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Abstract

Using properties of multivariable flexible structures, it
is shown that the Hankel singular values can be approx-
imately deconposed to the suln of Hankel sigular values
of individual sensor and actuator combination. This
decomposition alows onc to evaluate cach actuator and
sensor in terins Of the joint controllability and observ-
ability. For multimodal systems, placement metrics
such as the trace or deterininant of Hankel singular
value matrix can be formulated and solved. It is shown
that for the specia case where the trace of the Il ankel
singular value matrix is used as the placement metric,
the actuator placement problem becomes trivial. Scv-
cral examples arc given to demonstrate the proposed
method.

1 Introduction

For the purposc of improving the performance of flexi-
ble structure identificationand control, it is sometimes
useful toinvestigate various can di elate sensor and/or
actuator locations. The freedom to choose their loca-
tions is not always given or is limited but if it is allowed,
two problems may surface. The first onc is, given
its type, determine the sensor and actuator rninimal
number and placements to meet specified controllabil-
ity and observability requirements [I]. Second, given a
large candidate set of sensor and actuators,aminimal
subset is sought which has controllability fobservability
propertics close to the original set. The latter problen:
is investigated in this paper.
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Theimportance of actuator and sensor placement
problems is underscored in many investigations and
contributions, only part of which wc have included
in our references (see, for example, [2][20]). The
approach proposcd in this paperis an extension and
complementary to the earlier results reported in [11]].
The previous approach considered the actuator and
sensor placement problems independently via modal
grammians in physical (imodal) coordinates, while the
new approach in this paper alows both independent or
simultanecous analysis of actuator and sensor placement
via Hankel singular values (I ISV). TheHankel singular
values arc then approximately decomposed in terms
of individual sensors and actuators for a multivariable
flexible structure. Both approaches arc based on the
approximate invariance of principal controllability and
obscrvability directions for flexible structures.

The approach proposed in this paper is based on
an approximation of the grammian matrix and some
judtification is in order. This approximation for {flex-
ible structures allows onc to develop tools that would
otherwise be not available. It alows onc to readily
and perhaps more importantly, intuitively analyze and
design optimal actuator and sensor configurations. It
is believed that the reality of our physical world is such
that nothing preciscly satisfies assumptions associated
with mathematical modecls of a complex dynamical
physical process. The approximation for flexible strue-
tures used in this study dots not automatic. ally render
this tool wuscless nor unrcliable but rather makes it
applicable.

2 Flexible Structure

For the purposes of this paper, a flexible structure
shall be defined as a time invariant, finite-dirncnsional,
conirollable, and observable linear system with small




damping and comnplex conjugate poles. Although this
definition narrows the class of linear systems under
consideration many interesting propertics of structures
and their controllers will be derived. A flexible struc-
ture is typically represented by the second-order matrix
differential equation

ME+DE+ KE=hu,y = FE+ GE (1)

In this eguation ¢ is the N,x 1 displacement vector, u
is the p x 1 input vector, y is theg x1 output vector,
the N,x N,mnass,damping and stiffness matrices arc
denoted by M > 0, 2> O, and K > 0 respectively,
the input matrix 7 is N,x p,the output displacement
matrix F' is g X N,, and the output velocity matrix G
isgXxN,.

in finite clement mmodels of flexible strucutres, the
number of degrees of frecdom, N, is oftenunaccept ably
high and thercfore an order reduction by modal {run-
cation is typicaly done. The reduced order structure
model is given in structural modal coordinates, W,
of dimension N,x 72. Decfine the reduced modal
displacement vector, 5, of dimension n2x 1, where

£= ¥y (2)
Ior flexible structures, typically

11,< N, (3)

The colummns of ¥ denote structural mode shapes ob-
tained from the structural cigenvalue problem. The
structural mode shapes have the property that di-
agonalize the mass and stiffness matrices to produce
diagonal modal mass and stiffness matrices, where
M, = V'M¥ = 1, K, = V'KV = diag(w?). If
the damping matrix can be diagonalized, i.e., such that
Dy, = W' DV = diag(2(w), it is called a matrix of
proportionaldamping. The proportionality of damping
is commonly assumed for analytical convenience since
the nature of damping is not exactly known, and thus
its values are typically approximated. The reduced
modal equations in sccond order form can be written
as

