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Abstract
This paper describes the approach and algorithms de-

veloped jor real-time model-based obstacle detection and

distance computation for the NASA Ranger Telerobotic
Flight Experiment. Objects oj interest, such as manip-
ulator arms or the Ranger vehicle and solar arrays, are
modeled using a small set oj component types: edges,
polygonal jaces and cylindrical links. Link positions are

computed using standard forward kinematics, and dis-
tances between object components are computed directly
using equations derived from geometry. Prioritized lists

of potential obstacles for each manipulator link elimi-
nate needless distance computations and assure that the
most likely obstacles are checked, even if the computa-
tion is terminated early due to real-time constraints. A
test program, utilizing a 3-D graphical simulation and
providing a graphical user interjace for operator control,
has been developed and used to test and demonstrate ob-
stacie detection. An earlier paper [1] described how the

obstacle detection results are utilized jor collision avoid-
ance.

1 Introduction

The NASA Ranger Telerobotic Flight Experiment

[2, 3,4, 5], led by the University of Maryland, is aimed
at the development and demonstration of robotics tech-
nologies for executing manipulation taSkS in space.

Rauger incorporates two dexterous seven degree-of-
freedom manipulator arms mounted on a cubical base,
in acldition to grapple and vision arms. The two dex-
terous arms will be used, both individually and coop-
eratively, to perform a variety of manipulation exper-
ilucnts and servicing operations (Figure 1). JPL has
cleveloped moclel-based on-line obstacle detection aud
collision avoidance capabilities for the Ranger project,
These capabilities do not currently exist iu the Rauger
baseline control system, and erroneous operator com-
mauds cau cause collision between the dexterous arms

Figure 1: Ranger performing an on-orbit experiment

and the camera and grapple arms, the base, or the task
board. On-line obstacle detection and avoidance will
enable collision-free motions of the arms throughout the
workspace. It will also cause a reduction in the Ranger
operation time, since possible motions with potential
collisions will not be executed. This capability will in-
crease the safety of the Ranger during the operation of
the arms, a feature which is vital to the success of the
Ranger mission.

Obstacle detection can either be sensor-based, uti-
lizing proximity sensors or machine vision to ideutify
obstacles, or model-based, utilizing geometric computa-
tions on a database that includes locations and geome-
tries for manipulator arms and all potential obstacles.
hlodel-based detection has usually been used off-liue
as a cornponcut of path planning and simulation sys-
tems and, as such, has not had the requirement for
real-time performance, These detection methods are
capable of mocleling complex manipulators and obsta-
cles aud can exhaustively search for nearest obstacles
(e.g. [6, 7]). Oftentimes, desig~,s for real-time colli-

sion avoidance have used sensor-basecl obstacle detec-
tiou (e.g. [8, 9, 10, 11]), but the Ranger spacecraft
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Figure 2: Ranger flight vehicle geometry, as modeled
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does not inclucle sensors capable of detecting obstacles
in real-time. Usage of on-line detection clata, however,
will be similar to usage of real-time sensor data; the
model-based detection software may be considered to
be a virtual sensor suite instrumenting the entire space-
craft and manipulators. Tlle goal of our obstacle cletec-
tion effort, therefore, is to provide a real-time mode]-
based obstacle detection capability which is tailored to
Ranger requirements and which can cletect the nearest
obstacles in real-time. This has necessitated a nlininlal-
ist approach, with simple object models and distance
computation algorithms, together with some database
sophistication to eliminate unnecessary computations.

Figure 2 shows the major components of the Ranger
flight vehicle, consisting of a propulsion module with
an octagonal cross-section, two essentially planar so-
lar arrays, a tapered electronics module with a square
cross-section, ancl a cubical manipulator module. Four
robotic manipulators will be attached to the manipula-
tor moclule: two 7-clegree-of-frcedonl (DOF) dexterous
7nanipulators, attached to the left and right sides of the
module; a camera manipulator attached to the top of
the module; and a grapple manipulator attachecl to the
bottom. Figure 3 shows a top view of the current design
of the Ranger dexterous manipulator that is mounted
on the left side of the manipulator module; an iden-
tical manipulator is mountccl on the right sicle of the
manipulator module.

