Simulated Performance of Diffractive Optical Elements using a Helmholtz Equation Solver

Daniel W Wilson, Paul Maker, and Richa M

Center for Space Microelectronics Technology
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Elias N. Glytsis, Thomas K. Gaylord, and Walter Sun

Microelectronics Research Center
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia

Jointly Sponsored by BMDO/IST and NASA/OSAT
Outline

1. Electron-Beam Fabrication of Diffractive Optics at JPL
2. Iterative Finite-Difference Helmholtz Equation Solver
3. Grating Simulation
4. Computer Generated Hologram Simulation
5. Cylindrical Lens Simulation
Electron-Beam Fabrication of Diffractive Optics at JPL

- Surface contouring of thin film poly-methyl methacrylate (PMMA, Plexiglas) using JEOL JBX5DII 50 kV electron-beam lithography system

- Can deliver 64 different exposure doses in each pattern (~50 depth levels)

- Proximity effect (backscattered e-beam dose) measured for different substrates and deconvolved out of the desired pattern

- Development in acetone yields exponential depth vs. dose response curve

- Patterns composed of square pixels (typically 0.5 to 2 μm) writing rate ~10^5 pixels/minute

- Quantitative characterization using atomic force microscopy (AFM)

- Fresnel lenses, gratings, computer-generated holograms (collaborators A. Gmitro - Univ. of Arizona, Peter Guilfoyle - Opticomp)

- Wavelength-size pixels and fabrication errors (side-wall etching) require modeling beyond the Fourier optics approximations (flat plate, perfect phase delay over entire pixel)
Iterative Finite-Difference Helmholtz Equation Solver

- Surface relief boundary conditions are properly treated
- Physical structures easily specified as polygons
- Requires minimal storage
- Currently running on Pentium PC, HP workstation, and JPL Cray Y-MP
- Technique is applicable to numerous problems
Helmholtz equation

\[\nabla^2 U + k_0^2 \varepsilon(x,z) U = 0 \]

Alternating-direction-implicit (ADI) equations for \(n+1 \)st iteration

\[
(\omega_n + \delta_z^2) V = (\omega_n - \delta_x^2) U^n
\]

\[
(\omega_n + \delta_x^2) U^{n+1} = (\omega_n - \delta_z^2) V
\]

\[
\delta_x^2 U_{i,j} = \frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{(k_0 \Delta x)^2} + \frac{\varepsilon_{i,j}}{2} U_{i,j}
\]

\[
\delta_z^2 V_{i,j} = \frac{V_{i,j-1} - 2V_{i,j} + V_{i,j+1}}{(k_0 \Delta z)^2} + \frac{\varepsilon_{i,j}}{2} V_{i,j}
\]

- \(\omega_n \) are complex acceleration parameters (may use a cyclic sequence)
- Hadley's two-parameter sequence
 \[\omega_1 = -200 + i0 \]
 \[\omega_2 = (0.05 + i1.1) \text{Re}\{\varepsilon/2}\]

- Proper node numbering results in tridiagonal matrices
Computational Domain

- Incident field complex amplitude is specified along $z = 0$ boundary
- Field is forced to zero on all other sides
- Absorbers surround region of interest
 - Index-matched at ROI edges
 - Imaginary part increases as d^p with distance d into the absorber
 - Absorber along lower boundary absorbs waves reflected back toward source
Convergence Criteria

1. Field converges to \(n \) significant digits everywhere in region of interest (\(n \) typically 4).

2. Finite difference form of Helmholtz equation converges to some error tolerance (typically 1x1 \(10^{-10} \)).

Execution Times

- Scale linearly with number of mesh points

- Typical problem with 100,000 mesh points
 - 90 MHz Pentium PC: 1000 sec
 - HP 715/75 workstation:
 - Cray YMP2E/232:
Grating Simulation

- Rectangular groove surface relief grating: period = 2.5 μm, groove depth = 1.0 μm, duty cycle = 50%, refractive index = 1.5, freespace wavelength = 1.0 μm, angle of incidence = 0°, TE polarization