My ij+ D+ K= 97 Bu
y =1V + Gy 4

Let the triple (A, I3, C) denote a modal stale-
space representation of the flexible structure. Following
earlier definitions [32, 25, 1 1], define the modal state
vector, z, of dimensionnx 1, where n = 2n,, such that
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The triple for the corresponding modal state equa-
tions take the forin A = diag(Ay, . . . . Ap,), B =

(BT ..., BZ;*)T and C = (Cyq, . .

‘o C*ng), W|th
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where i=1,. .one b=l cai = I and

¢ri = Gp;. Notice that for small damping ratio the
above choice of the state vector gives approximately
normal state matrix and hence approximately orthog-
onal eigenvectors. Vor flexible structures with distinct
natur a frequencics, the steady-state controllability and
observability grammians asymptotically (as ¢ — 0)
approach 2-by- 2 block diagonal matrices and are given
in[32, 25]
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where ¢ = 1,...,ng, denotes the range of indices of all
structural modes to be controlled whose set is denoted

by
S={1,..,na} 9)

Inthe above equation, 0% =chcai, 0% =clicyi,
02 = 0%, + w202, p2.: b;b! , andL,is a 2 x 2 identity
matrix. Note from Eq. (5) that x consists of modal
velocities and frequency weighted modal displacements.
Accordingly, thismodal state is considered to be a
physical coordinate because of its direct physical link

to tile structural mode shape.

The above approximnate grammian relationships
indicate that high frequency modes with larger damp-
ing are among the least controllablc and observable.
Theterms associated with each mode, 3;,0,;, and 04
arc called modal grammian coefficients (MGC) [1]] due
to their physical significance, i.e., they link principal
dircctions directly to structural modes. 1t should
be noted that in the context of actuator placement
problem, relative actuator contributions (in terms of
singular values of grammians) to a particular rnodc
depends only onthe MGC since the frequency and
damping effect on the singular values arc the samc for
all actuators for this mode. Thercfore, for the class
of problems where a set of modes to be controlled
arc given a priori based on physical grounds, it is
only neccessary to analyze M G C.Yor other classes
of problems where only the most control lable and
observable odesarc to be controlled (for example,
when actuator and sensor limitations are severe), the
frequency and damping weights in the grammians given
by ¥gs.(7,8) must he considered, as in the balanced
approach proposed in this study.



3 Balanced Flexible Structure

The controllability (W'. ) and observability (W,) gram-
mians arc convenient forms of characterzing a system’s
controllability and observability. They arc obtained
from solutions of the following Lyapunov equations

AW A4 WAT 4 BB =0, AW, 4+ WA+ C"C =0 (10)

For stable Aand minimal (A, B3,C), the solutions are
positive definite and the geometric interpretations are
well understood (scc [11]). The system triple is bal-
anced if its controllability and observability grammians
are equal and diagonal [30]

We =W, =1"? (11)

where 1I'? > 0iis the diagonal matrix of Hankel singular
values of the system.

The controllability and observability properties of
flexible structures arc analyzed in [22, 24, 25, 26, 27,
19, 32, 33]. 'Thesc properties for flexible structures
imthe context of actuator and sensor placement are
investigated in [1 1]. Two important propertics of a
flexible structure arc extensively used in this paper.
I'irst, states of a flexible structure in modal coordinates
are almost orthogonal, and second, thec state matrix
A in the balanced coordinates is diagonally dominant.
The terms, “alinost orthogonal’’and “diagonally dom-
inant,” arc aternative expressions for an approximate
equality in the sense of small approximation error as
measured by a spectral norm.

