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Abstract

The Earth, Mars, Sun, Jupiter system alows for a scusitive test of tliestrong equivalence prin-
ciple (SEP) which is qualit atively different from that p1ovided by Lunar Laser Rangitig. Using
analytic and numerical methods we demonstrate that Earth-Mars ranging can provide a uscful
cstimate of the SEP parameter - T'wo estimates of the Prodicted accuracy arc derived and quoted,
otie based on conventional covariance anaysis, a ld another (caled “1 nodificd worst case]’ analysis)
which assumes that systematic errors dominate the experiment. If future Mars missions provide
ranging measurenients with an accuracy of o meters, afterten years of ranging the expected accu-
racy for the SEP parameter 7 will be of order (1 12) X 10-40. Thesc1anging mcasurcinents will
also provide the most accurate determination of t he mass of Jupiter, independent of the SEP effect
test.

Subject headings: celestial mechanics, stellar dynamics gravitation Farth planets and
satellites: Mars dark matter

1 Introduction

'The question, posed long ago by Newton, of the relatio n between the gravitational and inertial masses
of thesame body continues to be the subject of theoretical and experimental investigations. This
question arises inmost any theory of gravitation, The equality of incrtialand passive gravitational
masscs, often stated as the weak cquivalence principle (W EI'), implics that different neutral massive
test bodies will have the same acceleration of free fall Ao in an external gravitational field, and
therefore in freely falling inertial frames the external gravitational ficld appears only in the form of a
tidal interaction (Singe 1960). Up to these tidal corrections, frecly falling; bodies behave as if external
gravity were absent (Bertotti & Grishchuk 1990). In the con struction of the general theory of relativity
Einstein went further, postulating that not only mcchanical laws of motion, but all non-gravitational
laws should behave infrecly falling frames as if gravity were absent. If local gravitational physics
is also independent of the morce extended gravitational cnvironmment, we have what is known as the
Strong lquival ence Principle (SE]'),

Various experiments have been performed to measure the ratios of gravitational to inertial masses
of bodies. Ixperiments o1 bodics of laboratory dimensions verify the WEP to a fractional preci-
sion 6Ag/Ao = 8(mg/m) ~ 10-"by (Roll, Krotkov & Dicke 1964) and more recently to a precision
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6A0/Ap ~ 10712 by (Braginsky & Panov 1972; Adclberger et al. 1994). T'he accuracy of these experi-
ments is sufliciently high to confirm equal strong, weak, and clectromagnetic interaction contributions
to both the passive gravitational and inertial masses of the laboratory bodies. T'his impressive evidence
for laboratory size bodies dots not, however, carry over to celestial body scales.

Laboratory size bodies uscd inthe experiments cited above possess a negligible fraction of gravita-
tional self-mlcrgy and therefore such experiments indicate nothing aboutthe quality of gravitational
self-m~crgy contributions to the inertial and passive gravitational masscs of the bodies (Nordtvedt
1968a). Interesting results for celestial bodies are obtained if onc includes terms Of fract ional order

(21 /mc?), where m is the mass of a body I3 and Q2 is its gravitational binding or self-energy:
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T'his ratio is typically ~ 1072 for bodies of laboratory sizes, so cxperimental accuracy of a partin 10'2
shedsno light on how gravitational self-cmmgy countributes to the inertial and gravitational masses of
bodies.

To test the SEI’ one must utilize planetary-sizccl extended bodies in which case the ratio (1) is
considerably higher. Numerically evaluation of theintegr a of expression (1) for the standard solar
modecl (Ulrich 1982) obtains

Q
— ~ --3.52 .10-6 2a
<m<72>s (2)
and the analogous value has been obtained for the Earth (Allen 1985):
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The development of the parameterized post-Newtonian (PPN) formalism ( Nordtvedt 1968b; Will
1971 ; Will & Nord tvedt 1972}, allows one to describe within the cominon framework the motion of
celestial bodies in external gravitational ficlds within a wide class of metiicthcories of gravity. Within
the accuracy of modern experimental techniques, the PPN formalisim becomes useful framework for
testing the SED for extended bodies. In that formalisin, t he ratio of passive gravitational to incrtial
mass is given by (Nordtvedt 1968a,b)

mg - Q .
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in which the SEP violation is quant ified by the parameter 7- In fully _conservative, Lorentz-invariant
theorics of gravity the SE]” parameter is related to the P1 ‘N paramecters by

n=4f--v~-3 (4)
and is more generally related to the complete set of PPN paramecters through the relation
10 1 .
n=Af-y-3- -ty (202 — 2C1 - (o). (5)

