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Absfract  - This introduction to artificial neural net-
works summarizes some basic concepts of computa-
t ional  neuroscience and the result ing m o d e l s  o f
art i f ic ia l  neurons . The  t e r m i n o l o g y  o f  b i o l o g i c a l
and art i f ic ia l  neurons , biological  and machine
learning and neural processing is introduced. The
concepts  of  supervised and unsupervised learning
are explained with cxarnplcs  from tbc power system
area. Finally, a taxonomy of different types of
neurons and  rliffcrcnt classes of artificial neural
networks is presented.

1. IIWROIXJCTION

The discipline of compulatirmal  neuroscience has three goals,
first the computer-aided simulation of some functionrdities  of
the brain, sccomt  the understanding of the function of the
brain in computational terms and third the application of
neural conccp[s for innovafivc technical problem solving. A
dctailtxt  discussion of functionalities  and models in
computational neurfsscicnce  m well as references concerning
experimental data and theoretical models can be found in
[Churcbland  and Scjnowski,  1992].

The theory of ,artificial  neural networks (ANN) is mainly
motivated by the sccontl  goal, i. e. the establishment of
simple formal  models of biological neurons and their
interconnections called artificial neural networks; for an
exccllcnt  introduction, see [1 Ierm, Krogh and Palmer, 1991].
la the power cnginccring  domain, prcdominandy  the third
goal is , i.e. the application of already simplified tools  of
ANNs to tcclmical  prob]cms remains the main objective,
[Nicbur ct al.. “1993].

Although Churchlamt  and Sejnowski  [1992] give strong
arguments for the validity of the simulation of complex
bcbavior  with very simple models, this tutorial is not so
much conccrntxl  with the biological plausibility of the
discussed ,artificial  neural network models as with the
applic:ibility  of the discovered principles to a technical task,
Nature and (cchnology  have different goals, means, materials
and crsnstraiats.  Hor instance, as Churchland and Sejnowski
note, nature does not SLW1  “from scratch.” When “dcvelophg”
birds, nature had to start from dinosaurs. lhe material as
biological matter was given, the means were basically
random mutalion  and the constraints had m take into  accounl
multiple criteria. Conccming  the task of flying, an optimally
designed bird not only had to fly fast but also to be able to
rcpi’oducc, Although inspired by nature, the engineer can
specify the constraints, design an objcc~ simulate the model

on a computer, choose an appropriate material and finally
build, e, g., a machine. His solution can be globally optimal
in the given frame work whereas nature can only achieve a
locaJ optimum, if only the constraints of a specific task (like
flying fast) without reference to the larger context are taken
into account, However, when proceeding as described, it is
highly unlikely that the engineer will develop a tool which
flies only satisfactorily but is a magnificent swimmer and
diver, as nature has been able to produce in the form of some
birds.

Staying with this anaJogy, wc understand an artificial neural
network as a brain-inspired computer which may solve a
similar task as the biological brain, but will not be an
imitation neither in material nor means nor constraints. la
the following text the term “neuron” will usually refer to the
basic unit of an artificial neural model, and “learning” and
“training” designate machine learning techniques.

2. BIOLOGICAL NJXJRONS

One of the earliest descriptions of biological neurons is due
to Cajal [1894], who identified a neuron m an independent
electric device transmitting and rccciving  electrical signals.
Although at least 500 different types of biological neurons
have been distinguished, many neurons have a general
structure simihu  to that shown schematically in Fig. 1, The
following description of the function of biological neurons is
necessarily simplified, see [Churchland  and Sejnowski,  1992]
for a more” detaijcd and very reachble infrwlucti&).
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Fig. t Schematic drawing of a biological neuron model.  We show the
principal parts of the neuron, as introduced in tt)e text, as well m

sche.nmlizd slIapes  of tile neural signals, Note ttmt this shpc  changes
along  tile dendri[;s  but rellmins the s;lne  when traveling along the axon

The principal components of a typical bicshsgicat neuron are
the cell body (or soma), the dendrites and the axon. The
function of the dendrites is the collection and conduction of
electric potentials which are generated at the synapses when a
presynaptic  neuron experiences an action potential (“spike”).
If the intracellular potential in the soma exceeds a certain
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value, called  the threshold, an action potential is generale(l
which travels along the axon and the intracellular voltage is
reset to a value close to the so-called resting potential (the
voltage obtained in the absence of synaptic inputs). The axon
is conncctcd  via synapses to the dendrites of other neurons
(which are called postsynaptic)  and therefore the action
potential will influence the voltage in these neurons.
Functionally, the dcndrikx  arc closely associated with the
inpul of the cell and the axon with the output.

There are basically two types of synapses, one called
excitatory and the other inhibitory. Activation of excimtory
synapses increases the voltage in the postsynaptic  neuron
while activation of inhibitory synapses decreases the voltage.
If many excitatory synapses are activated frequently, and if
only few inhibitory synapses are activated, the intracellular
voltage of the neuron incremes rapidly and reaches threshold
fast. lhcrcforc,  the neuron will generate aclion potentials at a
high rate, i. e., the neuron will be very active. The soma,
where the instantaneous voltage is compared with the
threshold and, depending on the result of this comparison, an
action potenlial  is either gcncr’ated or no~ corresponds most
closely to fhc decision-making instmce  of the neuron.

‘his description of neural function is grossly simplified and
there are many exceptions to this prototypical behavior. For
instance, there are many clmses  of neurons which do not have
a clear distinction bCtWCCIl  axons and dendrites. Other neurons
are not even capable of gcnemting action  potentials and they
communicate by other means, Also, our classification of
synapses in only two types (excitatory and inhibitory) is
simplified, and we have completely neglected the in{erior
dynamics of cells,  which are far more complex than just the
simple summation of synaptic inputs described above. The
final point wc would like to make here is that recently also
the notion of the spiking frequency being the only signal
transmitted bclwccn  neurons has been questioned, and that
there is increasing cvidcncc  that the time structure of the
sequences of spikes plays an important role. We have
prcscntcd  this simplified description of neuronal  function
since il is at this lCVC1 that the elements of artificial neural
networks arc usually modeled.