Assuming small damping, such that{ < 1(¢=
max({;),i=1,....n2),the balanced and modal repre-
sentations of flexible structures of the forms given in
Lgs.(5,6), arc closely related, as it iS expressed in the
following propertics:

Property 1: Inmodal coordinates controlla-

bility arid observability grammians arc diago-

nally dominant,
w, =
W, =

diag(werla, . .., wenyd2) (12)

S Won,l2) (13)
Sine.c thecigenvalues of the product arc the
Hankel singular values

]‘4 = diag (A 1 (VVCWD)’ Tt An(VVcVVo)) = WcWo
(14)

diag(wer 1z, . .

Property 2: By resealing the modal repre-
sentation (A, I3, C)onc obtains almost bal-
anced representation. Let (Ay, 3, Ch) be the
balanced representation, then

(Ay, By, Co) = (A, R B,CR) (15)

where

R ::idiﬂg(}f)ﬁ‘]"]z, P
1

W,

&"_2]2)1/4 (16)
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Note that the diagona transformation leaves
A unchanged and it approximates the cxactly
balanced Aj;.The rows of I3 and columns of

C' which are associated with each mode arc
individually scaled by the transformation.

Property 3: Denote @; = —4%:(;wi where
the approximate :th Hankel singular value for
flexible structure is given by

2 0: B
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For balanced rcpresentation one obtains

BB =clc, = 1A+ A7)
> diag(oy,0,...,a,,,0)  (18)

which, for the «th block, i1t translates to

HbiBg;' o CFChy -'y,-(A,-—!—Ag‘) =diag(a;, O)

(19)
where B, is the two-row block of Bs, and Ch;
is the two-column block of Cb.

The first property follows from the definition of
Hankel singular values and the well known diagonal
dominance of grammians in modal coordinates. It
gives an approximate but explicit formula for HSV of
flexible structures. The second property follows by
noting that the grammians in modal coordinates are
already diagonally dominant so that only a scaling via
a diagonal stalc transforination is required to attain
grammians that arc equal and diagonally dominant.
The third property follows directly from the diagonal
dominance of the matrix Ain the balanced coordinates.
All tlie above properties arc corollaries of earlier results
reported in [25, 32, 26].

Diagonal dominance of the grammians in modal
coordinates imply thatthe principal directions for
controllability, observability, and balanced principal
direct ions arc approximately the saimne as eigenvectors,
hence “modal graminians” as discussed in [1 I]. This
dominance leads to particularly useful simplifications
for flexible strn ctures, and in the context of actuator
and sensor placemnent, the following points arc noted:

. individual structural modes can be associated with
Jrrincipal directions of controllability and observ-
ability and balanced principal vectors.




. Different, sets of actuators and sensors give ap-
proximaltely the same principal directions; only
principal values arc significantly aflected by the
choice of actuators and sensors.

Although the balanced andmodal coordinates amost
coincide for very lightly damped flexible structure,
the important differen cc between them lies in their
scaling. It is well known that the modal coordinates
are not unique, since they depend on the scaling of
the natural modes, which is arbitrary. The scaling of
the balanced coordinates is unique, it is such that the
condition in Fq.18 holds. Physically, this means that
each modal dtate is scaled such thatits controllability
and observability becomes equal while maintaining the
cigenvector shape and the principal direction.

4 Actuator/Sensor Placement

The actuator and sensor placement methodology pro-
posed in this paper is based on the balanced repre-
sentation of flexible structures. The Hankel singular
values are used to construct various forms of metric that
quantifies the degree of controllability and observability
for a given set of sensor and actuator configuration
in balanced coordinates. Although the usc of 1SV to
analyze the degree of controllability and observability
of a linecar systein IS well established, especially in
model reduction applications [30, 26], the approximate
decomposition of the squares of the 1SV with multiple
scnsors and actuators in terms of the sum of squares of
1SV of al combinations of sensor and actuator pair,
is new. This result significantly simplify the design
problem of selecting the most effective set of sensors
and actuators for flexible structures.

