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Abstract- This introduction to artificial neural net-
works summarizes some basic concepts of computa-
tional neuroscience and the resulting models of
artificial neurons. The terminology of biological
and artificial neurons, biological and machine
learning and neural processing is introduced. The
concepts of supervised and unsupervised learning
are explained with examples from the power system
area. Finally, a taxonomy of different types of
neurons and different classes of artificial neural
networks is presented.

1 INTRODUCTION

The discipline of computational neuroscience has three goals,
first the computer-aided simulation of some functionalities Of
the brain, seccond the understanding of the function of the
brain in computational terms and third the application of
neural concepts for innovative technical problem solving. A
detailed discussion of functionalities and models in
computational neuroscience as Well as references concerning
experimental data and theoretical models can be found in
{Churchland and Sejnowski, 1992].

The theory of artificial neural networks (ANN) is mainly
motivated by the sccond goadl, i. e. the establishment of
simple formal models of biological neurons and their
interconnections called artificial neural networks; for an
excellent introduction, see [1 lertz, Krogh and Palmer, 1991].
In the power engincering domain, predominantly the third
goal is, i.e. the application of already simplified tools of
ANNSs to technical problems remains the main objective,
[Nicbur et al., “1993].

Although Churchland and Sejnowski [1992] give strong
arguments for the validity of the simulation of complex
behavior with very simple models, this tutorial is not so
much concerned with the biological plausibility of the
discussed artificial neural network models as with the
applicability of the discovered principles to atechnical task,
Nature and technology have different goals, means, materials
and constraints. For instance, as Churchland and Sejnowski
note, nature does not start “from scratch.” When "developing”
birds, nature had to start from dinosaurs. The material as
biological matter was given, the means were basically
random mutation and the constraints had to take into account
multiple criteria. Concerning the task of flying, an optimally
designed bird not only had to fly fast but also to be able to
reproduce. Although inspired by nature, the engineer can
specify the constraints, design an object, sSimulate the model

on a computer, choose an appropriate material and finally
build, €, g., a machine. His solution can be globally optimal
in the given frame work whereas nature can only achieve a
local optimum, if only the constraints of a specific task (like
flying fast) without reference to the larger context are taken
into account, However, when proceeding as described, it is
highly unlikely that the engineer will develop atool which
flies only satisfactorily but is a magnificent swimmer and
giv(;ar, as nature has been able to produce in the form of some
irds.

Staying with this analogy, wc understand an artificial neural
network as a brain-inspired computer which may solve a
similar task as the biological brain, but will not be an
imitation neither in material nor means nor constraints. In
the following text the term “neuron” will usualy refer 1o the
basic unit of an artificial neural model, and “learning” and
“training” designate machine learning techniques.

2. BIOLOGICAL NEURONS

One of the earliest descriptions of biological neurons is due
to Cajal [1894], who identified a neuron as an independent
electric device transmitting and receiving electrical signals.
Although at least 500 different types of biological neurons
have been distinguished, many neurons have a general
structure similar to that shown schematically in Fig. 1, The
following description of the function of biological neuronsis
necessarily simplified, see [Churchland and Sejnowski, 1992]
for amore” detailed and very readable introduction.
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Fig. t schematic drawing of a biological neuron madel. We show the
principal parts of the neuron, as introduced in the text, as well as
schematized shapes of the neural signals, Note that this shape changes
along the dendrites but remains the saine when traveling along the axon
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The principal components of atypical biological neuron are
the cell body (or soma), the dendrites and the axon. The
function of the dendrites is the collection and conduction of
electric potentials which are generated at the synapses when a
presynaptic neuron experiences an action potential (“spike”).
If the intracellular potential in the soma exceeds a certain




value, called the threshold, an action potential is generated
which travels along the axon and the intracellular voltageis
reset to a value close to the so-called resting potential (the
voltage obtained in the absence of synaptic inputs). The axon
is connected via synapses to the dendrites of other neurons
(which are called postsynaptic) and therefore the action
potential will influence the voltage in these neurons.
Functionally, the dendrites arc closely associated with the
input of the cell and the axon with the output.

There are basically two types of synapses, one called
excitatory and the other inhibitory. Activation of excitatory
synapses increases the voltage in the postsynaptic neuron
while activation of inhibitory synapses decreases the voltage.
If many excitatory synapses are activated frequently, and if
only few inhibitory synapses are activated, the intracellular
voltage of the neuron increases rapidly and reaches threshold
fast. Therefore, the neuron will generate action potentials a a
high rate, i. e., the neuron will be very active. The soma,
where the instantaneous voltage is compared with the
threshold and, depending on the result of this comparison, an
action potential is either gencrated or not, corresponds most
closely to the decision-making instance of the neuron.