A diflerence between gravitational and inertial masses produces 01 »sservable perturbations in the
motion of celestial bodicsin the Solar System. By analyzing the effect of a noll-zero 1 on the dynamics
of the EBarth-Moon system moving in the gravitational ficld of the Sun, Nordtvedt (1 968¢)found a
polarization of theMoon’s orbit in the direction of the Suu with amplit ude 67 ~ 17Co, where Co is a




constant of order 13nt. We call this effect, genceralized to all similar three body situations, the “SEP
polarization cffect”. Themost accurate test of this effect is presently prrovided by Lunar Laser Ranging
(LLR) (Williams 1976; Shapiro ctal. 1976; Dickey ctal. 1{)89), andinthe most recent results (Dickey
et a. 1994; Williamset a. 1 995) the parameter 1 was determined to be

n= —0.0005 =+ 0.0011 . (6)

Other tests of SEI’ violation have been discussed. An experiment cinploying misting binary pulsar
data has been proposed by Damour and Schifer (1 991). A search for t he SIP polarization effect in
the motion of the Trojan asteroids was suggested in (Nordtvedt 1968a) and carried out by (Orelana
& Vucetich 1992). Also results arc available from numerical expernnents with combined processing
of LLR, spacecraft tracking, planctary radar and Very 1 .ong Bascline Interferometer (VIBI) data
(Chandler ct al. 1994).

It has been observed previously that a measurement of the Sun’s gravitational to inertial mass ratio
can be performed using the Sun-Jupiter-hlars or Sun-Jupit er-Earth syst em (Nordtvedt 1970; Shapiro
ct al.1976). This is the first paper from a planed series addressing the above problem. The question
wc would like to answear first. is how accurately can wc do this ranging experiment? We emphasize
that the Sun-Mars-Barth-Juy jtcr system, though governed basically by the same equations of motion
as Sun-Earth-Moon system, is significantly different phiysically. For a given value of SEP parameter 7
the polarization cflects on the Farth and Mars orbits arc almost two orders of magnitude larger than
on the lunar orbit. In this work we examine the SIEP effect on the Barth-Mars range; which has been
measured as part of the Mariner 9 aud Viking missions. Morcover, future Mars missions, now being
planned as joinl U. S-I{ wussian endcavours, should yield additional ranging data.

The dynamics of the four-body Sun-h4ars-Eartll-Jupiter systeminthe Solar system barycentric
inertial frame were cons dered. The quasi-Newtonian acceleration of the Barth (1) with respect to
the Sun (S) is straightforwardly calculated to be:
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Mars aud Jupiter, respeclively. Also ﬁ}g(} = ﬁ(,v - ]—é}g is the vector from body B to body C and /TN
is the Newtonian acccleration term. Ay is the SED acccleration term, which is of order 1 /¢?. While
it isnot the only term of that order, the other p()st—Newt‘onian]/(:2 terms (suppressed ineq. (7)) do
not affect the determination of 7 until the second post-Newtonian order (~ 1/¢). Finally Ayq is the
Newtonian tidal acceleration term. Note, that A,/Anx ~ 71.10- ‘‘and Agia/An ~ 7.10-6. Given
thatlevel of accuracy, wc ignore the mutual attraction of the two plancts, Karthand Mars. The SliP
acceleration is treated as a perturbation onthe restricted three-1)ody problem, aud the SEP effect is
evaluated as analtcration of the planctary Keplerian orbit.

Using expression (3) and noticing that pear/Rsar << jtg/Rsy, we obtain from cq.(7),
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Jorresponding equations for M ars arc obtained by replacing subscript F by M in egs. (7) and (8).
To good approximation the SEP acceleration A; has const ant magnitude and points in the direction
from Jupiter to the Sun, and since it depends only onthe mass dist ribution in the Sun, the Karth
and Mars experience the same pert urbing acceleration. 'T'he responses of the trajectories of cach of
these plancets due to the term /T,, dctermines the perturbation in the I$ arth-Mars range and allows a
detection of the SEI paramecter 5 ] 1y rough a ranging experiment.