4.1 Decomposition of HSV

Hankel singular values quantify the joint controllability
and observability properties of a system, thus they can
scerve @ ametric for sensor and actuator locations.
Although it is known that adding sensors and actuators
will in genera increase control lability and observability
in al principal directions [11] and hence al HSV, an
explicit relationship between the sensor and actuator
locations and its HSV has never been derived duc to
its complexity. The earlier results, as summarized in
Properties 1 to 3, give explicit approximation of HSV
in terms of modes and the contribution from individual
actuator and scnsor have not been explored. In this
section, an approximate but explicit relationship in
terms of 11SV of individual actuator and sensor is given
for flexible structures.

Consider the placcment of p actuators and g sen-
sors. In this case the input /4 and the output C matrices
consist of p columns and g rows, respectively

B=[By,. Bl cT=[cT,....C] (20)
Notice that previously in Egs. (6) and (18), the input
and output matrices, I3 and ¢/, arc decomposed in
terms of modes, i.e, By, .. Bnaes and Cia, . . ., Cinge
However, in the following derivation, the decomposition
is in terms of actuators and sensors (scc lq.(20)).
T'hese matrices canbe decomposed as

P q

BB" =" mB, e =Y ClC (21)
i=1 ji=1

so that the controllability and observability grammians

arc a sum of grarmiians for cach individual sensor and

actuator

¥ q
W, = ); We, W, = 2; W (22)
1= J:‘

where W,; and W,; denotes the nx n controllability
and observability graminians for the :th input and jth
output, respectively.

For a multivariablc linear system, the 1SV arc
defined by the eigenvalues of the product of the gram-
mians and by using £q.(22)

7oe (VW)

r g
- Ak (Z Z Wci VVoj ) (23)

i=1j5=1

where k = 1,. ... nand A¢(-) denotes the kth cigen-
value. Except for the special class of low order systems
of four or less, this equation cannot be explicitly solved
in genera).

Fortunately, for lightly-damped multivariable flex-
ible structures, its bal anccd represent ation is amost
independent Of its actuator and sensor locations and
the grammians arc diagonally dominant (sec Propertics
1to 3) so that

WeiWo; = 1 (i, 5) = 1(4, 5) (24)
where

(i, §) = diag( (i, D2y, Tna(i,5)12) (25)
I'(i, j) = diag(mi (4, ), .., 1(3,5)) (26)
denotes a matrix of approximate and exact HSV for the

ih actuator and jtly sensor pair respectively. Hence-
forth, the tilde symbol will denote the approximate




value of the variable. Substituting the diagonal domi-
nance of ¥q.24in 23, wc arrive at

P q
Y=Y Y A, kes @7
i=1j=1

or
P q
M) G =17 (28)
i=1 j=1

where

I'= 5112, . -0y d2) (29)

Note that then approximate HSV in ¥q. 29 occur in
pairs (see propertics 1 to 3) so that there will only be
12 distinct approximate 1SV in general. The following
important distinction is also cmph asized: I' and T" refers
to the ISV for a sct of actuators and sensors while
I'(¢, 7) and 1'(7, §) refers to the ISV for theith actuator
and jth output.

The importance of Eq.(27) lies in the decomposi-
tion of the ISV of the multivariable flexible structure in
terms of the suin of approximate 1SV of each actuator
and sensor pair. observe from Eqs. 23 and 24 that
the HSV for a multivariable flexible structure cannot
be decomposed in terms of the exact HSV,1'(7, j), of
its individual actuators and sensors. Nevertheless, in
the context of actuator and sensor placement problem,
if 1SV arc used to construct a placement metric, the
contribution of each sensor and actuator pair appears
in a very convenient form (cf. £q.23 and 1.q.27).1n
additon, the k£th balanced mode for the ith actuator
and jthscusor pair canbeindependently evaluated and
is denoted by Fx (4, ).