In order to warn of impending collisions, the fun-
damental requirement, is to find the minin)um distance
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Figure 3: Top view of Ranger manipulator module and
left dexterous manipulator with all zero joint angles

between all parts of the active manipulator and all po-
tential obstacles, inducting other manipulators (which
may have moved since the previous distance computa-
tion) and other components of the Ranger flight vehicle.
All the components represented in Figures 2 and 3 can
be mocleled rather simply, wit}l cylindrical or polyhe-
dral shapes. Furthermore, the Ranger vehicle and nla-
nipulators need not be modeled with high fidelity, but
computational speed is critical because obstacle detec-
tion must be done at a high rate on-board the spacecraft
in order to meet safety recluirements.

2 Approach

In order to meet the real-time Ranger performance
requiremcllts, we have developed an approach which
emphasizes simple object models, direct geometric conl-
putation of distances, and avoidance of any unnecessary
distance computations.

The obstacle detection software assumes that only
one manipulator is moved at a time, providing the near-
est obstacle data for one manipulator at a tinle.l For
each manipulator link that has moved, the minimum
distance from the link to all objects in its obstacle list

(see clescription below) is measured. The obstacle de-
tection function returns the IIearest object, its distance,
and the link and object nearest points for three cat-
egories: manipulator- to-manipulator, nlanipulator-to-

] If n)ore ttlan one manipulator is n]oving, the software Inay
be used on eacl) n)mlipulator in turn.



vehicle and manipulator-to-bounding box. The bound-

ing box is defined to be a virtual rectangular box enclos-
ing the arms and ceuterecl on the Ranger manipulator

module. When a manipulator approaches any side of
the bouncling box, an obstacle is detected.

When a manipulator link is approaching collision
with another manipulator, it is sufficient to test for line-

segment to line-segment distances, taliing into account
the raclii of the links. When a manipulator link is ap-
proaching collision with a vehicle face, then the nearest
point to the link on the face will either be (1) the near-

est point to the link along one of the edges of the face, or
(2) the nearest point of the distal end-point of the link

to the face. When the distal end-point is the nearest
point to the face, then the projection of the distal end-
point into the face plane2 will be within the boundaries
of the face. Thus, if we can detect that this projection

point is not within the face, then we do not need to
find the actual nearest point on the face; otherwise the
desired nearest point in the face plane is the projection
point.

The obstacle cletection database (ODDB) contaius

geometrical data about the Ranger spacecraft and its
manipulators for use by the obstacle detection aucl col-
lision avoidance software. The potential obstacles in
the ODDB are faces, edges, and manipulator links. The
ODDB identifies relationships between objects and con-
tains lists of point locations, which may be either link
or edge end-points, as well as a list of pointers to po-
tential obstacles for each link (the obstacle list). The
obstacle list3 typically has a relatively small number of
entries, because most of the objects in the ODDB are
not within the reach space of the link and are thus not
candidates for collision. 13y only checking the cases de-
scribed above, and by only checking feasible obstacles,
obstacle detection computation is minimized.

All coordinates in the ODDB are expressed in the
manipulator frame, a right-handed reference frame whose
origin is at the center of the Manipulator hfodulc. For
each link of each arm, the ODDB contains the prox-
imal and distal end-points of a line segment through
the axis of the link, and a radius for the link. Because
there are only 5 points per dexterous arm, correspond-
ing to end-points for all Ranger arm links, a list of linli
encl-point locations is maintained. These ]ocatious are

‘The Projection of the distal enrl-point is the i]~tcrscctionwith
tllc face plane of the perpendicular to the face plane which passes

throug]l the distal end-point,

3The obstacle list structure is clesig,ned to allow dynamic ad-
ditio]) and deletion of pointers to objects as well as dynamic Ic-

ordcring of eacl) list to reflect priority based on changing obstacle
distances, III the current illlr)lc]l]entatiot], the obstacle lists are

static and are ]nanual]y constructed Insect on sill)ple inspection

of the Ranger geotnctry.

updated due to changes in joint angles, using forward
kinematics computations.

For the vehicle, the ODDB contains a list of vehi-

cle vertex points, whose coordinate values are constant
in the manipulator frame. Each edge contains pointers
to two of the vertex points. Each face contains point-
ers to vertex points surrounding the face in a counter-

clockwise fashion. These data structures also contain
additional redundant data, computed at initialization

time, to make distance computations fast.