- Simulated using ADI technique and rigorous coupled-wave analysis (RCWA)

- Input wave for ADI technique had unity amplitude (center 30 pm) with raised cosine edges (1 O μm on each side)

- Calculated angular spectrum of plane waves from field slices though ADI results
 - In front of grating: $E_{tot} = E_{inc} + E_{refl}$
 - in back of grating: $E_{tot} = E_{trans}$
 Separate simulation with uniform index was used to find E_{inc}

- Calculated the power density flowing in the z direction for each order

- Compared ADI efficiencies to RCWA efficiencies
Grating: INCIDENT Near Field at $z = 0.97$ microns

- **Magnitude**
 - Y-axis: $0.05, 0.1, 0.15$
 - X-axis: Position, x (microns) $0, 10, 20, 30, 40, 50, 60$

- **Phase (waves)**
 - Y-axis: $-2, 0$
 - X-axis: Position, x (microns) $0, 10, 20, 30, 40, 50, 60$

- **Plane Wave Amplitude**
 - Y-axis: $0, 2, 4, 6$
 - X-axis: Normalized Spatial Frequency, $u\lambda$ $-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2$
Grating: REFLECTED Near Field at z = 0.97 microns

- **Magnitude**
 - X-axis: Position, x (microns)
 - Y-axis: Magnitude

- **Phase (waves)**
 - X-axis: Position, x (microns)
 - Y-axis: Phase (waves)

- **Plane Wave Amplitude**
 - X-axis: Normalized Spatial Frequency, $u \lambda$
 - Y-axis: Plane Wave Amplitude
Grating: TRANSMITTED Near Field at z = 2.03 microns

- **Magnitude**
 - Y-axis: 0 to 0.3
 - X-axis: Position, x (microns) from 0 to 60

- **Phase (waves)**
 - Y-axis: -2 to 2
 - X-axis: Position, x (microns) from 0 to 60

- **Plane Wave Amplitude**
 - Y-axis: 0 to 5
 - X-axis: Normalized Spatial Frequency, \(u*\lambda \) from -1.5 to 2
RCWA-ADI Comparison

Rectangular groove grating: period = 2.5 pm, depth = 1.0 pm
grating index = 1.5, cover index = 1.0

<table>
<thead>
<tr>
<th>Order</th>
<th>RCWA Backward DE</th>
<th>ADI Backward DE</th>
<th>Error</th>
<th>RCWA Backward Rel. DE</th>
<th>ADI Backward Rel. DE</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>0.009809</td>
<td>0.0104</td>
<td>6.1%</td>
<td>0.16476</td>
<td>0.1699</td>
<td>3.1%</td>
</tr>
<tr>
<td>-2</td>
<td>0.003349</td>
<td>0.00352</td>
<td>5.1%</td>
<td>0.05626</td>
<td>0.0575</td>
<td>2.2%</td>
</tr>
<tr>
<td>-1</td>
<td>0.003403</td>
<td>0.00329</td>
<td>-3.2%</td>
<td>0.05715</td>
<td>0.0538</td>
<td>-5.9%</td>
</tr>
<tr>
<td>0</td>
<td>0.026413</td>
<td>0.02679</td>
<td>1.4%</td>
<td>0.44365</td>
<td>0.4376</td>
<td>-1.4%</td>
</tr>
<tr>
<td>1</td>
<td>0.003403</td>
<td>0.00329</td>
<td>-3.2%</td>
<td>0.05715</td>
<td>0.0538</td>
<td>-5.8%</td>
</tr>
<tr>
<td>2</td>
<td>0.003349</td>
<td>0.00352</td>
<td>5.0%</td>
<td>0.05626</td>
<td>0.0575</td>
<td>2.1%</td>
</tr>
<tr>
<td>3</td>
<td>0.009809</td>
<td>0.0104</td>
<td>6.1%</td>
<td>0.16476</td>
<td>0.1699</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