The presence of the aceeler ation term /T,, in the equations of motion results in a polarization of the
orbits of EKarth and Mars, exemplifying the planctary SIS effect. We inivestigate here the accuracy
with which the paramecter 77 can be determined through Earth-Mars ranging and approach the problem
with a series of successive approxinmations. In Scctions Il and 111 the “tidal term” /YMin equation
(8) is neglected. InSection Il the perturbation theory al »out circular. coplanar reference orbits for
Isarth and Mars is performed. A covariance analysis is carried out to estimate the accuracy to which
the SKP parameter 5 can be determined from a lagre number of Mars ranging measurcments, cach of
accuracy o meters. In Scection 11 the calculations o f Section 11 are improved by employing n umerical
integration rather than perturbation theory. The agreement between the two app roaches is good,
and the cceentricity corrections arc found to improve the accuracy of the analytic approximation
significantly. In Scction IV the tidal acceleration term Ay, is restored, requiring the addition of the
mass of Jupiter 173 to ourset of covariance parameters. This mass can be determin ed more accurately
from a few years of Earth-Mars ranging than from the Pioncer 10,11 and Voyager 1, 2 flybys combined,
independent of the 5ineasureinent. In Section V- we sumimnarize and suggest further avenues for testing
SEP violation.

2 Perturbation About a Circular Reference Orbit

Here and in the next scction the problem is simplifyed by ignoring the tidal term /T”d in cquation (8)
and the correspond ing equation for Mars. We examine the cffect of the SEI” acceleration term A-;, in (8)
on the orbits of Isarth and Mars by carry ing out first-order perturbation theory about the zeroth order
orbits of Karth and Mars, taken to be circular. Jupiter’s orbit is also taken as circular and coplaner
with Earth and Mars. With these approximations a nine parameter covariance analysis is carried out
to estimate how precisely Mars ranging can determine the SEP parameter 7. These approximations
give a standard deviation for 1 which closely agrees with the later numerical integration result of
Secction 111.

A hcliocentric reference frame rotating with Jupiter a constant angular frequency w = (/ps/R%,
is assumed. The SEP perturbation is represented by a constant acceleration gy, directed from Jupiter
to the Sun. Locating Jupiter on the = axis, the following Hamiltonian for both Karth and Mars in
polar coordinates results:

Py
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We take the reference orbits for Earth and Mars to be circular Keplerian with 7= aandg, = O.
Then Po = (/isa and n = \//_LS/(L3 is the orbital angular frequency. A covariance analysis can be
perforined to estimmate the accuracy to which onc can determine the SKJI° parameter through Barth-
Mars ranging. Earth-Mars range 1M is defined as follows:

Pins = T+ 1y — 2rprarcos(O0nr — O01). (11)



The variation of épppas is then:

bprnm(t) = D (12)
k=1 qk
where 6ppp does not depend on éw and q is the following vector:
q = (7‘190, T Mo Plirgs PMros P10gs PM0os 01y — Onde, /lsw!h,) (13)
The partial derivatives are easily computed and for example,
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By definition, the covariance matrix g has clements:
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where N ranging measurcements have been made at times ¢;,7 =1, .. .. N, and have uncertainties o;.
The uncertainty in the estimations of the SEI acceleration 1 term gy and parameter 7 are then:

.
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with the fractional binding energy (§2/mc?)¢ given by expression (2a).

The results obtlained are presented in Figure 1, with the thin dashed curve showing the result. of
cvaluating cquations (15) and (16) for o, assuming N daily range ecasurements have 1 cen taken
during the mission, cach with the same uncertainty o, measured in meters. The initial angles between
Earth and Jupiter and Mars and Jupiter were taken from 1 he DIEE242 emphemeris at time  2441272.75,
the beginning of the Mariner 9 ranging measurements. The quantities 7 and 72a are taken to be the
mean motions of Farth and Mars, az; and aar their mean distances from the Sun, and the frequency
w is taken to be the mean motion of Jupiter. The uncertainty inn first drops very rapidly with tire!
and then after afew years approaches the asymptotic behavior ~ N71/2.This result gives alowcer
bound on the uncertainty as predicted by conventional covariance analysis. For a mission duration of
order tenycars,the uncertainty behaves as

oy~ 0028 0 /v/N (17)

This result, ¢q.(1 7), assumes Gaussian random ranging errors with a white spectral frequency
distribution. But past ranging measurements using the Viking Lander have been dominated by sys-
tematic error (Chandleret a. 1994). Oncapproachto accounting for systcmatic error is to multiply
the formal crrors from the covariance matrix by v/ N (Nor dtvedt 1978). With this approach, the ex-
pected error decreasces rapidly near the beginning of thediat a interval, but for large N approaches an
asymptotic value as demonstrated by Fig. 1. However, we believe this is overly conservative. A more
optimistic error estimate would include a realistic description of the time history of the systematic
crror. For example if we knew that the systematic error was a sinusoid of known angular frequency,
we could add its amplitude and phase as additional variables in t he covariance analysis. By contrast

o




the wmst-case error analysis treats cach variable of concern equally by multiplying its computed error
by V'N.