3. TIE ARTIFICIAL NE(JRON - A
Computational. MODEL OF THE BIOLOGICAL

NEIJRON

McCttlloch  and Pitls [1943] established the first
conlpulationnl  trmdcl  of a biological neuron, by translating
the biological concepts as shown in Fig. 2: incoming and
onlgoing aclion potentials and synapses are presented by in
general real-valued vcdors. The simulation of the soma is
modeled as the weighted sum (i. e. scalar  product)  of
incoming vccmr  and weight vector and the ,amplification  of
the axon is modeled by a (in general non-linear) gain
function. In diagrams showing artificial neurons scalar
product  and gain function ,arc usually grouped to form the
artificial neural unit.

The simplest formal model, the logic threshold unit is shown
in Fig. 3. It consists of a two-dimensional binary input
vector x, the gain function of the neural unit being the
threshold function g(x) with a given threshold 6 aa given in
(l),
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Fig. 2: Schematic drinving  of tbe artificial neuron model. Terrru  in italic
denote tbe biological parts Iheir formal  conqmnent  s are denoted in

normal type.

and a one-dimensional output vector. The synaptic weights
are modeled by two real mtmbcrs  wk, k = 1, 2, The neuron
processes the binary input components xk, k = 1, 2 as
follows:

[12

{

- 1  forh SO
y=g~wkxk w i t h  g(h)=  1 forh> @ (1)

k=]

Although extremely simple, this artificial neuron can
calculate Boolean functions. For example for the Boolean
values 1 = TRIJE and -1 = FALSE, for the given synaptic
weights W1 = W2 = 1 and a threshold vahtc El = -0.5, the
neural net computes the output y as the Logical OR belween
x 1 and x2. For the same weights and a threshold value
tl = +0.5, the neural net calculates the Logical AND.

Fig. ?I The logic threshold unit with tfmeshold  8 being part of the gain
function

Fig. 4 TM logic threshold unit with fixed third input and with thresbtdd  o
being  part nf the weigh[  veztw

A straightforward calculation shows that the gain function g
can be chosen as the sign function if the dimension of the
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input  vector and weight  vector is augmented and their values
are clamped to -1 and (1 respectively.

[13
)’=~~wkxk

{

– 1  forh<Ow i t h  g(h)=  1 forh>o (2)
k=]

In the following we will therefore model any threshold 0 by
an extra synaptic weight. Fig. 4 shows the architecture of the
equivatcnt  unit.

4, CHARACTERIZATION OF ARTIFICIAL NHJRAL
NETWORKS

So far wc have defined the architecture of a simple neuron,
We have also seen how the neuron processes input vectors,
provided the weights are known. In section 7. we will discuss
strategies, commonly referred to as learning, how to
determine the weight vectors for a given set of input vectors,

Ilc dcscribcd simple model can be generalized in many ways.
Every artificial neuraJ nclwork  model can be characterized by
the following features: its archileclure,  its processing
algorithm and its /raining  algorithm,

Combining several neurons so that the output y~ of neuron j
serves as inpul  to one or scvcraJ  neurons leads to networks of
artificial neurons. Ile archiwcrure  specifies the arrangement
of neural cmmec(ions  as well as the type of units
characterkd by its gain function.

For a given architecture the ncuraJ network is used in two
diffcrcul modes, the processing mode and the training mode.

In the processing rnodc,  the proces.ting  algorithm specifies
how the neural unit for a given set of weights calculates the
output vector y for any input vector x. The type of
processing furfhcr  depends on the type of the gain function.

The Irairring  algori{hm specifies how the neural llCtwOrk
adapts its weights for all M given input vectors x, called
training vectors, from a set of given vec(ors, the training set.

1.ct us now examine these three ch,aracieristics,  ,architecture,
processing and training in mom dcklil.

5. . ARC1 H“ITX’IIJRE  OF AR1’lFICIAI.  NIXJRAL
NETWORKS

In general the architecture, see Fig, 5, consists of three p,arts,
the n-dimensional inpu( layer where the input data is fed in,
the neural network layer consisting of N neurons
interconnected in various ways and the m-dimensional  output
layer. Illc n input vector and m output  vector  components are
either binary or real numbers. Each input and output vector
component can be connected with each neuron through a
synaptic weighl, which is a real number. We therefore have
two weigh(  matrices, one mxN-dimensional matrix for the
input layer - neural net layer connection and one Nxn -

dimensional matrix for the neurat net layer - output layer
connections. The way the neurons are connected in the neural
net layer is specific for the different existing models &s for
example the multi-layer perception, Kohonen’s self-
organizing feature map and the Hopfield  model. Examples of
architectures will be explained in the following section. There
exist a variety of other types of neural architectures, see
[Krogh, ef. al., 1991].
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Fig. 5 General neural network architecture.

With respect to the architecture four main types of neural
networks c,an be distinguished:

1) Layered feed- forwurd neural networks, where a layer of
neurons ;ecei;es  input only from previous layers as for
instance the multi-layer perception (MLP) shown in Fig.
6. The functional relation y = f(x) between input and
output is usually not given in an analytical form.

The flow of information for the processing of input
vectors with fixed weight vectors is in one direction only.
Input units feed the input values directly to the hidden
neurons whereas hidden and output  units rirocess  their.
input through a non-linear gain funclion.

tigmoi[hl KiII g(h) = Ml! JVI
x , y = f(x)

hpu(  @r bidden  IIycr (MINI P4yer
5 ir~t urnls 3 hid(k)  units 4 Outpt  Ultit.!

Fig.  6: Architecture of a multi-layer perception containing 5 input, 3 hidden
and 4 output units,

For the MLP we will show later that the flow of
information during training is in two directions, forwards ~
to calculate the actual output and backwards in order to
back-propagate the emor for the correction of the weights.
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2) Recurrent neural networks, where the inpuLs  to a neuron
arc the net’s previous outputs as well ‘as inputs from
external sourw-s which are input xi and bizs (equivalent to
a shift of the threshold) Ii. The fully connected Hopjield
net [1 Ioptield, 1982] shown in Fig. 7 is an example for
this type of architecture. Here, the neurons process their
input through a threshold function.

During processing the 1 Iopfield net will feedback its
output, during training however only one feed-forward
step is used.