‘his description of neural function is grossly simplified and
there are many exceptions to this prototypical behavior. For
instance, there are many classes of neurons which do not have
aclear digtinction between axons and dendrites. Other neurons
are not even capable of generating action potentials and they
communicate by other means, Also, our classification of
synapses in only two types (excitatory and inhibitory) is
simplified, and we have completely neglected the interior
dynamics of cells, which are far more complex than just the
simple summation of synaptic inputs described above. The
final point wc would like to make here is that recently also
the notion of the spiking frequency being the only signal
transmitted between neurons has been questioned, and that
thereisincreasing evidence that the time structure of the
sequences of spikes plays an important role. We have
presented this simplified description of neurenal function
sinceitis at this level that the elements of artificial neural
networks arc usually modeled.

3. THE ARTIFICIAL NEURON - A
Computational. MODEL OF THE BIOLOGICAL
NEURON

McCulloch and Pitts [1943] established the first
computational model of a biological neuron, by translating
the biological concepts as shown in Fig. 2: incoming and
outgoing action potentials and synapses are presented by in
general real-valued vectors. The smulation of the somais
modeled as the weighted sum (i. e. scalar product) of
incoming vector and weight vector and the amplification of
the axon is modeled by a (in general non-linear) gain
function. In diagrams showing artificial neurons scalar
product and gain function are usually grouped to form the
artificial neural unit.

The simplest formal model, the logic threshold unit is shown
in Fig. 3. It consists of a two-dimensional binary input
vector X, the gain function of the neural unit being the
threshold function g(x) with a given threshold 8 as given in
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Fig. 2: Schematic drawing of the artificial NEUron model. Terms in italic
denote tbe biological parts Their formal component s are denoted in
normal type.

and a one-dimensional output vector. The synaptic weights
are modeled by two real numbers wy, k = 1, 2. The neuron
processes the binary input components xg, k=1, 2 as
follows:

2 nr
y = g[Zwk xk] with g(h{)_=11 for;;><3 (1)
k=1

Although extremely simple, this artificial neuron can
calculate Boolean functions. For example for the Boolean
values1=TRUE and -1 = FALSE, for the given synaptic
weights w1 = w2 = 1 and a threshold value & = -0.5, the
neural net computes the output y as the Logical OR between
x 1 and x2. For the same weights and a threshold value
0 = +0.5, the neural net calculates the Logical AND.

X1~
>®'> y
X7 wy

Fig. 3 The logic threshold unit with tireshold 8 being part of the gain
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Fig. 4 The logic threshold unit with fixed third input and with threshold 6
being part of the weight vector

A dtraightforward calculation shows that the gain function g
can be chosen as the sign function if the dimension of the



input vector and weight vector is augmented and their values
are clamped to -1 and 8 respectively.

3 ot r's
y = g[zwk xk] with g(h)=11 for ks 0 )
k=1 {

In the following we will therefore model any threshold 6 by
an extra synaptic weight. Fig. 4 shows the architecture of the
equivalent unit,

4. CHARACTERIZATION OF ARTIFICIAL NEURAL
NETWORKS

So far wc have defined the architecture of a simple neuron,
We have also seen how the neuron processes input vectors,
provided the weights are known. In section 7. we will discuss
strategies, commonly referred to as learning, how to
determine the weight vectors for a given set of input vectors,

The described simple model can be generalized in many ways.
Every artificial neural network model can be characterized by
the following features: its architecture, its processing
agorithm and its training agorithm,

Combining several neurons so that the output y; of neuron j
serves as input to one or several neurons leads to networks of
artificial neurons. The architecture Specifies the arrangement
of neural connections as well as the type of units
characterized by its gain function.

For a given architecture the neural network is used in two
different modes, the processing mode and the training mode.

In the processing mode, the processing algorithm specifies
how the neural unit for a given set of weights calculates the
output vector y for any input vector x. The type of
processing further depends on the type of the gain function.

The training algorithin specifies how the neural network
adapts its weights for all M given input vectors x, called
training vectors, from a set of given vectors, the training set.

1.ct us now examine these three characteristics, architecture,
processing and training in mom detail.

5. ARCHITECTURE OF ARTIFICIAL NEURAL
NETWORKS

In general the architecture, see Fig, 5, consists of three parts,
the n-dimensional input layer where the input dataisfed in,
the neural network layer consisting of N neurons
interconnected in various ways and the m-dimensional output
layer. The n input vector and m output vector components are
either binary or real numbers. Each input and output vector
component can be connected with each neuron through a
synaptic weight, which is areal number. We therefore have
wo weight matrices, one mxN-dimensional matrix for the
input layer - neural net layer connection and one Nxan -

dimensional matrix for the neural net layer - output layer
connections. The way the neurons are connected in the neusal
net layer is specific for the different existing models as for
example the multi-layer perception, Kohonen's self-
organizing feature map and the Hopfield model. Examples of
architectures will be explained in the following section. There
exist a variety of other types of neural architectures, see
[Krogh, et al., 1991].
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Fig. 5 General neural network architecture.