A realistic systematic error budget for ranging data to Mars, or for Mercury as considered by a
group at University of Colorado (Ashby et a. 1995), is not presently available. But it is unlikely that
we will be so unfortunate that the frequency spectrum of the signal will correspond to the spectruin
of t 11¢c systematic crror. However, wc reduce the upper error bound determined by the v/ N multiplicr
(0, = 0.00280) by a numecrical factor. The ranging experiment proposed by Ashby et al. (1 995) for
Mercury is quite similarto our proposcd experiment using Mars. We therefore follow t he Colorado
group and reduce the worst-case error cstimate by a factor of three and call the result the modified
worst -casc analysis. This yiclds an asymptotic value for the error of o,= 0,()()()90, in our opinion a
realistic estimate of the upper bound on the error.

Inthe case of the existing Mars ranging derived from the Mariner 9, Viking, and PIobos mis-
sions, the rs ranging residual referenced to the best-fit Martian orbit was 7.9 m. We computed the
covariance matrix with assured daily range measurements for Mariner 9 (actual data interval JD
2441272.750 to JI) 244]602.504) and Viking (actual data intervallJl) 244'2980.833 to J1) 2445286.574).
Additionally,one rail.gi]lg measurement from Phobos (actual time JI) 2447605.500) was included, al-
though it had negligible effect on the result. With o= 7.9111, a formal error o, = 0.0005 is obtained
from the covariance matrix. If 7.2 years of Marsranging is assumed, thoughnot continuous) we
reach the asymptotic limit of the modified worst-case analysis (as shown by Fig. 1), arcalistic error
0, = 0.009 which is about17 times the formal crror. This is a factor of cight larger than the realistic
error sct by Chandler ct al. (1994) from an analysis of theactual combined LLLR and Mars ranging
data. Wc conclude that the best determination of # is Provided by the 1,1,1{ data, but the existing
Mars ranging can provide an independent solar test with a realistic accuracy interval of

oy~ 0.0005 -- 0.009  (Mariner 9, Viking, P’hobos). (18)

Expression (35) establishes the interval for expected accuracy oy with the lower and upper bounds
estimated for existed data by conventional covariance analysis and “modifiecd worst case” analysis
respectively. This interval will be narrowed by ornigoing upgrades to 1 SN instrumentation and better
modelling of the antenna and spacecraft ranging systems (Anderson et al. 1985). Future Mars Orbiter
and Lander missions arc expected to achieve an rins systeinatic ranging error between 0.5 and 1.0 m.
Then after a few years of ranging, the realistic crror on 7 should fall toaround

o, =~ (0.00006 - 0.0011) ¢ (Future! Mars missions). (29)

3 Numerical Integration Without the Tidal T(-.rm'/f,,,-d.

'I'o obtain a more accurate estimation of o, and to check the results of Scction 11, a numecrical in-
tegration of the %un—l‘]artlrM ars-Jupiter system in heliocentric coordinates is performed. Equation
(8) without the Ay term was used for Earth and Mars (with the interchanging of the subscripts
(K)— (M)).The equation of motion for Jupiter did not include aSEI’ term or Newtonian pertur-
bation from other plancts. The DI 242 ephemeris was again used for theinitial conditions, and the
same 9 parameters of cquation (30) were uscd in the covariance analysis.

Assuming frequent Karth-Mars range mecasurements as in Section 11, the results are shown in Figure
1 (thick dashed curve). The results agree fairly wc]] with the analytical ones of Section 11 (thindashed
curve). Forten years of 01 jservations we obt ain

oy ~ 00270 /VN, (20)



with range measurement o in meters. Note that this result compares favorably with the cruder analytic
result presented by expression (17).

Ancstimate of how well ) could be estimated from existing ranging data, as discussed at the end
of Section Il, yiclds:

oy~ ().00055 --0.009 (Mariner 9, Viking, ’hobos), (21)

which is slightly smaller than the analytic result givenin ¢d.(18).