4 .2 Placement Indices

Three separate problems can be distinguished: actu-
alor placement only, sensor placement only, and joint
actuator and sensor placement.T’he decomposition of
11 SV applicsto al three classes of problems as long as
flexible structures arc considered. lence, the problem
is formulated only for actuator placement where a
sel of sensors are assumed fixed. For simplicity, the
dependence of 1SV on the fixed set of sensors will not
be stated explicitly for the following actuator placement
formulation.

Lect N denote a candidate set of actuator locations.
In this casc, Iiq. (27) simplifies for the kth balanced

1110C1C! to
THN) =D H(E), keSs (30)
ieN
or N
M(N) =2 ) 1) (31)
i€EN

where N
]‘(i) = diag(’n(i)]z, SR 5’112 (i)]g) (32)

is tile matrix of approximate HSV for theith actuator
location and

I'(N) = diag(y1(N), - - ., % (N)) (33
is the matrix of HSV for the set of actuators, N

Following[1 1], it is assumned that typically a de-
signer does not know exactly how many actuators to
usc and where to locate them. However, a larger but re-
dundant set of candidate locations, denoted here by N,
is usualy known. The scalar 41(N) denotes the max-
imum achievable joini controllability and observability
corresponding to all actuator candidate locations, and
itis a sum of 4 (¢) over all candidate actuators and all

modes
FIN) =D 4k) (34)

keSieN

In order to derive the placement strategy, a nor-
malized index 47 (¢) of the ith actuator for the kth mode
is defined. It is a ratio of the fourth power of HSV of
the ith actuator for thekthmode, ¥4 (i), over the fourth
power of HSV for the whole set

430 = %‘1(2 <1 (35)

Definition 1. Define a subset of actuators,
Ng, s0 that N,C N. The joint controllability
and observability of the kth mode for the
actuator set, N,, arc characterized by the kth
modal index, p,, (k).

pm(k)= Y46 <1, keS  (36)
ic N,

Definition 2: The joint controllability and
observability of the ith actuator are charac-
t erized by the ¢t h actuator index, p,(7).

pa(i) = > (i) <1, i€N,  (37)
keS

The actuator index, p, (i), is a non-negative con-
tribution of the ith actuator summed over all modes.
Thenodal index, p,,, (k), isanon-negative contribution
of the kth mode suinined over all actuators. This
summation property is an important. feature of the
indices, since the total contribution to the system are
decomposed into asum of non-negative contributions of
each individual actuator and mode.In fact, 47 (i) can
be viewed as a matrix of nou-negative numbers whose
column or row sum corresponds to p,(7) Or py, (k). This



table of numbers is very informative and can be used
to define a suitable metric.

Given a set of actuators, Ng, and a fixed set of
sensors, two metrics which arc based on the sum and
products of principal vaues, p,, (k), are

J](NG)N) = me(k) = Z Z :7'2(1) = Z pa(i)

keS k€SIEN, 1€EN,
(38)
J2(NayN) = H f)m(k) = H Z ’73 1) (39)
keS k€S ieN,

The metric Ji(Na, N) is a sum of all principal val-
ucs, 1- ¢., thetrace of the HSV matrix. The physical
implication of the first index is that the modes are
weighted intheir order of degree of controllability and
observability. hence when used as a placement metric,
the least controllable and observable modes arc ignored
in the actuator and sensor placernent.

‘TI'he second metric, J2(Na, N), is a product of
al principal values over all modes. Alternately, this
product is also the determinant of the HSV matrix.
Physicall y, this means that the least controll able an
obscrvable mode (or principal direction) is as impor-
tant as the most controllable and observable mode.
Geomctrically, this product is directly proportional to
the volume of ann2dimensional hyperellipsoid whose
principal axes are given by the principal directions
and values. in al cases, the physics of the particular
application would dictate the selection of the most
physically appropriate metric.