Total: 0.059535

<table>
<thead>
<tr>
<th>Order</th>
<th>RCWA Forward DE</th>
<th>ADI Forward DE</th>
<th>Error</th>
<th>RCWA Forward Rel. DE</th>
<th>ADI Forward Rel. DE</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0.075094</td>
<td>0.07335</td>
<td>-2.3%</td>
<td>0.07985</td>
<td>0.0795</td>
<td>-0.5%</td>
</tr>
<tr>
<td>-1</td>
<td>0.367745</td>
<td>0.36174</td>
<td>-1.6%</td>
<td>0.39102</td>
<td>0.3918</td>
<td>0.2%</td>
</tr>
<tr>
<td>0</td>
<td>0.054788</td>
<td>0.05299</td>
<td>-3.3%</td>
<td>0.05826</td>
<td>0.0574</td>
<td>-1.5%</td>
</tr>
<tr>
<td>1</td>
<td>0.367745</td>
<td>0.36174</td>
<td>-1.6%</td>
<td>0.39102</td>
<td>0.3918</td>
<td>0.2%</td>
</tr>
<tr>
<td>2</td>
<td>0.075094</td>
<td>0.07335</td>
<td>-2.3%</td>
<td>0.07985</td>
<td>0.0795</td>
<td>-0.5%</td>
</tr>
</tbody>
</table>

Total: 0.940465

Grand Total: 1

<table>
<thead>
<tr>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.670</td>
</tr>
</tbody>
</table>

RCWA Backward Rel. DE

<table>
<thead>
<tr>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5%</td>
</tr>
</tbody>
</table>

ADI Backward Rel. DE

<table>
<thead>
<tr>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.8%</td>
</tr>
</tbody>
</table>

RCWA Forward Rel. DE

<table>
<thead>
<tr>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2%</td>
</tr>
</tbody>
</table>

ADI Forward Rel. DE

<table>
<thead>
<tr>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2%</td>
</tr>
</tbody>
</table>

Error
Computer Generated Hologram Simulations

- Used Gerchberg-Saxton iterative algorithm to design one-dimensional CGHS with pixel widths of 0.5, 1, 2, 3, and 4 μm
- Calculated near field using ADI technique
- Calculated Fourier optics near field from pixel depths (quantized to match ADI grid)
- Extracted single-cell CGH near fields and arrayed them 8 times (isolates far field spots)
- Propagated both solutions to the far-field using Fraunhofer approximation and compared intensity patterns
Computer Generated Hologram: Instantaneous Electric Field
Pixel Size = 4 microns: Far Field (z = 100 mm) from ADI Simulation

Far Field from Fourier Optics: RMS Error = 0.0196
Pixel Size = 0.5 microns: Far Field \((z = 100 \text{ mm})\) from ADI Simulation

Far Field from Fourier Optics: RMS Error = 0.4069
Flat Phase Plate Model: Far Field Intensity Error

RMS Error vs CGH Pixel Width/Freespace Wavelength
Cylindrical Lens Simulation

- Focal length $\infty \mu m$, width 50 μm, lens index 1.5, focal medium index 1.0
- Calculated near field using ADI technique
- Propagate a field by convolving with impulse response of free space

$$U(x,z-z_0) = U(x,z_0) * h(z-z_0)$$

$$= F.T.^{-1}(F.T\{U(x,z_0)\} F.T\{h(z-z_0)\})$$

$$F.T.\ h(z-z_0) = \begin{cases}
\exp\left(\frac{i(z-z_0)}{\lambda} \sqrt{1-(u\lambda)^2}\right), & (u\lambda)^2 \leq 1 \\
\exp\left(-\frac{(z-z_0)}{\lambda} \sqrt{(u\lambda)^2 - 1}\right), & (u\lambda)^2 > 1
\end{cases}$$
Cylindrical Lens: Instantaneous Electric Field
Summary

- Extended Hadley's ADI Helmholtz solver to allow accurate simulations of diffractive optical elements
- Grating - reasonable agreement with RCWA diffraction efficiencies
- Computer generated holograms - quantitative calculation showing breakdown of Fourier optics model for wavelength-size features
- Cylindrical lens - calculation of fields and focal plane intensity