While numerical integration is expected to be more accurate than analytic approximations, one
might wish to gain more understanding of the planctary SEP effect by doing a realistic analytic
calculation whichimproves onthe ”circular orbit” approximation of Section 11. It is natural to climinate
the largest sources of error of that approximation. Mars hasan orbital cccentricity of .093, and there
is no fundamental barrier to using elliptical reference orbits. The analytic calculation of Section 11 was
redone with ellipt ical reference orbits for Earth anid Mars, working to first order in the eccentricity.
W C also used a more sensible way to include the cccentricity corrections, the method of variation of
parameters (Robertson & Noonan 1968), and were able to solve the variation of parameters equations
for the perturbed orbits of Karth and Mars to fourth order inthe cccentricity. Figure 2 shows plots
of the partial derivative of the Earth-Mars range with respect to the SRI) acceleration. Comparison
of the three curves shows that the eccentricity corrcction plays a more fairly significant role, than
onc might expect. Onereason for this is that the eccentricity corrections turn out to include more
“scalar” matrix clements which arc proportional to the timet. Suchelements dominate at large
times, and the eccentricity corrcctions thereby qualitatively change the nature of thesolution in the
linear approximation.

4 Numerical Integration With the Tidal Tern’n/f,,id.

Jupiter’s mass fiy nceds treatment as an adjastable parameter to be fit with the ranging data. This
is because the octopolar tide of Jupiter acting on the orbits of Farth and Mars produces polarizations
similar to those produced by the SEP effect, but fortunatcly having a different Earth-Mars ratio and
therefore separable from the desired SEP effect. If Jupiter’s mass werc uncertain by 4 parts in 108,
its tidal polarization of Mars’ orbit would be uncertain by that would be produced by an#y~ .001,
for example. But Jupiter’s mass is only known to a part in amillion, so we must include jey as a free
parameter with its own partial.

In this Section we outline the most accurate calculation 1. The full equations (8) (and analogue for
Mars) were numerically integrated including the tidal tcrm/T”d,prcvionsly was ncglected in Sections
Il and 111. To the parameters 1, a1g, Prirg > PMro, PEG P 00> O3y 0 A % jis and gy,then, we add iy
in the covariance anal ysis, otherwise, the analysis is identical to that of Section 111.

The results arc shown in Figure 1, with the solid curve giving theresult for o, from N ranging
measurcments, cach with error o meters. For a mission time of the order ten years we find

oy ~.00390/VN . (22)

The estimation of how well i can be determined from existing rail.gin[; data (as discussed inScction
11) is
o,~ 0.0012--0.02 (Mariner 9, Viking, I’hobos), (23)

about double the result from Scction 111.
T'he covariance analysis gives the expected formal error in jey as well,anal ogousto eq. (16), with the
result showninldig. 3. For a mission time of order ten years wefindo,, ~570/ VN inkm3s” 2 where




N, as before, is the number of daily ranging mecasurements taken during the mission. Foro =7.9m,
oy, fdls below the present accuracy determined from Pioncer 10,11 and Voyager 1,2, namcly, ¢ =100
kin3/s2 (Camphell & Synnott 1985) - within two years. ‘1 hissurprisingresult suggests that Karth-
Mars ranging can provide an extremel y accurate value for t hemass of Jupiter, independent of the any
determination of a SEP cflect.

Following Scction 11, in order to obtain the realistic estimates for o, and o, one multiplyes these
results by v/N/3,giving values of the upper bound of realistic errors for 7 and jty as 05 ~.00120 and
0., ~1.90 km3s™ - correspondingly. With mission duration of order ten years this result gives the
interval for the uncertainties oy and oy, ; during the future Mars missions:

oy & (0.000) -- 0.0012) o,

04, ~ (0.09 - 1.9) okm?/s% (24)

5 Discussion

The planct Mars has become an object of intensive investigation by many scientists around the world.
The next flight opportunity during 1996-97 will mark the initiation of a number of new space missions
to that planct from which we expect to obtain arich set of data, including spacecraft tracking and
planctary radar mecasurcinents, and allowing precise relativistic celestial inechanics experiments.