With respect to the architecture four main types of neural
networks can be distinguished:

1) Layered feed- forward neural networks, where alayer of
neurons receives input only from previous layers as for
instance the multi-layer perception (MLP) shown in Fig.
6. The functional relation y = f(x) between input and
output is usually not given in an analytical form.

The flow of information for the processing of input
vectors with fixed weight vectors isin one direction only.
Input units feed the input values directly to the hidden
neurons whereas hidden and output units process their
input through a non-linear gain function.

signwidal gain g(h) = tanh gh
X y=f(x)
Input kiyer Hiddlen layer Output layer
5input units 3hidden units 4 output units

Fig. 6: Architecture of a multi-layer perception containing 5 input, 3 hidden
and 4 output units.

For the MLP we will show later that the flow of
information during training is in two directions, forwards -
to calculate the actual output and backwards in order to
back-propagate the emor for the correction of the weights.



2) Recurrent neural networks, where the inputs to a neuron
arc the net’s previous outputs as well *as inputs from
external sources which are input x; and bias (equivalent to
a shift of the threshold) /- The fully connected Hopfield
net[Hopfield, 1982] shown in Fig. 7 is an example for
this type of architecture. Here, the neurons process their
input through a threshold function.

During processing the 1 lopfield net will feedback its
output, during training however only one feed-forward
step is used.
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Fig. 7. Architecture of the Hopfield network containing 5 input, S recurrent
and 5 output units. Nnte that, in contrast to the MLP, the input and output
units correspond to stales, not to physical neurons

3) Laterally connected neural networks consisting of feed-
forward input units and a lateral layer consisting of m
neurons, which are laterally connected to their neighbors.
The Kohonen network shown in Fig.8 isan example for
this type of network. Itwill be discussed in detail in the
tutorial chapter [Nicbur, 1996,
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Fig. 8: Architecture of the Kohonen network containing 5 input units and 9
laterally connected units. The number of output classes depends on the
characteristics of the training set. and is at most equal to the number of

neurons.

The number of the output classes depends on the charac-
teristics Of the training set and can thus not be considered
as part of the architecture which is specified in advance. In
the original model training as well as processing results
in arccurrent dynamical process involving al laterally
connected neurons. The most commonly used simplifica
tion, however, applies a winner-take-all feed-forward strat-

egy where only one neuron and its close neighbors are
stimulated by the input,

4) Hybrid networks combine two or three of the above
features. For example, the Boltzmann machine has a
hidden layer with recurrent connections, The two neural
layers of the Counter-propagation network consist of a
Kohonen layer and a fed-forward layer,

6. PROCESSING OF INFORMATION WITH
ARTIFICIAL NEURONS

In biological neural networks, the incoming action potential
will excite different neurons to a different degree. Depending
on the size of the stimulus the neuron will then amplify or
inhibit the incoming signal. In artificial neura networks the
degree of the excitation is usually measured as the similarity
between input vector and weight vector. Higher similarity
usually resultsin alarger output, A saturated gain function
ensures that this process stays bounded.

Similarity of two vectors can be defined as generalized
colinearity. In this case the angle formed by two vectors
serves as a measure of similarity. Out of all weight vectors
Wii=1.... m, the weight vector wi* is the most similar
to an input vector x, if their scalar product (i. e. weighted
sum of components) takes its maximum

= <X, wix>
=max{<x,wp>li=1,....m) ©)

sim(x, w)
A second concept of similarity uses the Euclidean distance of
two vectors as a measure. Here wix ismost similar to x if

=01 x -wyx )
=min{llx-w;ll1i=1 . ..

im(x,
simee W) 111) (4

Applying the parallelogram equation it can be easily shown
that these two concepts are equivaent for normalized vectors.

The gain function g further determines the way how the
neuron amplifies its output y for a given weight vector w and
agiven input vector x. The sign function will either produce
aTRUE or FALSE answer for al output neurons. The
winner-take-all function will produce a TRUE output only for
the most stimulated neuron and FALSE for all others. A
linear threshold function will produce saturated responses for
very large and very small stimulation only.

The processing algorithm for one neuron in general is:
y = g(sim(x, W)) 5

The most commonly used similarity measure is the scalar
product of x and w for x, w e R™.
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The logic threshold model can be easily extended for n-
dimensional real-vahred input vectors. Depending on the task
to be solved, subsequent models replaced the threshold
function by a

1) linear or linear-saturated gain function (linear perception,
adaptive linear element or "adaline”),

2) non-lincar gain function, usually a sigmoid function
(non-linear perceptron)

3) the winner-take-al] function (self-organizing feature map
neuron)

4) Gaussian function (radial basis function neuron).

Table | shows examples of commonly used neural units
characterized by their gain functions.

7. LEARNING IN NEURAL NETWORKS

Neural networks are commonly used for tasks like pattern
recognition, content addressable memories, approximation,
classification, parameter estimation and control. We will now
discuss strategics for the determination of weights in order to
achieve the desired objective. These strategies arc usually
called learning or training.