Initial vdw l=l..  lm-l FiImt VEEW

lnpul Maw Rerurrmt  net output wile

Fig. 7: Architecture of the Ilopfield  network containing 5 input, S recurrent

4)

In

egy where only one neuron and its close neighbors are
stimulated by the input,

Hybrid networks combine two or three of the above
features. For example, the Bohzmarm machine has a
hidden layer with recurrent connections, The two neural
layers of the Counter-propagation network consist of a
Kohonen  layer and a fed-forward layer,

6. PROCESSING OF INFORMATION WITH
ARTIFICIAL NEURONS

biological neural networks, the incoming action potential
will excite different neurons to a different degree Depending
on the size of the stimulus the neuron will then amplify or
inhibit the incoming signal. In artificial neural networks the
degree of the excitation is usually measured as the similarity
between input vector and weight vector. Higher similarity
usually results in a larger output, A saturated gain function
ensures that  this process stays bounded.

Similarity of two vectors can be defined as generalized
coline,arity.  In this case the angle formed by two vectors
serves as a measure of similarity. Out of all weight vectors
Wi, i = 1, . . . . m, the weight vector wi* is the most similar
to an input vector x, if their scalar product (i. e, weighted

&d 5 outpLII units. Nnte that, in contrast  10 he MLP, the input and output sum of components) takes its maximum
units correspond to stales, not to physical neurons

3) Laterolly connec~cd  neural networks consisting of feed-
forward- input units and a lateral layer consisting of m
neurons, which arc laterally connected to their neighbors.
The Kohom]n  network shown in Ilg. 8 is an example for
this type of network. II will bc discussed in detail in the
luton~fi  chapter [Nicbur,  1996],

Nugl)h,,l,wd

l[ll.  ! Wc’lm  l—l Crasxs

Winner

1 1

Inpl! Franm rwp Outpul

sim(x,  w) := <X, Wi*>

= max{<x,  Wi>l i = 1, . . . . 111) (3)

A second concept of simihwity  uses the Euclidean distance of
two vecmrs  as a memure. Here Wi* is most similar to x if

sim(x, w) := II X - Wi* II

= min{ll X -Willli  = 1, . ...111) (4)

Applying the p.arallelogr,am  equation it can be easily shown
that these two concepts are equivalent for nonnatized  vectors.

The gain function g further determines the way how the
neuron amplifies iLs output y for a given weight vector w and
a given input vector x, The sign function will either produce
a TR[JE or FALSE answer for all output neurons. The
winner-take-all function will produce a TRUE output only for
the most stimulated neuron and FALSE for all others. A
linear threshold function will produce saturated responses for

Fig. 8: Arclutechm  of the Krhnen network containing 5 input units and 9
laterally cmmecled  units. lhe number of output classes depends cm the

very large and very small stimulation only.

characteristics of the training set. and is at mmt equal 10 tile nuder of The processing algorithm for one neuron in general is:neurons.

l%e number of the output classes depends on the ch,arac- y = g(sitn(x,  w)) (5)

tcris~ics of the training set and can thus UO[ be considered
as part of the architecture which is specified in advance. In The most commonly used similarity measure is the scalar

the original model training as well as processing results product of x and w for x, w ● 91r)~.
in a rccurrenl dynamical process involving all lalcrally
conncclc(t neurons. ‘he most commonly used simplifica-
tion, however, applies a winner-take-all feed-forward stmt-
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TABLE 1
TAXONOMY FOR ONE FORMAL NEURON,

Neuron:

‘Ilumhold  unit

I.,inear  unil

Non-linear unit

(sigmoid  unit). . .. —. —-- .“-—-.  ..- —. --— .—

Non-1 inear unit

,(siynoid  unit)

Radial  basis function unit

., ..,. . . . .. #.-

Winner-take all unit

Gain Funct ion  g: X + X
1

sign(h)

>-1 1
/ .,1 identity-=—_— ._ .——. — ---- —___ .

“m—— ___ Ianh(ph)__— —..— ——. — —— . . .
r

/!
-1 I  (l+exp(-2~h))-l.— . . . . . . . . . .“. ___ . . . . . . . . . . ____________ ._. -

‘A-1 1 exp(-(h-i*)2/2~2)

i* denotes most stimulated unit

L

. .——— .- L.- . . . . .... . .<— --..—- —-...,.., .- . .1

0

{
1 for most stimulated unit i *g(h) = O elsewhere

Input /Output  Vector  Components

X,E {-1, l)m

yE’ (-1, 1)

X=mm

..-—yE [-1, 1]——.. .—— —---- - ——_

Xewm

yE [-1, 1].—— .  .  .._ _ _ _ _ _ _ _ _ _

xE91m

—.. .2.S422  .J_ ---- . ______ . . . _________

xE9im

y E [0, 1]

- . .—. -.. . . . . . . . . “._—.__-_._.__”.

x G 9im

yG {0,1)

The logic threshold model can bc easily extended for n-
dimensionnl  real-vahrcd input vectors. Depending on the k~sk
10 be solved, subsequent models replaced the threshold
function by a

1)

2)

3)

4)

linear or linear-saturated gain func(ion (linear perception,
a&lptivc  linear element or “adalinc”),
non-linc,ar  gain function, usually a sigmoid function
(non-linear pcrceptmn)
the winner-take-al] function (self-organizing feature map
ncumn)
Gaussian function (radial bmis  function neuron).

Table I shows examples of commonly used neural units
charactcri7.c41 by their gain funclions.

7. LEARNING IN NIXJRA1. NETWORKS

Neural nctwmh  are commonly used for tasks  like pattern
rccognilion,  content addressable memories, approximation,
clawitlca(ion,  p,aramcter estimation and control. We will now
discuss stfatcgics  for the determination of weights in order to
achieve the desired objective. These strategies arc usually
called learning or tmining.

7.1 Hebb’s  rule - a bicdogicul  learning hypothesis

In the example of the logic  threshold unit, the synaptic
weights were assumed fixed and known in advance. In
biological terms this would correspond to the synaptic

strength being genetically pre-determined. Already from the
estimated number of neurons and synapses in the human
central nervous system (on the order of 1012 neurons and
1015 synapses) it is, however, clear, that not all synaptic
connections can be pre-coded.  It is a biological fact that
structural and functional changes in the nervous system,
usually called plasticity, can result from experience or
damage. In psychological terms, plasticity is at the base of
changes in behavior due to experience (learning). Engineers
usually prefer the term “training” which does not imply any
“intelligence” of the lcaroing  individual respectively
computer. Therefore this term is less prone to philosophical
discussions about whether a machine can be intelligent.