For hnk-to-link clistances, the minimum distance be-
tween the link axis line segments is computed and the
radii of both links are subtracted from this distance in

orcler to get the minimum distance between link sur-
faces. The geometric link surface that this models is a
cyliucler of uniform radius with hemispherical ends of
the same raclius.

For link-to-edge clistances, the minimum distance be-
tween the link axis line segment and the edge line seg-
ment is computed and the link radius is subtracted in
order to get the minimum link-to-edge clistance. The
nearest points are the points on the link axis line seg-
ment and the edge line segment that are closest to each
other.

For link-to-face distances, the distance between the
distal end-point of the link and the plane of the face
is computecl, as well as the projection of the end-point
iu the plane. If the projection of the distal end-point

is not within the face, then this end-point-to-face mea-
surement is discarded. Otherwise, the projection point
is the face nearest point, the link distal end-point is the
link nearest point, and the link-to-face distance is the
distance between the nearest points less the radius of
the link.

For lillk-to-l]o~llldirlg box distances, the distance be-
tween both end-points of each link ancl the maximum
ancl minimum values in each of the three manipulator-
frame axis directions is computed with a simple sub-
traction per end-point to bounding-box-limit pair. The
least of these distances is the minimum bounding box
c]istance. The link nearest point is simply the end-
point used for the minimutn distance, and the bounding
box nearest point has the same coordinate value as the
bounding box limit in the axis corresponding to the
bounding box limit (e.g. if the closest limit is in the
+x direction, tile x coordinate will have the +x-limit
value) ancl the same values as the link nearest point for
the other two coorclillates.
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Then:

Wllel’e 512 = P2 – P 1 Substituting this result into
equations (2) and (3), and solving for tl and tj:

tl =cc+t2b (5)

PI 11 r;

Figure 4: Two finite-length line segments

3 Line Segment to Line Segment Dis-
tance Computation

In order to determine the minimum clistance between
two arm links or between an arm link and the edge of a
polygonal face, it is necessary to compute the minimum
distance between one line segment (the arm link axis)
ancl another line segment (another axis or the edge).
Figure 4 illustrates the problem. Line segment 1 is cle-
fined by the encl-points P 1 and P ~, where:

P1 E (x~,y~,zl)

r; E (z; ,y~, z;)

11 = length of line segment 1 = lP~ – P ~/

Al G direction cosines of line 1 = (al, bl, c1)

and the coordinates are in the manipulator frame of
reference. The parametric equation for the infinite line
through line segment 1 is:

where X represents the coordinates of any point along
the line and tl is a scalar parameter, Liue segment 2
has parameters and an equation analogous to that for
line segment 1.

3.1 Derivation of the minimum distance be-
tween two infinite non-parallel lines

We wish to fiucl the minimum clistance, d,,,, betwee]l
line 1 and line 2. We also want to fincl the points M ~ on
line 1 and N4j on line 2 corresponding to this minimum
distance.

Because (M ~ – M2) must be perpendicular to both
AI and ~j:

fi b-c
tj = l–b’2 (6)

-...
assuming b # +1, where a - D12 .Al, b s Al ~~2, and

c = b 12 .42, The minimum distance between lines,
d,,,, is simply the distance between the points M ~ and
M j corresponding to the parameters t~ and tz given by

equations (5) and (6).
This algorithm will give correct results for all non-

parallel lines, including intersecting lines. If b = +1,
then the lines are parallel or colinear. This special case
is haucllecl in a similar fashion with straightforward ge-
ometric computations [15].

3.2 Correcting the nearest points for two
non-parallel finite line segments

Whether or not the line segments are parallel, the
nearest points and minimum distances for infinite lines

may not correspond to the correct values for finite-
lellgth line segments. In order to fincl the correct near-
est points and minimum distances for non-parallel line
segments, the infinite-line nearest points are first tested
to find out whether or not they are both within their
respective line segments -- if so, the infinite-line values
are correct.

If only one of the infinite-line nearest points is within
its line segment, then the corrected nearest point on
the seconcl line segment will be the encl-poiut which is
nearest to the infiuitc-line nearest point on the first line
segment. Then the corrected nearest point on the first
line segment will be the point on the first line segment
which is closest to the corrected nearest point on the
seco~lcl lilIe segmeut.

