19
0.017812 0.017294 20
0.017294 0.016260 21
0.016260 0.015744 22
0. 015744 0. 015228 23
0.015228 0.014199 24
0.014199 0. 013685 29
0.013685 0.013171 20
U.ULsL/L 0. 012658 28
0.012658 0.012146 29

Table |Optimal!l values for a double-sided geometric distributionas function of ro,
the proportion of zero's in the difference statistics histogram‘