4.3 Placement Strategy

Auy placement strategy obviously depends on the met-
ric chosen, which in turnmust be based on the needs
of the physical problem. For example, if the physical
problem of interest. suggests that the index p,(7) which
characterizes the importance of the ith actuator over
al modes is suitable and in addition the sum of this
index represents the combined actuator metric, then,
J1(Ng, N)can be used. The advantage of this metric. is
that the contribution of each actuator appears linearly
andindependently and the optiinization problem then
reduces to one that can be solved by inspection. Hence,
actuators with small values of pa(i) can be removed as
the least significant ones.

The balanced modalindex pn, (k) can be useful
when modes at the required controllability and observ-
ability level arc required. Indeed, it characterizes the
significance of the kth balanced mode for the given
locations of sensors and actuators. The controllability
and observability of the least significant modes (those

with the small index p,.(k)) can either be enhanced by
adding and/or reconfiguring actuators and/or sensors.
Based on the products of p,, (k) over al modcs, a second
metric, J2(Na, N), can be defined. Notice that the
placement metric Jy(N., N) is not as convenient for
optimization as the former metric.

"The index p,(N,) achieves its maximum for N, =
N, giving p(Ng)=1. Another exireme situation ap-
pears when a single actuator controls a single structural
modec [7]. In this case 11,=1, No =1, N > 1, and
pa(i)= 41 (1)=4{(1)/%* (N), so that the location with
the largest amplitude gives the largest index pq(7), for
t = 1,....N.Thus for this simplest case, selection of
actuator location based on the peak amplitude location
of tile mode shape [7] is equivalent to largest modal
grammian coefficient [11] and largest Hankel singular
value.

5 Examples

in tile following examples, the trace of the HSV matrix
is used as the actuator placement metric. All the
outputs used throughout the examples to generate
balanced coordinates or modes arc assumned fixed.

5.1 Truss structure with internal actu-
ator forces

The truss from Fig. is considered. 1ts outputs are

. -12-...1
115 né n7 n8
( act 4 act.5 act 6
' ~ T
¥
1
act 1 act 2 act 3
ni n2 n3 n4

Figurel: Actuator Configuration for Example 1.

rates mecasurcd at vertical direction at nodes n4 and
n8.The following actuators are considered: (1) force
in the bar connecting node n2 and the support node
711, (2) force in the bar connecting node n3 and n2, (3)
fore.c in the bar connecting node n4 and n3, (4) force in
the bar connecting node n6é and the base node n5, (5)
force in the bar connecting node n7 and n6, (6) force in
the bar connecting node n8 and rr7. T'he task is to find
the two inputs within the given six candidates with the
best controllability and observability properties.




The controltability and observability properties of
each actuator arc characterized by the indices pa(i), ¢ =
1,...,6. These indices arc obtained from the HSV of
each individual actuator, which contributes to the total
HSV. I'irst. the accuracy of the HSV of the system
with al six inputs is checked by computing the exact
HSV using 13q. (23) and then the same SV through
1q.(31). The results shown in figure 2 confirin that

velocity sensors; *=exact, o=approx

10 v
102} e
o !5!53,*”?
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e . ]
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, 0»4 N . M a N
0] 5 10 15 20 25

Figure 2: Exact (x) and approximate (0) Hankel singular

values of truss.

Fq.(31 ) holds with satisfactory accuracy with only
small discrepancics. These errors appear acceptable for
the actuator placcment purposes.

The indices pm(k),k = 1,...,13 and pa(i),i =
1,..,6 aregiven in figure 3, which indicate that actua-
tor 1 (force in the bar connecting node n2 to the base)
and actuator 4 (force in the bar connecting node n6 and
the basis) arc the most appropriate for the actuator
locations. "These choice of locations are intuitively
correct. since internal strains and displacements a the
root of a beam arc largest for beam tip vertica motion.