In 1949, the psychologist D. Hebb [Hebb, 1949] formulated
the hypothesis that synapses change in efficacy according to
the following principle: The strength increases when both
pre- and postsynaptic  elements are active simultaneously
(Icarning).  The synapse may decrease in strength if there is a
presynaptic  activity without concurrent pos(synaptic
activation (@rge~/ing).

Formulated in terms of artificial neurons Hebb’s learning rule
can be stated as follows:

For the weight vector w of an artificial neuron, given input
vector x and output y, synaptic learning can be expressed as
follows:
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Llw-qys q>(l (6)

hcfc m rncrdchWMch dso take forgdun; Into KxXrUtJtby
Mfing a ncgatlvc term pruportkd to the output and Ox
BtrcrJ@Jof b SyMpacS, i. e. lb WC@.

Awmuyx. rsyw=ay ((q/a)x. w) cl)

Willr ~, a > 0

Synrtpscsof Ncbbhu’r type 8s Well M of non.licbbian type
have been kicntlfkd phydologkdly, but dsc dctalls of lhc
Implcmcntalion Of biological plastklty arc SIIII opcrr.
Ncvcrthckta, SnOStxrlifkird lWUfXt JtCtWCXkSkc tbcil )C~.
lng atgrx-hhm on IIcbb’s gcncralizcd krsming prindpbc(7).

7.2 Mochhre learning

For XriiiJCid rbcuralnctworkl, the ncurrsttbctObjcctivcl. fof
cxrmp]c ptlcrn clrudfkation, have (0 b. dcfkd fur ● set of
cxnmpicgcalled the frtzining xf.

‘I?rc trrdning algorithm specifics how the ncurd network

adnp.s Its weights for all given input vccmrs x, callcct
trrdnlng vc-ctorsrfrom a set of given vcclors, the t.rrdnhlgsc[.
If kx every Input vcaor x, lhc ddrcd output vcttor Ytmgc{
L! given, and lttc weights am adapted in order to pruduct lhc
dcsimf output, the sraining proccm is calicd supfrviscd
&a, ning. If only the input vcctrx is giwm and rhc tuucrure of
the data 1sdi$covcrcd autonomously, the training is called
un.ruprrvkd kcarning.

7.2,1. L.farrzing os art c.?linrizalion msk

l,e[ us go back 10 our most simple canmplc of a ncund ncL
tho lqk ‘IYmAold Unit shmvn in }:!g. 3, which c[ilculnlcs
the Logk ANII function. Wc will now dclcruunc tk wcighls
of the tmit in order to SOIVCthir4tn*.

IXfinlng TRU1{ as 1 and FAI.SE a! -1 tile training rte[ is
glvcn by 4 Input vcclor>:

X1 -(. ],.l), x~m (.1, ]), x3=(l, .l), andx4_ (l, 1)

and Ihdr Cut-rcspondirrg UtrgclOuqw

h tk mrrrtcrrt, Ict us assumo a Ihcxr @n function, We
uow want to dctcx-rnirtethe weights such that tic cakulatcd
Oulpul h equal to the target output

y(w) * <x~, w>- yJ’
tar~ct

for all p = 1, ,,4. (8)

SiruxltlthpbkrskitOvW&tmn)ncd w V/U] forJrJtJtucit m
● knst Square UYu Irlinlmizatbls problcrn. Note, w Me
furt.b dcfinin~ tbe Usr@cdd 0, ks w d W wclght vcclw
as outlined lo (2) xnd UOwn LaHg. 4. We tkrcforc *d a
flxcd third cunputcttl W atl input vcctcxa

u in Its qulvaknt nsatrtx fwrrr @)

E(w) = lfl (X w . yIarlOI)T (X tt “ yt,rtet) _ rein!

Wtrrc

and ylartelm [-l, -1, -1, 1]7’ and w * lWIow2,0]1

Dccausc F. is continuously diffcrcutiablc with respect m (1IC
weights, ooc solution of the Icast squrtrc nllninliz.ti[inn
probkm can& ohtrdncdby solving

grad E(w) = Xl” (X w - y) = O (10)

kc non.singular XTX, called pscwb-inverse, the solution of
(lO)can bc cqxcsscdas tire

(11)

(For singuku pscwk-inverse the soluikm exists but hns to bc
cakulnlcd as a limiting acqucllcc.) In our pwliculm czntn~dc
the l.ngic Ilwmho]d Unit will perform the I ogic ANII with
w - ((1.$, 0.s, 0.5)7

Ckmlct.rically our solution rcprcscnlx a hyltirlkmc 1[ which
divicfcs Ihc lralning sc[ 10[0 two clasbcs. i:lg, 9 xhow~
anolhcr possihlc solution of this W*,

UJC]J tit (12)

+“tqot D algn( d, w>- O), focp-l, o,,4

Wc thcrcfrxc bvc formulated a sr.rpcrvlscdMsrntng task as an
optimi7@on task. An cxctllcxrt disrxmkrn C4s-word $tctwork&
whbin the frssrmwuk of Optlrnb.aticro and tignal processing
can bc found in [Clchochiad Unbchaucn, 1993],
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Fig. 9 The Logic AND problem M a linear separability task.
The black. the while and the two shaded  dOLS denote  the four Iraining

vec[ors.  Values above the hyperplane like the black dot are climified  m
TRUE, values below as FAL”E.

7.2.2. Rejlect ions on learning paradigms

The following rc-evaluation of the learning technique
proposctl  in 7.2.1 apply to supervised as well as ttnsupcrvised
learning techniques. In this simple example we have
implicitly made four severely restrictive assumptions.

1) We have assumed that our le,arning task is defined by a
continuously differenliahle  error functiou  to which
cfficicat  optimizal  ion techniques cm be applied.

In the case of self-organizing feature maps, a winner-mke-all
net trained in an unsupervised manner, only a non-
diffcrcntiahle  error function exists  for training vectors
distributed with a discrete probability. This case will be
discussed in the next tutorial chapter.

2) Wc have assumed that the solution of our learning Llsk
exists. This is only the case if the training set can be
linearly scp,arated  (i. e. by hyperplanes)  into the target
Oulput Cklsscs.