7.1 Hebb's rule - a biological learning hypothesis
In the example of the logic threshold unit, the synaptic

weights were assumed fixed and known in advance. In
biological terms this would correspond to the synaptic

strength being genetically pre-determined. Already from the
estimated number of neurons and synapses in the human
central nervous system (on the order of 1012 neurons and
1015 synapses) it is, however, clear, that not all synaptic
connections can be pre-coded. It is a biological fact that
structural and functional changes in the nervous system,
usually called plasticity, can result from experience or
damage. In psychological terms, plasticity is at the base of
changes in behavior due to experience (learning). Engineers
usually prefer the term “training” which does not imply any
“intelligence” of the learning individual respectively
computer. Therefore this term is less prone to philosophical
discussions about whether a machine can be intelligent.

In 1949, the psychologist D. Hebb [Hebb, 1949] formulated
the hypothesis that synapses change in efficacy according to
the following principle: The strength increases when both
pre- and postsynaptic elements are active simultaneously
(learning). The synapse may decrease in strength if thereis a
presynaptic activity without concurrent postsynaptic
activation (forgetting).

Formulated in terms of artificial neurons Hebb's learning rule
can be stated as follows:

For the weight vector w of an artificial neuron, given input
vector x and output y, synaptic learning can be expressed as
follows:
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There sre models which also take forgetting into account by
adding a negative lean peoportional to the output and the
strength of the synapscs, i. ¢. the weight.

Awsmnyx-ayweay ((M/a)x - w) )
withn, a> 0

The Jearning or adaptation raw ) and the forgetting factor o
arc oficn chosen 10 be time-dependent, ¢. g n() a() = Y.

Syuapses of Hebbian type as well as of non-lHebbian type
have been identified physiologically, but the details of the
Implementation of biological plasticity are still open.
Nevertheless, most artificial neural networks base thelr leam.
ing algorithm on Hebb's generalized kearning principle (7).
7.2 Machine learning

For artincial neural nctworks, the neural net objectives, for

cxample pattern classification, have to be defined for a st of
examples called the fraining set.

The training algorithm specifics bow the neural network
adapts its weights for all given input vectors x, called
tralning vectors, from a set of given vectors, the tralning set.
If for every input vector x, the desired output vectof yiarget
is given, and the weights are adapted in order to produce the
desired output, the training process is called supervised
leaining. 1f only the input vector is given and the structure of
the data is discovered autonomously, the training is called
unsupervised learning.

7.2.1. Learning as an cotimitation task

1.et us go back 1o our most simple example of a neural ne,
the Logic Threshold Unit shown in Fig. 3, which calculates
the Logic AND functlon. We will now determine the weights
of the unit in order to solve this task.

Defining TRUE as 1 and FALSE as -1 the waining set is
glven by 4 input vecton:

s (], -1, x¥m (-1, 1), x3 = (1, -1), and x* = (1, 1)

and thelr corresponding target output

1 2 k] 4
Yarget ® 1, Yarget ® 1, Yargnt ™ -1, and Yiyrgar = 1

Foc the moment, let us assume a lincar galn function, We
vow want (o determino the weights such that the calculated
output Is equal to the target output

y(w) = <xt, wom yH

target focallpu=l,.4 (B)

PP I,

.

Since: this problem is overdetermined wo will focmulate it as
a kast square ervor minimization problem. Note, wo are
furtber defining the threshold ©, as part of the weight vector
as outlined in (2) and shown in Fig. 4. We therefore added a
fixed third component o all input vociors.

F(w) = %i(y“(w)—ﬁ‘..,,‘)2

M=l
1 &[22 " 2
~3 p z’iw,x‘ ~Ygge | = min!
pul\\i=
or in its equivakent matrix foan ™

E(w) = 172(X w- y“,l.‘)T (X V¢ - Yiarger) » min!

wheie

-1 -1 -1 -1

and yurget = (-1, -1, -1, DT and w = [wy, wa, 0)T,

Because E is continuously differcutiable with respect to the
weights, one solution of the least square minimization
problem can be obtained by solving
grad Ew)w XT (X w-y)= 0 (10)
For non-singular XTX, calied pseudo-tnverse, the solution of
(10) can be expuessed as the
wu (XTX)IXT yupger an
(For singular pseudo-inverae the solution exists but has 1w be
calculited as a limiting sequence.) In our particulns example

the Logic Threshold Unit will pesform the Logic AND with
w= (05,05 057

Geometrically our solution represents 8 hyperplane H which
divides the training set into two classes. Fig. 9 shows
another possible solution of this task.

Hu (x€ R21<xM, w> - 0 = 0}

such that 12

H .
)’:‘n"- sign( <x¥, w>- 0),

forpum=l, ., 4

We therefore huve formulated a supervised leaming task as an
optimizaton task. An excellent discussion of neural networks
within the framework of optimization and signal processing
can be found In [Cichocki and Unbehaoen, 1993).
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Fig. 9 The Logic AND problem as a linear separability task.
The black, the while and the two shadeddots denote the four training
vectors. Values above the hyperplane like the black dot are classified as
TRUE, values below asFALSE.