If neither of the infinite-line nearest points lies within
its line segment, then a two-stage correction is neces-
sary. In the first stage, each line segment nearest point

is tal{eu to be the encl-point which is closest to the
infinite-line nearest point for the line segment. One of
these first stage nearest points is guaranteed to bc the
correct nearest poi]lt, but the other is not. In the sec-
ond stage correct ion, for each first stage nearest point,
the point-to-line-segment distaucc ancl nearest point on
the opposing line segment arc calculatecl. Then the pair
of nearest points with the smaller distance is selected
as the final, correct set.
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Figure 6: Face geometry viewed edge-on

4 Point to Polygonal Face Distance Al-

gorithm

This section presents the mathematical clctails of the
algorithm used for computing the minimum distance
between a point and a polygonal face in 3-clinlensional
space. The algorithm presented below is valid under
the following assumptions:

1. All faces are planar, convex polygons,

2. All objects are convex polyhedra, i.e. with no
concave allglcs between faces.

Given a sequence of vertex locations ordered in a
counter-clockwise direction arouncl a face aucl an arbi-
trary point in space, we wish to find the projection of
the point into the plane of the face, cletermine whether
or not tile projection of tile point lies within tile face,
and find the distance from the point to the plaue of the
face.

Figures 5 and 6 illustrate the problem. A face is

represented by a sequelice of vertex points ordered in a
counter-clockwise direction arouncl the face relative to a
point of view which is outside of the object of which the
face is a part. Point P is an arbitrary point (for Ranger,

the distal end-point of a manipulator link) which may
be near to collision with the face. We need to determine
whether or not Q, the projection of P, falls within the
face, since P is not, considered a collision hazard if it

does not. If Q does fall within the face, we also need
the location of Q and the distance from P to the face.

The set of unit direction vectors, ~,, as shown in
Figure 5, is computed from the vertex locations, and
the face ]Iornlal, h, is computed as the average of all. ,.
vertex face normals, n~ = Ai X A(i+l) ~lod ~ . The

face position vector, 17f, is computed as the average
of the vertex locations, The plane of the face is then
defined by the face normal and the face position vector.

The clistance, dOj, from the origin of the coordinate
frame to the face plane is the dot product of the face

plane perpendicular, i, with the face position vector,
ZTj (Figure 6):

doj=ii. fif (7)

The minimum distance, df, from the plane to an arbi-
trary point, P, is the same as the distance between the
plane and a parallel plane through point P. Therefore,

the minimum distance is given by:

df=flfiP–doj (8)

Since the perpendicular to the face plane is computed

from edge direction vectors that are directed clockwise
around the face as viewed from outside of t}le solid, the
perpendicular is directed outward from the face. Then
the signed value, df, computed for the distance between
point P and the face plane, is greater than zero for a
point outsicle of the solid ( “above” the face plane) and
less than zero for a point that may be insicle the solid.

The intersection point, Q, of a perpendicular from an
arbitrary point, P, to the plane is the position vector
of the point less the perpendicular unit vector, ii, times
the minimum distance to the plane:

QGFq=A-cIsfi (9)

Finally, we need to test to see whether or not the
point Q lies within the face. Remember that Ai is the
direction vec~or from vertex z to vertex z + 1 of
the face. If D ~ is a vector from vertex z to Q, then
the intersection point is interior to the face if and only
if

i-t. (.iixfii)>o

for i = O, ... (7L – 1).

(lo)



Figure 7: The JPL Ranger graphical user interface

5 Conlputation Tinles

Lixle-seglllellt-to-li~ lc-scglllellt complltation time, av-
eraged over hllndrcds of different line scgl]lents in dif-
ferent configurations, is measured to be about 16 //see
on a h41PS R4600PC processor rulming at 100 MHz.
Point-to-face distance measurement computation time
should be even faster, but has not beeu measured.

Total obstacle detection computation time, includ-
ing computation of clist,ances between every link of tho
active arm aud every obstacle in the links’ obstacle lists,

is nlc!asured to be about 1.23 msec 011 t]le SMIC iYIIp S

processor. Tile Ranger flight computer is expected to
be a h41PS 1{4600 processor, but running at a slower

clock rate, resulting in an estilnated colnpllt, ation tjlnc
for ol)stacle detection of about 2.5 msec.