If the training set is not linearly separable, the Least Sqware
Minimimlion  problem dots nol have non-zero solutions. For
example the 1.ogic  XOR cannot be calculamd with the Logic
‘Il]rcshokt  UniL In Fig. 9 this task would require to place a
hypcrplane,  i (I. straight line,  such that the shaded dots lie on
onc side and (IIC black (lf)L\ on the other side of the line. The
interested reader may vcrufy  thal for ytwge:  = (-1, 1, 1, -1 )T,
w = (O, O, ojf is the only solution.

la the next tutorial chapter we will see that replacing the gain
function by a sigtnoid  function provides a powerful remedy to
this problem. For’ the multi  - layer pcrceptron  and a sigmoid
form of the gain function, the partial (terivativcs  of the error
with respect to the weights can easily be computed
nttmcric,atly.  The error function is usually minimized with a
stochastic gradicat se,arch technique which is known as the
back-propagation algorithm and which was imlepcmtentl  y
developed by [Wcrbos,  1974] and [Rumelhtart et al., 1986].

3) la onlcr  to establish matrix X, WC! have assumed that all
trtining  patlcrns  are known beforehand.

In may adaptive tasks, however, optimization has to be
adjuskxl  to new incoming patterns. This task can usually not
be solved  by otherwise powerful optimization tools like the
calculation of the pseudo-inverse or Quasi-Newton
techniques. Furthermore for large training sets the inversion
of the pseudo-inverse XTX represents a heavy computational
burden, especially in the ease of singular pseudo-inverses. We
will present an iterative and adaptive algorithm in the next
section.

4) Last, but not least we did not use a biologically plausible
learning concept.

In general we are not overly concerned if our machine
learning task achieves the same objective as biological
learning, by using different means. However, by neglecting
biological learning paradigms like simple computation, local
adaptation, and robustness concerning failing neurons,
researchers would have tnissed  the opportunity to develop
robusL simple, efficient and highly parallel hardware circuits,
which are quite different from the techniques employed by
conventional super-computers [Mead et al.,, 1989]. Ncural-
bawd h,ardware has recently been introctueed for power system
security assessment, [Comu  et al., 1994].

7.2.3. Supervised learning - learning for parameter
estimation

Supervised learning techniques, aJso commonly referred to as
learning by example or learning with a teucher  fall in the
same class of tasks as regression analysis and parameter
estimation.

Note that in this framework, classification tasks can be
formulated as the Llsk  of finding a regression model for the
function which maps an input vector x onto its class label,
for example TRI.JE or FAI.SE coded with binary numbers.
The non-linear gain function like the sign function will map
real-valued weighted sums onto binary outputs,

la the following, we will detinc a local learning rule which
solves the logical AND problem while respecting the
biological learning p,amdigms  cited above. It is based on a
simple iterative optimization algorithtn,  the steepest gradient
descent technique. It converL$  the task of finding the zero of
the function grad E(w) into the task of finding the fixpoint of
a related function G. lJadcr  cert,ain conditions, the latter can
be solved by a simple iterative method. Thus

grad E(w*) = O <==> G(w*) = w* (13)

with

G(w):= w - q(t) gra(t E(w) and q(l)  bounded

The iterative procwture  of steepest descent is shown in (14).
The expression for the gradient of the error function E was
obtained based on y~ given in (7) and E given in (8)
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W(1 + 1) - w(l)- q(t)@ E(w(l))

(14)
- w(t)+ il(f)f(#(w(0)- y&e Jx~

p-l

&) (M WC hnvc rcpkcd M jllwsiWi of & ~u&ilwCr~

by an iterative proccduw. ~his prwcdum s1lII needs the
Lwvkctgc OVCf Lbc w’bok Lrdning set,

Ilowcvcr inslcad d n)inindzbcg *c crrm ~khdly wc can
IM)W lfy U) llIillbllilC Ihc CII\X holly by fMll&MII]y lddll~ tMbC

(Is)

‘Ihls stm’hrrstic updAIing or kafnillg rule is C(MIUIIOIIII

fc(cfrcd w as lbc INS rul~, lhc l\’idrow. Hojj rult, nf Lhc

dclfff rulr. 11 Is OIIC of thecnrlicsl adnptivc ‘ncurul unils.

callcct ad~tpltvr Imcur unif or Af)ALINE and win used [(M
B+)t~w CWIWJ. [wkhOw Wd lk~fr. Iwo],

“Ihc Ilcfiillvc plocc~i convcrgcl LlOCtlilklit’irlly lo lhC

nlintlnwn 0( tbc crruf funcllono i( lhc bo-called “Robblns-

h{onro- cordiIions hdd for thc Iciwning r~Ic q. [I)udsr ard
IInrt 1972]

~,,(t)-+- S8LI ~Tl(P<- ( 16)
l-o l-o

Allhough (Mdy rippllcrddc 10 linearly acpnmbk Icurning lmkl,
*CC rcmnrks 7.2.3, the dcl~ rule fulflll~ scvcrul Of ihc
biological pufwfigrn$. 1[ I* con~pu~ilonnlly ~inlplc. rdw[
with fckpccl 10 noisy input daur as WCII as nuntcricd
rounding Crlurs ahd it ix a kwaf w@Ul[ion scbc[nc Icsrming
{uK cxwnpic al a Iimc,

]1 further Obeys a gcncfirtiznlkm of IIcbb’s Icarlling prifkipk
(H). I;of R flxcd hIpul and target output. dw wcigbl clmngcs

dcpcntl on Iwo lcfmt only, lhc corrclntion of input ri wd
crdculHlcd oul~wl y , and a conwnnl slifnulus, lhc prudud 0[

Illpul rind Iargcl Oulpul,

‘Ihcrc arc other supcfvind Icam{ng rules bmcd on }icbb’s
pdnclplc Iikc UIC prccp~on ruic and Ok gcncrd!zcd dclur
ruic, Inlrnduccd hI lbc ncxl tulndal chrrplcr, (hhcr Iyitcx of

ncursrl nc[w,wk~ uulncd wiIh a ctiffcrcnl IyiK of ~upcrvi)cd
krmllng Ilkc Ihe I:unctkmd.l,ink NCI uc rJIscuLscLI In [i’lK),

19m9],

7.2.4. hfuptrviwd karnin~ . kurning Jor dalu

rducii[m

[n un\upcrviscd Icruning the input VCCIWS 01 Lhc training set
arc glvcn, but ttrc corresponding target ouIpu[s arc. noI

spccifkd. Unsupccdscd Ucurat zbctsfall in(o Lhc aafne clnw of
loch as $lalil!kat nocr-pararnctrk dam analyzi$, clustering
atgorhhms afti cftikng w deeding tirdqucs.