7.2.2. Reflections on learning paradigms

The following rc-evaluation of the learning technique
proposed in 7.2.1 apply to supervised as well as unsupervised
learning techniques. In this simple example we have
implicitly made four severely restrictive assumptions.

1) We have assumed that our learning task is defined by a
continuously differentiable error functionto which
efficient optimizat ion techniques can be applied.

In the case of self-organizing feature maps, a winner-take-all
net trained in an unsupervised manner, only a non-
differentiable error function exists for training vectors
distributed with a discrete probability. This case will be
discussed in the next tutorial chapter.

2) Wc have assumed that the solution of our learning task
exists. Thisis only the case if the training set can be
linearly separated (i. e. by hyperplanes) into the target
outpul classes.

If the training set is not linearly separable, the Least Square
Minimization problem dots not have non-zero solutions. For
example the Logic XOR cannot be calculated with the Logic
Threshold Unit. In Fig. 9 this task would require to place a
hyperplane, i e, straight line, such that the shaded dots lie on
one side and the black dots on the other side of the line. The
interested reader may verufy that for yuarget = (-1, 1,1,-DT,

w=(0, 0, 0 istheonly solution.

In the next tutorial chapter we will see that replacing the gain
function by asigmoid function provides a powerful remedy to
this problem. For the multi - layer perceptron and a sigmoid
form of the gain function, the partial derivatives of the error
with respect to the weights can easily be computed
numerically. The error function is usually minimized with a
stochastic gradient search technique which is known as the
back-propagation algorithm and which was independentl y
developed by [Werbos, 1974] and [Rumelhart ef al., 1986].

3) In order to establish matrix X, we have assumed that all
training patterns are known beforehand.

In may adaptive tasks, however, optimization has to be
adjusted to new incoming patterns. This task can usually not
be solved by otherwise powerful optimization tools like the
calculation of the pseudo-inverse or Quasi-Newton
techniques. Furthermore for large training sets the inversion
of the pseudo-inverse X'X represents a heavy computational
burden, especially in the case of singular pseudo-inverses. We
will present an iterative and adaptive algorithm in the next
section.

4) Ladt, but not least we did not use a biologically plausible
learning concept.

In general we are not overly concerned if our machine
learning task achieves the same abjective as biological
learning, by using different means. However, by neglecting
biological learning paradigms like simple computation, local
adaptation, and robustness concerning failing neurons,
researchers would have missed the opportunity to develop
robust, sSimple, efficient and highly paralel hardware circuits,
which are quite different from the techniques employed by
conventional super-computers [Mead et al.,, 1989]. Neural-
bawd hardware has recently been introduced for power system
security assessment, [Comu et al., 1994).

7.2.3. Supervised learning - learning for parameter
estimation

Supervised learning techniques, also commonly referred to as
learning by example or learning with a reacher fal in the
same class of tasks as regression analysis and parameter
estimation.

Note that in this framework, classification tasks can be
formulated as the task of finding a regression model for the
function which maps an input vector x onto its class label,
for example TRUE or FALSE coded with binary numbers.
The non-linear gain function like the sign function will map
real-valued weighted sums onto binary outputs,

In the following, we will define a local learning rule which
solves the logical AND problem while respecting the
biological learning paradigms cited above. It is based on a
simple iterative optimization algorithm, the steepest gradient
descent technique. It converts the task of finding the zero of
the function grad E(w) into the task of finding the fixpoint of
arelated function G. Under certain conditions, the latter can
be solved by a simple iterative method. Thus

grad E(w*) = O <==> G(w*) = w* (13)
with
G(w):= w - () grad E(w) and  n() bounded

The iterative procedure of steepest descent is shown in (14).
The expression for the gradient of the error function E was

obtained based on y* givenin (7) and E given in (8)



w(t+1)= w(t)~ n(1) grad E(w(1))

4
- wi+ 0 Y (P o=y, )t

ue=l

So far we bave replaced the inversion of the pseudo-inverse
by an iterative procedure. This procedure still needs the
knowledge over the whole tadning set.

Howcver instead of minimizing the error globally we can
now try 1o minimize the error locally by randiomly taking one

taining exmnple (x¥, yl'uw) al » ime

wil41)m wil)+ n(l)(y"(w(l))—y:‘.ﬂ)x" s

- w()+ i) & M

Tois stochastic updating or beatning rule is commonly
tefered 0 as the LMS rule, the Widrow-Hoff rule, or the
delta rule. Tt is one of the carliest adaptive "neural units,
called adaptive linear unit of ADALINE and was used for
sdaptive contral, [Widrow und Hofl, 1960).