5.2 Truss structure with external
ator forces

actu-

The same truss with the same outputs are considered.
However, a different set of cight candidate external
actuator locations are considered: ( 1) horizontal force
at node n3, (2) vertical force at node n3, (3) horizontal
force at node n4,(4) vertical force at node n4,(5)
horizontal force at node n7,(6) vertical force at node
n7, (7) horizontal force at node n§, (8) vertica force at
node n8, as shown in figure 4. The task is to find the

verticel velocity sensors &t nodes n4 andn8 for truss

T T T T T T
0.5
g0A4
g
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vertical velocity sensors at nodes nd end n8 for truss
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0.1 b
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0 JRN B § A 1 1 1 1
° 1 2 3 4 5 6 7

actuator number

Figure3: Modal index, pp, (k), aud actuator index, pq(7)
for truss structure ecxample 1

best two inputs within the candidate locations.

The accuracy of the ISV of the system with
al eight inputs arc checked by computing the exact
HSV using ¥q.(23) and then the same HSV  through
Eg. (31 ). The results shown in figure 5 again confirmn
that Eq.(31) holds with satisfactory accuracy with only
small discrepancics.

The modal and actuator indices, pm(k), kK =
1,...,13 and pa(7),i=-1, ..., 8 are shown in figure 6. The
results indicate that the locations 4 (vertical force at
nodend4), and 8 (vertical force at node n8) arc the best
choices. Yhisisnot surprising since the given outputs
arcin the same location and direction.

5.3 Actuator placement for CEM

The actuator placeinent procedure is applied to the ex-
perinental structure called the Control-Structures In-
teraction Evolutionary Model (CEM), shown in Fig.7.
A total of N =50 candidate locations for the air
thrusters is selected and shown. The structural model
consists of ny =212 modes whose first six modes are
suspension modes. The frequencies arc closely spaced
and lightly damped, which is a typical phenomenon for
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Figure 4: Actuator Configuration for Example 2.

velocity sensors; *=exact, o=approx
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Figure 5! Iixact () and approximate (0) Hankel singular
values of truss.

this kind of structure. The main purpose of the CkEM
actuators is tosuppress the suspension induced and
structural vibrations due to external disturbances by
using feedback control. Thereport in [21] gives a more
detailed description of the structural model. Based on
the set of actuators 1 to 8, the results of several control
designs arercportedin [23, 11, 12, 13].

The placement, of actuators depends on the sensor
location. We consider three velocity sensor locations.
Inthe first case, sensors No. 9,37, and 46 were used, al
of them sensing the CKEM dynamics in y-direction. ‘I’he
accuracy of the approximate decomposition of the HSV
is checked by computing the truc HSV of a system with
al 5(J actuators, and the approximate Hankel singular
values obtained from¥q.(31) as the sum of the HSV
of systems withsingle actuator. The plot in figure 8
shows that the exact and the approximate ISV arc
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Figurc6: Modal index, p,,(k), and actuator index, p,(7)
for truss structure example 2

close enough to proceed with the placement. procedure.

‘I"he modal indices py,(k),k = 1,..,12, and the
actuator placement indices pa(7),7 = 1, . . . . 50 were
determined and plotted i figure 9 respectively. The
modal indices show that the second rmode primarily
participates in the output. The actuator indices show
that actuators placed at locations 1, 3, 6, 8, 9, 11,17,
19,21, 23, 25, 27, 30, 33, 35, 37, 43, and 46 most
influence the output. All of them act in y-direction, i.e,
they arc oriented inthesame direction as the outputs.

6 Conclusions

The approach in this paper extends and complements
the approximate decomposition of the singular values of
the controllability and observability grammianmatrices
of a multivariableflexible structure to Hankel singular
values. Themainresult of this study is that for lightly-
damped flexible structures,the Hankel singular values
of individual pairs of actuators and sensors can be
sumined to approx imate the HSV of the multivariable
flexible structure. The Hankel singular values can
be used to construct various forms of metrics that
quantifies the degree of controllability and observability
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Figure 7: Actuator configuration of CEM.

in balanced coordinates. Based on the metric chosen,
corresponding placcinent methodology can be derived.
It is shown that for the spccial case where the trace of
the Hankel singular value matrix is used as the metric,
the optlimal actuator placement problein becomes very
simple.

FURTHER D ESIGN AND SIMULATION 1 S

NECESSARY...
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