Ibcir rnaln god cwosiNs lu d.suarcduc-tion. ‘Ibc rcJrsclJwl of
the dmta W3 d hqwt vwbm can bc acbLcvcd in two di[Icrcnt
wayi: cititi~ by reducing the dirwnsionrzli[y of tbc iupu[
WKK, or by rtdrrcircg Iht numbtr of input vcwws.

A soiuti(~ll 10 lhis ctilc[nnm is pr(~ix~scd by K(dKNIcn’s self
ocgwlizing fcalufc nlnp where (idcmily) r]ci~htwring :icur(m~
clanify r~ightwring fcalwcs and Ltm the imw in OIIC ncuro[l
will rcsull in a dccrcnw d :,ccurhcy M II(N in a c(mplclc

10ss d in(ornmlion

1x1us bficnyinrfoducc UIC ntilin LXMKYpU ubcd in MMIIC IyjKs
of unsupcrvixd nc[works. I:or IIKHC dcmiicd krIfOIIrIIIIIOII .WC
(Kmgh cl uI., 1991; linykin, i99$l. I:IgS. io, i 1 and 12
show Lchcnlirlictiily how lhc disla rcducti(m of rtild(mliy

Lfisifibulcct drcla i} acilicvcd u~ing 3 LIiffcrcnt Iyiwi O(
UILWJ[%rV~Wd lK’[W(MkS.

“[hC flr$l Ul19UiICrVlSCd &llpftKICh ({K lhc rrduclion [~ Iht

dimtrr~lon d IIIC input vcdor falls in lIIC CIUWof subhiuwc
Icchniqucs where UIc iuimrl vcclof ii pr[~jcclcd on a Iihcw
sub.space prcbcn[ing (he IIIOS[ xirllcIII fcillurcs. Shrlistic~ll

principui conqKMIcIIl alIiIiykis ctwo.ws tbc rwbspiim ip;IIIIWd
by Lhc cigcnvcctors of lhc corrcihtinn rnalrix of Ihc input
vccioc. .ihc s[andimt dcviilti(m of UK iniwt vectors [akc U)cir
lnlrxinltii WILI nlinilnhl viriucs along liIc clgcnvcc(ork

corfcspordlug In nmaimsrl and ullnlnlni cigcnvtiiucfi. A
xinlpic cxanqdc is shown in f:lg. iO where (IIC ctalti vtuititio[l

along the hofizonial nlct is rnnfc pronliiwnl thnrl the onc
aiong lhc vcJ@d srxcu.

A non-cornpc[illvc unsupcrvlscd nc[work fof I)rlnclpfir

cornpencnt anaiysis based on tic bb’s Icnrnlng rule wus

proposed hy (-)jrr [1989] and gcncraiim.t by Sssngcr,[1989];
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f(x Mails arramfcsWK’Csw LtdlWak m &tso[lhykirr d d.,

E
o ●

●

-’A”*
● *

The scmr)d ut)wpc(viscd ●pp(w’b for rhc rrAscIwr oj /h/
nuntbrr of iqwl VCCUMI h bad on clutlcting Icdmiqucs. 10
(dcr tn mhcc ltsh nunltmr, Ihc ncund rrcl crrlcgorilcs lhc
lrmlIIhIg vccl(rfa 11110 cla.u.ct or cluslcrs based orI lhc C05}CC1N

Of dlllihdty )lItzdJcC h WIiofl 6. fisf lhC CRNl@ UC Will

uw the t;uclidcan c!hrancr bc[wccn Iwo vectors rssa Inca\urc
of Sinllllmly.

III cltrs~ical clur.tcriug techniques. such MS Ihc lS(hltila

rdgOrilhnl, [Ihrdir ahd IIrul, 1973]. cluslcrs arc forrncJ by
cxMnpuling WC diwal~ t~lwccn an inpul vccl(M bnd alrcxty
cx.l~ling CIUTlcr~. 1( Llw di~[arrcc bc[wc-cn ltrc inpul vccl(~r and
~hc rcfcrcncc vector 0( an cxir. ti[lg cluslcr it xinallcr ltIalI n
previously dcfIIkd lhrcshdct, lhc ncw inptrl VCL-I(Mis grouped
with (1111 clu~lcr; olhcrwiscl a ncw clu~tcr is formed.
Fuocti(wdly, a s~hcrical nci~lhofhood i5 fonncd wound the
rc fcrcncc VCC1[Uof CA nc w cluircr. NOLCr.hw UK diwnc wr O(
lhc qhcw is pfcdclrruiind. xvhc[cus lhc wrulmr of clus[c(s is
Ito(. An cxarnp]c of rhis Iypc of clus[cri[lg is lMcsc IIIcd in
}’Ig, ] 1. A ki[llilaz ot,jcclivc is achicvcd by lhc Actaplivc
RCSOIUUICC‘Ihcxxy (AR’I_) nctw(wks [( ’arlIcIIIc[ IUMI(;nmtrfg,
19n7].

e. —.—.

I o●

● *& ()●** .’
● *

● ●’0 o●

●

II) VCL’t(M qU}Ullhll[i(Ml kthtlil#Jcs tNISCd (Ml k l.h(i S@(lfilhfll

[1.lIIdc tI all., 19B0] or lhc k+rwmJ cluttcrlng, Ilkc (hc
Kotr(IIrcII nc{work, [Kohowcn, 1N19] , r.hcutrmlnud numhcr
of clu~wrs h dclcrmlocd by WC number of ucurorm In Urc
fImp. 7hc wclght veclors arc lho rcfcrcncc vectors or
pftio(ypcs of WC class. On lhc olhcr hand, Lhc ditusncc
arm,md USCrcfacnce vcclof Or a chr~lcr b M prcdcIcrudncd
ard the region 1s, in gcncrul, not sphc.deal. Instcw.t, the
CIUSIC{S uc Iargc In tic rcglons where the dcnslty of