The iterutive process converges stochastically to the
minimum of the error function, if the so-called “Robbins-
Monro”™ conditions hold for the leaming rate 1, [Doda and
Hart, 1972)

PRI al Y} <o
1=0 =0

(16)

Although only applicable to lincarly separable learning tasks,
ace remarks 7.2.3, the delta rule fulfills several of the
biological paradigms. It ix computationally simple, robust
with respect to noisy input data ax well ax tumerical
rounding ennors and it is a local adaptation scheme learming
one exataple at a time,

1t further obcys a generalization of Hebb's learning principk
(). For a fixed input and target output, the weight changes
depend on two terms only, the correlation of input x and
calculated output y , and a constant stimulus, the product of
input and rget output,

‘Ihcre are other supervised leaming rules based on Hebb's
painciple like the pereeptron rule and the gencrulized delw
rule, Introduced in the next tutordal chapter. Other types of
ncural networks tralned with a different type of supervised
kearnlng like the Funcional-Link Net are discussed in [Pao,
1989).
7.2.4. Unsupervised learning - learning for data
reduction

ln unsupervised learming the input vectors of the training set
are given, but the corresponding turget outpuls are not

specified. Unsupecvised beural nets (all into the samne class of
ols as statistical non-parametric data aralysis, clustering
algodithms and encoding or decoding techniques.

Thels main goal! consists in data reduction. The reduction of
the data sct of tuput vectrs can be achicved in two difterent
ways: cither by reducing the dimensionality of the input
voclr, o by reducing the nundber of input vectons.

The simplest neural network for unsupervised learning
consists of a layes of feed-forward winncr-take-all units, Foe
cach fnput vector only one such unit will respond, namcly
the unit characterized by the maxiimum output, reapectively
miniimum distance, for this input vector x. The unit of the
network are thus competing for selection. Ouly the weighta
uf the winner will be adapred. All input vectons responding to
the same unit are said to form a cliss and the weight vector of
this unit is called the class "prototype.” Here, the gain
function is defined 1o yield one (o the maximum reapectively
wminimun output, and zcro olhciwise,

"Winner-take-all™ units are related to “grandmother cells”
because they are responsible for selecting one specilic feature,
¢. g the feature prescnting the stereotypical grandmother,
Sote that this repreacntation is not robust beciuse when one
unit iy removed (or one cell dies in a biological brain), all
information concerning the cotresponding cluss would be
lost.

A solution o this dilemma is proposed by Kohouen's self
organizing feature map where (ideally) neighboring ucurons
classify neighboring features and thus the loss in oue neuron
will result in a decrease of recuracy but not in a complete
loss of information,

Let us Weicfly introduce the main concepts uscd in some types
of unsupervised networks. For more detailed infonnation see
(Krogh e al., 1991; Haykin, 1998]. Figs. 10, 11 and 12
show schamatically bow the data reduction of randomly
distributed data is achieved using 3 different types of
unsupc rvised networks.

The first unsupervised approach for the reduction of the
dimension of the input vector falls in the class of subapace
techniques where the inpat vector is projected on a lincar
subspace presenting the most salient features. Statistical
principal component annlyss chooses the subspace spanned
by the cigenvecton of the correlation matrix of the input
vector. The standard deviation of the input vectors take their
maximal and minimal values along the cigenvectorns
corresponding 1o maximal and minimal eigenvalues. A
siple example is shown in Flg. 10 where the dita vaniation
along the borizontal axes is more promincnt than the one
along the vertical axes.

A non-competitive unsupervised network for principal
component analysis based on Hebb's learning rule was
proposed by Oja [1989) and gencralized by Sanges, [1989);



for details and refercnces 1o this work 806 also [Haykin e al.,
1995).

Fig 10 Dats projection cutc 8 oae-dnsasional hypeopdane. Fach data past
will by rejucacaied by 1o lower -dumeasons] proogecuon oalo Lhe straight
bos. The shaded carcle demnios & dow inpart vectar for which U progxctuos
onusts, although the classificatron stror will be largs.

The second utisupcrvised appeoach for the reduction of the
number of input vecton s based on clustering techniques. [n
order 1o reduce this number, the neural net categorizes the
tnining vectons into classes o clusters bused on the conceyt
of similarity introduce in secuon 6. For the examples we will
usc the Euclidean distance between two vecton as a measure
of similarity.

In classical clustering techniques, such as the 1SOdata
algorithm, [Duda and Hart, 1973), clusters are fonned by
cotnputing the distance between an input vector and aleeady
existing clusiers. If the distance between the input vector and
the reference vector of an existing cluster is smaller than a
previously defined threshold, the new input vector is grouped
with this cluster; otherwise, a new cluster is formed.
Functionally, & spherical neighborhood Is formed around the
relercnce vector of cach new clusier. Note that the diameter of
the sphere is predeteninined, whereas the number of clustees is
not. An example of this type of clustering is presented in
Fig. 11, A similar objective is achieved by the Adaptive
Resonance Theory (ART) networks [Carpenter anxd Grossterg,
1987).