6 Graphical User Interface

The software package for obstacle detection and col-
lision avoidance is implemented in C on an SGI Indy
under IRIX, but is designed to be portable for integra-
tion into the Ranger flight software running on a MIPS
R4600 processor under VxWorks. A graphical user in-
terface (GUI) program drives a 3-D graphical sinlula-
tion provided by the Ranger project. The GUI is inl-
plmuented in an object-oriented interpretive language

called Pythou [12, 13], controlling widgets provided by
Tlc [14].

Figure 7 is a screen snapshot of the GUI, showing the
Ranger 3-D graphics animation in the upper left, the

main control panel along the bottom of the screen, the
test and viewpoint control l)anel just above the main
control Irene], and the Cartesian control panel in the



upper right.
The 3-D graphics displays the Ranger Neutral Buoy-

ancy Vehicle (NBV) rather than the space vehicle and
only the dexterous arms are modeled, but the geonle-

try and kinematics of the NBV dexterous arms closely
match those of the space vehicle clexterous arms. The
nearest obstacle to the currently active arm is identif-
ied by a colored line in the 3-D scene connecting the
obstacle and the arm link that is closest to it. If the
obstacle is within the detection threshold specified by
the user, the nearest arm link changes color to red and
the connecting line changes from yellow to red.

The left-most column of the main control panel has
but tons to select joint or Cartesian control, to turn ob-
stacle detection and collision avoidance on or off, to
bring up a button panel for controlling tests and view-
points, andto terminate execution. Tlleseco]ldcol~l~ll~l
has buttons which are used to select the active arm for
control. The third column displays obstacle detection
data, including the arm link and obstacle nearest points
and the distance between them, and allows specification
of the detection threshold. The background of the dis-
tancepanel isgreen forno obstacle within the detection
threshold distance, yellow for an obstacle within the
threshold distance, anclred ifthearm has collided with

the obstacle. The fourth column provicles specification
of the bounding box limits. The right-most column of
the main control panel displays collision avoidance data
and allows the operator to set the stand-off distance.

The motion control panel is in the upper right of
the screen image. In Cartesian mode (as shown in Fig-
ure 7), it provides operator control of the position ancl
orientation of the end-effecter of the currently active
arm, as well as the arm angle. In joint mode, the de-
sirecl target values of the 7 joint angles are specified.

The Test Panel, immediately above the main control
panel, is comprised of buttons that allow the user to
select from ten vista points for viewing the simulation,
aswellas to set upandexecute anyofthetcn “canned”
test ancl demonstration cases. Each Setup button puts
the dexterous arms into the starting pose for one of the
ten test and demonstrationc ases, selects the active arm
for the case, brings up the motion control panel, and
turus obstacle detection on with an appropriate thresh-
old. Each Test or Demo button commauds the active
arm to execute a trapezoidal trajectory in o~le or more

of the six cnd-dfector coordinates or the arm angle.
The same tcstsmay becxccutcd with orwitllout colli-
sion avoidance turned on, to demonstrate the behavior
of the active arm with and without this capability.

7 Conclusions

A real-time model-based obstacle detection software

package for the Ranger Telerobotic Flight Expcrimmlt
is presented. All algorithms described are clocumented
in detail in [15] and have been implemented and exten-

sively tested in a simulation environment, using geo-
metric models corresponding to the latest design of the
flight hardware. Extensive tests have shown the soft-
ware to be efficient and to provide all data needed for
collision avoidance. Computation is fast enough that
it can easily run within a real-time loop in the flight
computer to provide continuous obstacle detection for
Ranger operations. Experimental results from labora-
tory testing using 7-DOF RRC arms are described in a
companion paper [16].

In the current implementation, obstacle lists are static
and the distance to every potential obstacle on the list
for each link of the active arm is evaluated at every
itcrat ion. As described in the Approach, the obstacle
list structure is designed to allow dynamic addition and
cfeletion of pointers to objects as well as dynamic re-

ordering of each list. Dynamic manipulation of obstacle
lists may be used to improve performance by establish-
ing a priority b,ased on changing obstacle distances and
on time since last distance computation for each ob-

stacle. Then only the distances to the higher priority
obstacles need to be computed on each iteration. Dy-

namic manipulation of obstacle lists, automated gen-
eration of obstacle lists based on an object database,

and limiting distance evaluations based on priority and
available computation time are areas for future research
and development.
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