Anticipating these events, we have analyzed the ability for testing SISP violation with Farth-Mars
ranging. The expected accuracy of the future ranging experiments would put significant constraints 01t
theoretical models, including a possible inequality of the Sun’sinertial and gravitational masscs. Using
analytic and nuincrical methods we have shown from covariance analysis that Iarth-Mars ranging
can provide a quality cstitmate of 7. Indeed, for N ranging measurcments with an accuracy of o
meters, the SEP paramecter ) according to covariance analysis can be determined within the accuracy
oy ~ 3.9x 1073 o /v N. The “realistic” cstimate for o, based on a “modificd worse case” analysis scts
a conservative limit on the accuracy and indicates that eveninunfavorable cases the Sun-Earth- Mars-
Jupiter systemn alows for a sensitive test of the Strong Equivalence 1 'rinciple, gualitatively diflerent
from that provided by LLR.The mass of Jupiter, p7, canbe determined more accurately from a few
years of Farth-Mars ranging than from Pioncer 10,11 and Voyager 1,2 combined. This analysis shows
a rich opportunity for oblaining new scientific results from the the Prograan of ranging measurements
to Mars.

Eflorts are under way at JI’L to determine 7 from the Mariner 9, Viking and Phobos ranging data.
This rescarch will modify the theorctical model to include effects due to Saturn. We will perform
the numerical experiments with combined data collected from the platictary missions, LR and VLBI.
And, as the data do not presently include any direct ranging, to the Sun, it will be interesting to include
ranging results to the spaccerafts of the joint US-Russian Solar probe missions scheduled for launch
in the year 2001, or shortly thereafter. A preliminary determination from combined solar-system
data, including Marsranging and Imar-laser ranging, has been reported at a Division of Dynamical
Astronomy meceting by Chandler et al. (1994). However, we have found that the inclusion of the an
acceleration of CCJ.(7) inthe JPL planctary ephemerides system as postulated (Standish et a. 1993),
has not been straightforward. T'he total SEP range signal in Farth-Mars ranging is so complex and
unique, one should be very conservative about pliysical interpretation of the results obtained. The
full scale rescarch of this important experiment is currently underway at J) 'l,. The results reported
here provide insights into what is being measured, and hence they minimize the possibility of error in
implementing the planctary SEP effect in the complicate software system. And by concentrating on
covariance analysis, information needed for the planning of gravitational experiments on future Mars



missions is obtained. We intend that this paper serve as one of a collection of quides for scientific
goals and prioritics on Mars missions over the next decades.

Finally we mention that the analysis of solar ranging data mmight provide the opportunity for
anot her fundamental test, namely a Solar system scarch for dark mat ter (Nordtvedt 1994; Braginsky
1994; Nordtvedt 1995). Suppose that dark matter weakly interacts with ordinary matter in a manner
depending on the specific propertics of the matter composing the bodies. The Sun, having an internal
structurc and matter composition which is considerably different fromt he rest of the inner bodies in
the Solar system, mi.gilt thien have a different coupling to dark matter, and a corresponding anomalous

cosmic force Fe = mg A, acting on the Sun, would produce extra terms in the heliocentric equations
of motion for the planets - like A4,, but fixed in direction, inequation (8). Interesting limits on the
size of any SEI” violation for extended bodiesin the Solar system falling toward dark matter may be
obtainable. This rescarch will be the subject of a subsequent publication.

W c arc indebted to our colleagucs John Armstrong, Funice Lauand Skip Newhall for many uscful
and stimulating conversations. MG acknowledges the partial support by an AWU-JPL sabbatical
fellowship. KLN was supported in part by National Acronautic and Space Adininistration through-
out Contract NASW-4840.SG'T" was supported by National Rescarch Council, Resident Rescarch
Associateship award. This work was carried out in part at the Jet I’ropulsion Laboratory, California
Institute of Technology, under a contract. with National Aeronautic and Space Administration.
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7 Figure Legends

Fig. 1. Variation of the uncertainty inthe SE]’ parameter 73 with N, assuming NV Barth-Mars range
measurcments, cach with uncertainty o meters. The thin dashed curve is the result of the analytic
approximations of Section 11. The thick dashed curve is t he numerical integration result of Scction
111. The solid curve comes from the numnerical integration described in Section IV where the term Agqg
Was restored and jiy was included in the covariance analysis.

Fig. 2. Investigation of first order cccentricity corrections (thick dashed curve) to the lincar
approximation of Scction 11 (thin dashed curve). Both of these curves should be compared to the
more accurale munerical results of Section 111 (solid curve). All three of’ t hese calculations used ml.(8)
without the A_;id term. The initial conditions taken were different from thosein figures 1 and 3.

Fig. 3. 1 ’lot of the uncertainty in the mass of Jupiter versus N fromthe numerical integration of
equation (8) plus covariance analysis. Sce Section V.
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