O OO

Pig 11 Qlustening of data into a vanatde aundses of classes of fired
dianwier. Tha contor of the excles, not prosenied in Uns figure present the
class prototyyes. The shaded circle denotes 8 pew snput vectar wlisch does

wt fal) 1m0 any of the tramed classca

In vector quantization echniques based on the 1.BG algocithin
{Lindc e1 al,, 1980) or the k-means clusiering, like the
Kohonen network, [Kohonen, 1989] | the maximul number
of clusters I8 detennined by the number of neurons in the
map. The weight vectors are the relerence vectors of
prototypes of the class. On the other hand, the distance
around the refercnce vector of & cluster is bot predelenmined
and the region s, in gencral, not spherical. Instead, the
clusters are large in the regions where the density of

peobabllity of the input vectors is small, and vice-wrsa, as
shown in Fig. 12,

Frg. 12 Tossellation of deis 1m0 8 fixed nuadwr of classes of vanatle
diativrier. The stped cucles, tegresest the clau prutotypes. The shaded
Cocle Jeaotos & Bew inpuat vector which does falls into oue of tve trnracd

claasns albrough the classification eror will be large

In the case of simple vector quantization, that is for a
Kohoneu network with winner-tuke-all units and no neighboc
stimulation, the network minimizes the a averuge distortion
cirr betwoen the input vectors and their reference vector. The
regions il correspond 10 the Voronol tessellation, and
boundarics of the regions around a cluster are hyperplancs..
More details will be presented in the chapter ob Kohonen
networks. Important results and references can be found in
[Riter et al, 1992).

7.3 Purpose of training in power systenis

Let us illustrate the concepts of supervised and unsupervised
learning for a very simple power system shown in Fig. 13,
comisting of two generation busses a, b, onc load bus, ¢,
il three lines ab, ac, be, whose active power (lows pap, pac.
and ppe are limited by the maximal active line powers, i ¢.
Pab max. Pac max a0d Phe max-

Geiscration p g Gievserntimn py

Losdp,

Fag. 13 A 3-bus-X-line binear power systenm model

The operating vector can be chosen 0 cousist of the active
line powees Qab. Pac pb(-)'l. In this case the secure operating
space Is defined by a parallclepiped whose boundaries are
determined by pab max. Pac max 814 phe max. scc Fig. 14,
For simplicity we will throughout this work refer to this
parallelepiped as the sccurity "cube”, Openting points inside
the shuded cube are secure, points inskde but at the border arc
critical and operating point outside the shaded cube are
unsccure because they violate at beast one constralnt on the
maxunum admissible line powers.

This example is based on several simplifications, Only active
powess have been considesed. In the gencral case the cube hiay



to be replaced by a non-lincar manifold. Furthennose, not all
vectoars of the throe-dinxcasional power sysicin opcrating
spoace shown in Fig. 14 represcnt feasible operating states,
since Voltrgo- VAT constraints and KirchbolY's laws apply for
cach bus and cach line. Nevertheless, the example illustrates
conveniently the diffecences between supervised and
unsupervised keaming,

P ‘
P voan ® Ussecwn
Securs 1 - Crstwal
{ -
Pes
Po P2 -
~ Poc man Pob g

Fig. 14 Tha opecsting spoece of the 3-bus 3-bins hinear powes system model

Supervised training approximates the boundaries of the
operating space for the training et and interpolates in
tetween known data points. It basically constructs separating
hyperplanes (manifolds in the non-lincar case) corresponding
o the surfaces of the shaded sccure cube in Fig. 14. An
exnmple for this technique as well as severnl eahancements
are discussed in [L)-Sharkawl e al, 1991].

However, because In the general case the dimension of the
opcrating space iy very high (in the order of 500 for a
mcdium sized powes sysicin at the transmission level), it is
not feasible 10 gencrate a set of operating points which is
densely distnibuled in the operating space and 0 analyze Uk
opceating points with multiple contingency analysis off-line.
In order to overcome this “curse of dimensionality”,
unsupervised learning tackles the dimensionality problem
first based on two dilferent approaches

a) Sutnjuce technigues
b) Quantization techniques.

The stmplest subspace techaigue is the conventional
contingency mnking technigues. I for example the outage of
linc ab i sclected as the most lmporant contingency, te
opcrating space of the lincar model Is projected 0 & two-
dimcusionnl subspace as illustrated in Fig. 18,

Po 4
FPo mas
¥ D Seame
ro | - 5] Ouxa
/ Poc man m lasecure

Fig. 13 Lanutavon of the sumbret of contingenciea
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Pa Onscw)
By 16 Reducuon of the dinvensron of U opseinting veotin

Conveational load Now analysis examines the projection of
the base case onto this subspace. Supervived techniques are
also applicd (0 coustruct the boundarics of the projecied
teduced, security cube, see (El-Sharkawl er al., 1991).

Fig. 16 akows an more gencrat example of the reduction of
the opcrating space by a lower-dimensional manifold.
Depending on the projection used for reduction, the manifold
may be a lincar of even ixhiogonal subspuce.