9

prdrrddthy oflbc irspu!vcctcua isUnatl, aud Vitv-VcHtl, a~
abown b F-it. 12

&ukr, lSM mlpd C9Llm. tefr(OSW k CIAU [wrCuy@ Th4 A&d

orL10 A* * Uw lap Vrdor whld! &w lolls Iwso CMx or she IIWM-J

clumM d&Iu~h lt~ CIUSdKdI(E UI(M WIII k lust

In the case O( simple vcclor quanliz~lion, Ihat it for M

KohorIcII nc[work witil winrlcr.trskc-all unih nnd Iro rrcightxu

slirnulathsrl, lhc nclwork. ulilihnizri Lhc a avc4~c disk~rliorl

CIIUI bC(WCICll tik iflplr( VCCt(M3 lSId h:il rC(C(Ch~ VTd(U, lhC

regions ilzcl( corrcr.pord to lhc V(srontJl Icsscllrrmm, arid
troundarics of Lhc regions arouhd a cluilcr arc hypcrldimcb,

hf[MC r.lctails will bc prcseII[cd in (hc chiq)tcr on K(~hor\cl\
nc[works. lnt~KlalIt rc$U]ls arid rcfcfcriccs call h-c f(Wrid in

[Rillcr rr al,, 1992],

14M4pc

Tlrc opcnrling vcc[or carI bc clmcn to conslsl 0( lhc swlivc

“ In this ctiw lhc scmuc qxriitinglillc plwcrs Q)o/), p~c, pk) .

xpacc LX dcflncd by a pmdiclcpi@ who%c bourdiwick arc

dclcnnincd by pflb ~Jlbx, froc ,rlLx ard pl,c ~r,nx, scc l’ig. 14,

i:or lirr~plici[y wc will throughout UIil work refer 10 (his

pmdlc lcpipd nl tire sccurily “cuttc”, (~wruting poinls Inside
lhc shdcd ash arc sccurc, Poium lddc bu[ al the bwdcr urc

crllicrd and opcrulillg poinl outside lhc Aadcd cube arc
urmrxurc bccausc lhcy vkrlatc al Icrml Crnccomuralnl on the
rnrsxunum admiwiblc Ihrc powers.

T15is cxampk is based on bcvaid simplifrcalions, 05dy rsctivc
pvcrs have tmcn cxxmidcxcd. In the gcncrat mc ltrc cube tm



to k rcpkd bya nas-lhmu mmifokt.k-kmcue ,IK4all
Vc.ctrxs 0( the lht~-diux.nsiooal _ syslcm Opcfalisrg
qlrsct StKrwrr trs Ht. 14 Ccfucscrs( fcAsitstc opcrmfl[lg Staka.

dnct VofwpVti rxmstmlrstsml KimhboNt tawa@y (a
each Mm and each line. Ncvcttkkas. M exampk Uiusw
convccrlcndy the diffcccmm bawccn mspcrviaed and
UnsupccviwdIcamirtg,

k 4

,$upcrviJtd froirrirrg apfm)ximalcs lhc boundaries 0( the
opcrnting sprrcc for the training act and intcrpolatct {n
twtwwn known dnra fwinls. II tmsically corwrrrcls scpfrruting
Ilypcrliiuws (nmdfokls in UK rsrw-linc~ case) CxUrcsfxrnding
10 tire $urfaccs O( Usc shaded sccurc cuk in I;ig. 14. An
Clrm)fdc fof l.hi$ lcchniq~ as wcil M scvcfd cuhrsnmnicn~
arc dibcuwcd in [t2-Sharkrrwi ctu/., IWl].

}Imvcvcr, bccirusc in lhc gcncrrd ca.w the dimension of UK

opcrrdirrg space ib very bigb (in the order of S@ for a
Micdiuni dJ.cd power systcin at the lfaswni~\ion Icvcl), it ix
nol fcrr$ihic 10 gcncrM[c ● sc[ of opcriling fwints which i$
Jclmcly clis(ribulcd in Ok o~xaa(iug spare and to analyze lhc
{Jpc[MtNIg pOillL\ wirh uiullipic conringcncy anafysis off-line.

In orrfcr 10 ovcrcrxuc [his ‘curse of dinlcnsioncrlily”,

unJupcrvIJcd kdfnmg tickle> Lhc dllIICllliorlU]lly prohlCrll

(“ud IALW4 rrn Iwo rfiffcrcn[ ispprtsnctscx

aJ SutmpsmIcchnlqum
h) Qwrllinrllorl Icchlllqucb

‘I hc dlnplctt JubJp(lcr Icchniqsrr is the c(,nvcnlional
conungcncy rwlking techniques. If flw cxampk [hc tsu~c of
Iinc ab ik sclcclcd u Lhc moht important cowingcncy, k
opcrrtling sprrcc csf lhc linear mndcl is pfojccttd 10 is two-
dinlc~l~iornd subqmcc ●s iliuktrm[cd in Ftg, I.$

?h 4

Ph ..8

r

h 4 1—9

(hrrvsxwkrmsf Id nOWars.afysis cxrunincri LtscProjection of
lhc kc cau on[r.r lhil sutmpacc. Supcrvi\cd tcchniquc5 urc
al&O appikd ((S CLMll~UCl lhC bL)UISd~rlCE ()( it~ lM(~CCICd
tcducrd. sccssritycub. scc [1~1-Sharkawi c1 al., 1991],

I:ig. 10 lttow~ an mort gcrrcral cxrrnip]c of Wc rtxfuctkm of
the opcrntlng space by a Iowcr-dirllcllsio[lal manifold,
tkpcnding on lhc projwthn tsscd for rcduclior), lhc rnrulifold
may tx a iinciu or cvco orhlr~gorud subspstcv,

In [Wccraworiya and E1.Sharkirwi, 1991] the princilw]
Comfroncnl al)aly$is mcltKsd (ah cnlicd K~rhuncn-ldvc
capansiun) is used 10 rcducc lhc rfinlcnsi(rnnlily of the
(mining wctnrs and rxrmrruct the cigrmspomrxrrlcqrrrncling10
lhc most significant comlKsrIcIIls of lhc ililmt vccwr, “Ilc
rcscarchcrs inlplcrncnlcd lhcir srpprwscb in a corivcnlion;tl
algoriLhnhc manncr knslcad of using Ojrs’s nml !hngcr’s ncurul
net apprwwh.The second claw of unsupcrvi\cd rqqmwchcs
cncoun(crcd in power SybiCrll sccurily Srsscssnwlil arc
qrorlizrrllon lfchn~qrrcs. Fig. 17 showb an cxarIIplc of [hc
quirnlizalion of Ltw opcraling spitcc il~lo cltiwcs of tyl,icnl

tlalcs. [Jcpcnding (m W rfislimcc nicusurc u~cd for

clawiflca[i(sn, clawcs nrrsy lx hypcrlwxcx, ~phcrcs or in ~hc

ca~c of lhc self-orgimizing fcu[irrc nrrlp, of a nmrc gcIIcrMl

f(mll twc”ausc d (hc arrrrngclncnl of neurons on a grid. I?IC

clmscs uurrrlly do INS( ctividc I.he cube crisijly in hccurc WI(I

insccurc rsrtit~, twl nuiy contiiin crilicsdly high kmdcd U! well
al Slighl)y (wcri(xulcd CM.WK,