In [Weerasooriya and El-Sharkuwi, 1991} the principal
component analysis method (also called Karhunen-Lotve
expansion) is used to reduce the dimensionality of the
truining vectoes and construct the elgenspace conesponding to
the most significant componcuts of the input vecor, The
researchers implemented their appeoach in a conventionl
algonthmic manner instead of using Oja’s and Sanger's ncural
net approach.The second class of unsupervised approaches
cucountered in power system security assessmcnl are
quantization technigues. Fig. 17 shows an example of the
quantization of the opetating space into classes of typical
states. Depending on the distance measure used for
classification, classes may be hyperboxes, spheres o in the
case of tie sell-organizing leature map, of a moce geucral
form because of the arrangement of neurons on a grid. The
classes usually do not divide the cube crisply in secure and
insecure areas, but may contain critically high londed as well
as slightly overloided cases.

Pu‘
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(™ 1(1“;«!
Figure 17: Quantzaiion of e opersting space.

The two different clustering approaches discussed in section
7.3 bave been applied W securily asseasment.



In the case of & small space station transmission system,
Sobajic e al. [1990) quantlze the opciating space into a
variable number of bypenpheres of fixed radius using an
unsupervised ART2-like ANN algorithen.

In [Nicbur and Germond, 1991) Kobonca's sclf-organizing
feature map is used for the quantizaton of the operating
space. The manimal number of classcs is given by the
number of ncurons whose weight vocton repicscnts typical
opcanting statcs. The size of each cluss depends on the density
of the probabdility distribution of the taining vectors. The
opemting space bs repeescatcd on the two-dimenstonal feature
map by seccure and Insecure regions. This case will be
discussed in more detall in the following chapier.

7.4 Conyninison of supervised and unsupervised learning

Although usually discusscd o.. cqual lerns, there i an
Limponant difference between supervised and unsupervised
karning. Unsupervised learming belps to organize complex
features Into classes whercas supervised learning will then
calculate follow-up features for specific classes.

Unsupervised networks can therefore be viewed as a data pre-
processing step which reduces the size of the data set before
learning the data’s charactenstics with supegvised learning.
The Funcuional Link Net (FLLN) is often used in combination
with the ART2 nctwork {Sobajic and Pao, 1988). Other
ANN3s combining an vnsupervised and 8 supervised step arc
the Counter-Propagation Network (CPN) [Hecht-Niclsen,
1988], and the Radial Basis Funciions Network (RBEF)
[Moody and Darkeu, 1989]. The CPN combines a Kohonen
map layer with a feed forward layer. In the case of the RBE,
clusicring can be achieved by any unsupervised learuing or
the k-means algorithin, and the neurons of the hidden layer
are represcnted by these means. The architecture of the
supervised part is a lincar feed-forward layer. In contrast to
the winner-take all scheme in the Kohonen newwork,
Gaussian sctivation functions stimulnte severa) necurons at the
aame time and the output of the network is » weighted som
of these activations.

For security assessnent, the combination of an unsupervised
step for operating space redoction and a supervised siep for
opcrating sude classification has been applied by severul
rescarchess including [Sobajic und Pao, 1990, El-Sharkawi et
al., 1991, Rannwvecen and Karudy, 1994)

Another example in power systcina, where supervised wd
unsupcrvised networka are employed for data clustering and
csthmation s the area of loud (orecasting (Hau and Yang
1991 A Kobonen network separates the forecasting dow into
represcutative classes like sumnmer, winter, autumn and
spring and further into weekdays and boliduys (sce also
[Macabrey et al. 1991). For cach class of data a supervised
neiwork is then used fur Josd peediction for the classes datn
puints. For a similar purpose Ranawecrn el al. (1995] apply
the RBE network in the arca of load forecasting. Further
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d-talted examples will be discussed in the other tutorial
chayers.

8. SUMMARY

We dave prescited an overview over differcut types of ncutal
units chammcterized by their input, output, weight vector, gain
function, architocture, proceasing and bearning algorithin,

Tabdes 11.V give a shon overview on the diftcreit charucteds-
tics of neural nctwacks and a noa-cxhisustive list of examples.

TABLE N

Neural net paranmsters

»
Number of neurons

Gatn tunction g(h)

Input vector x
Output vector y
Weight vecwor w Learung rate y(t)

TABLE Ul

Architecture Examples

Layered Multi-layer perceptron
Fully connected Hopield
Lateral connections Kohonen

Radial Basis Fuoctions net
Counter-Propagation net
Boltzmann machine

Hybrd networks

TABLE IV

Processing
(x, w glven, calculate y)

Examples

Feed-forward,
feod & Once Lo gel y

Adaline

Multi-layer perception
Kohunen

Hopflield

Diagonally recutrent ANN

Recuricut, iterate x to get y

TABLE V

Tnln\-x—q
(x ﬂvcni_c-lculplc w)

Examples

Delta rule

Back-propagation

Principal Component Analysis
Sell-organization

Supervived learming
(y given)
Unsupervired
{(no y given)

learning
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