L\Ml, ●

S&uo I
$
●S,,

Pd.
+

IC’”K.I

W IWO rflffcrcnl chrxttiing appoachcs climr~scd in tcction
7.3 huvc bc.cn applied 10 accurily a.ummcnl.
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hs the case of ● snd spare Math b ssnsndsdocsSySl$M.
Soba]kc c1 al. [1990] qrsardze the opathg spar i9to a
variable numbu of tsypccsptrcrw d hat cadius using an
unwrpcrdsed ARTZ4iko ANN algcuithrn.

In [Nicbur ●nd Ckmmnd. 1991]KtrtxxmJ’saclf-orgdzin~
feature mnp Is IJUd for tic qrsantizat)on of the opuating
spact. ~lw rnalirnaf nurnbcr of class.cs is glvcn by the
nurntrcr of ncurixu wtsoac weight vocun rcpcscnls Iypicat
opc(rrlirrg stales. Tbc slzc of each ciass @ends on Uscdciwily
O( the probihili(y distribution of hc rraining vccmrx. IM

c~rcrrsdng spire is rcprcscolcd cm b twdmscnskxusf fcaIurc
mnp try scarrc and Irmccurc rcgkms, T his CSJSCwill bc
dlmrsscd kn nnuc dcld in LtJCfulkrwirlg c’haprcr.

Although UMJrdty diSCUSbCd 0.. Cr@ ICJUIS, thC(C ii S11

impomm difrcrclm bawccn sufrerviscd and unsupmmcd
icrunhlg. Llnmpcrviscd Icaming trclps w urgrsnizc ctxnplcx
fcalufct irrlu classes whereas supcrviscct Icarning will lhcn
cnkubsrc folk)w-up fcalwcs for spccifk clnsscs.

thLwpCfVhC(t lJCIWOdLt CM fhCfCf(SW k vkwcd Lx a rh fNc.
prwxsshlg w-p which rcduccs ltrc Sk of the rhur SC{ bcfucc
knrning N daur’s characlcrls[ic~ witi supc[viscd lcarming,
Ihc FMrJc~Irvra/ fink Net (11-N) is of Icn used ill comhirdorr

wltii the AR1-2 nctw,uk [Sotmjic and }’sio, 1088]. C)lhcr
ANNs comtsining an un~upcrvixcd and a mpcrviwd s[cp cuc
rJK ~oun/cr-Pr~~puguf/f)n Nc[work ({TN) [}{cch[-Niclscri,
]~~~], *11~ [~,c ~a(/la/ ~dJiJ Func{fonJ NcJw,()~k (~~1[)

[h{[Kdy and IXJA.CII, 19X9]. T?IC CV’N coruhincs a Kohmcrl
rr~;ipldycr with a feed forward iirycr. In Lhc ciLu 0[ fhc RDI;,

clu~icrirlg ctin b rschicvcd try my unsupcrvi.wet lcamirrg or

UIC l.n]cnrm ulgorithrrt, and (hc r)curunm of k hiddcrl hlycr

wc rcprckcnlcd by Ihesc Inctins. ‘Ilc archilrc lure of Ihc
~u[rcrvLkcd Iuut Ik a Iinchr frxd-f(wward Iiiy Cr. lrr L.l)rlrrasl It)

(kc winrlcr. hkc all schcmc in the K(horwrl nc[w{~rk.
(hIs\lJuI bctivart{m furtcti[m s(inrutnrc scvfx~il r~Kurtm al (JIC
snrnc (Imc and Ihc ouIpuI of lhc nc[wurk ii JJwcigh(cd mm

of Ihcxc bctivallorm

l:c+ sccurily ~~scssrncnr. t,hc conltrinltlion 0( an unwpcrvised
step for opcrsiting tpacc rcductkrn and a supcrvisrxt slcp for

(~rcrdilrg stn[c classi(icalkm brM been appticd by scvcrid
rcscart’hers including [&hsjlc and }%n, I(}X); IiJ-Shnrkrrwl rl
{d , }991; tUsruJwccrrrand KAnrdy, 199.IJ

Artolhcr cxarrlplc in puwcr syitcuta, wbt[c ~upcrvlscd and
url~upcrvisd nc(work~ arc cnlpk)ycd fur &t(a clurdcrkng and
c~lhrmlkm is lhc area of itrd [orccasling [)lml and YBng
1(}) i], A Kt4MMrcn nc[work LcluurrIcJ tisc I(mccnsting &rLJJ1111()

rcprc>clllnlivc CIWSCS Iikc surnrucr, wlntcr, muturnn ard

wing and rmcr km wcckdayi d bOwys (SCC dko

[Mrscabrcy C( al. 1991]. fkrr each CIMS of data ● supcrvissxf
nclwork is thcrr used fur Iond prmfk(ion fur tire clruacb data
points, J’ur a drnilrrr fnrrposc Rhnawocrm C( al. (I!Y)S] apply
the R[ll: network in the area of load furccasling. Further

&tallaJ CXaKnpkS wili bC disctmcd in UIC OWCr tulorird
Chap&m.

8. SUhiMARY

we have (rrachktf anovcrvkwovu difJcrcm ty[ts 0[ neural
uni~ cbnrwcldzcd by Lkir ihpul. ourpul, weight vcct~x, gain
fursckrn. arc+hc-turc, pwmuirrg arut knrrdng aJgiMi[hrn.
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\lngupervlbcd learning t’rinclpal ~rr[llfmlner,l Artalysls
(Ml y glvcn) $elf.or~a(llzall(,tl

‘[k W(srk dcscritrcxt in (his paper WJSksuulcd UI lhc swirm

l+dcfrd Instihrtc of l’cchnoiugy, l~utnrmc (1;} ’1.1,), ~~x~lm(xut
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