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Abstract

A virtual reality (VR) calibration technique of matching a virtual environment of simulated 3-1
graphic models with actual camera views of the remote site task environment has been developed.
This VR calibration enables high-fidelity preview/predictive displays with calibrated graphics overlay
On live video. Reliable and accurate calibration is achieved by operator-interactive camera calibration
and objectlocalization procedures based on new linear/nonlinear least-squares algorithms that can
handle multiple-camera views. Since the object pose becomes known through the VR calibration, the
operator can now effectively usc the semi-automatic computer-generated trajectory mode in addition to
the manual telcoperation mode. ‘Jredeveloped VR calibrationtechniqueand the resultant high fidelity
preview/predictive displays were successfully utilized in arecentJPL /NASA-GSFC (Jet Propulsion
Laboratory/ Goddard Space Ilight Center) telerobotic servicing demonstration. Preview/predictive
displays were very useful for both non-contact and contact tasks,providingan effective VR interface
withimmediate visual prediction/verification to the operator. 7The positioning alignment accuracy
achieved using four camera views in inserting a toolinto the ORU hole was(.5] croon the average with
a1.07 crnmaximum error a 95% confidence level, Results also indicate that the object localization

with two well chosen, € o ., near orthogonal camera views couldbe nearly asaccurate as that with four

camera views.



1 Introduction

In telerobotic operation. t h e local operator site is physically ara ¢istance from the remote site
task environme nt. To cope with this physical separation between the local and remore sites, varions
techniques onmechiomizm, s ensing, controlimachineinte o eoand o gehine interface have hoen
developedoverthe past several decades(Bejczy,1980:Stark, et a. 19(S',-; Sheridan, 1992).In particular. a
telerobotic systemn architecture shown in lig. ] employvsa VR interface (Ellis. 199:4) in the local operator
site to cope with this problem. The virt ual environment inFie. 1 tries to siiwulate the lelnote-silt task
environment realistically with a sufficiently natural sensing/controlinterface to provide the operator
with asense of telepresence or a feeling of being present atthe remet.(: site, Fxamplesof VR interfaces
towards more realistic sensing/control interfaces include head-niountedtelevisionviewing (G oertz,1965;
Liu, Tharp, I'rench, lLai, & Stark, 1993), force reflection (Goertz & Bevilac qua, 1952; Bejezy, Szakaly,
& Kim, 1989; Hannaford & Wood, 1989), and anthropomorphic master-slave manipulation (Vykukal,
King, & Vallotton, 1973; Tachi, Arai. & Maeda, 1990; Jau, lewis. & Bejezy, 1994). Although these
specific examples aimed at enhancing manual teleoperationdonotrequireinodeling/simulation of the
task environment, it isin general vital for the VR interface tomaintain asimulated virtual model of
aremote site task environment in order to support super visor v telerobo tic operation, Insupervisory
telerobotic operation (Sheridan,1992), the operator issues higher-level commands that can be executed
autonomously whenever possible. Autonomous execution of higherlevelconitnandsgenerally demands
model-based control (Stark, Mills, Nguyen, & Ngo, 1988; Neuyen & Stark, 1989; Tendick, Voichick.
Tharp, & Stark, 1991).

Graphic simulation of telerobotic operations based on 3-1)ceometricinodels of theremote site task
environment has been widely used for off-line task analysisand planuing and aso for introductory
operator training (Kim & Bejczy, 1991 ). Several cominercial graphics packages (for example, Deneb
Robotics IGRIP/TEL FEGRIP, Silma CimS tation, TechnomatlixROBCAD ) are now available for robot
simulation. However, use of graphic simulation during the on-line telerobotic operation, for example,
as a tool for on-line preview and predictive visualization, has been limited due to the lack of accurate
matching between a graphically simulated virtual environ mentand an actual task environment. This
paper describes our recent development of a VR calibration technique that enables a reliable, accurate
matching through ol)ermtor-interactive camera calibration anct object localization.

Although there exist many camera calibration (Sutherland,1974; Ballad & Brown,1932; Ganapathy,

1984; Tsai, 1987) and object localization (}augeras & Hebert, 1983; Horn, 1986; Arun, Huang , &



Blostein, 1987; Waker, Shao. & Volz, 1991) methods. our VR culibration specifically addresses calibrated
oraphics overlay on live video for use in preview/predictive displavs. Our V'R calibration procedures
were only briefly described in previous papers {INim & Bejezv, 1993: Kim, Scheaker, Bejezy, Leake, &
Ollendorf, 1993). In this paper, we present mathematical details of the VR calibration in Sections 2 and
3. followed by experimental results of calibration errors in Section 1. We tien describe the historical
background and our new developments of high-fidelity preview/predictive displays with applications to
ground-controlled telerobotic servicing in space under varying communication time delays in Section 3.
“In Section 6, we briefly describe a successful use of the VIR calibration aund preview/predictive displayvs

in the ORU {Orbital Replacement Unit) changeout remote servicing demonstration performed in May,

1993, between JPI and NASA GSI'C. Finally we describe the conclusion in Section 7.

2 Camera Calibration Using a Robot Arm

Our camera calibration method which is designed for calibrated graplicsoverlay hasthree key new
features;1) A robot arm itself is used as the calibration fixture, 2) Anoperator-interactive daa entry is
adopted to obtain reliable correspondence data. 3) Anonlinear least-squares algorithm combined with
a linear least-squares algorithm is employed to obtain accurate camera parameters. In general, camera
calibration requires a calibration fixture to determine the camera calibt a ion parameters. Placing a
calibration fixture in the actual remote work site is, however, often not so easy. ‘1’bus, in our approach,
the robot arm itself is used as the calibration fixture, eliminating a cumbersome procedure of using an
external calibration fixture.

Aun operator-interactive methodology is adopted to provide the correspondence information between
3-I) graphic model points of the robot arm and 2-1) image points, since it is still diflicult for a computer
visionsystem to find correspondence points reliably.I'ig. 2 showsthe graphical operator interface used
during the operator-interactive camera calibration. Thesolid-shaded 3-1) graphics is displayed on the
upper left window, and the live (or stored) video picture received fromtheremote site appears on the
lower left window. As the operator clicks 3-]) model points or 2-I)image points, their coordinate values
appear’ on the scrolled list widget of the upperright camera calibration GUI1 (graphical user interface),
When all desired object points and their corresponding image points are entered a different arm poses,
the operator can request the system to compute the camera calibration parameters.

There is a standard linecar least-squares method that determine the camera parameters (position,

orientation, and focal length) for given6 or more 3-D object points and their corresponding images




in 2-1) screen coordinates (Sutherland. 1974: Ballard & Brown, 19820, by assuming that the image
formation of the camera can be modeled by a perspective projection of the 3-1) world onto the 2-D
image plane (id cal pinhole model). There is alsoamore accurate. elegant two-stage linear least-squares
method (Tsai, 1937) that considers nonlinear radial distortion of lens optics. but this two-stage method
is not necessary inour graphic overlay applications, sincereal-time3-1Ygraphicsworkstations in general
do not support nonlinear projection. Further weassume that 1 ) the camera optical axis is perpendicular
totheimage plane, passing through the center of the cameraview (Iig. 3}, and 2)the viewport of the
‘graphicoverlav window in square-pixel resolution coin cides with the full size of the cameraview. Based

on the above assumptions, we first transform the screen coordinates {u,. vsjtoimage plane coordinates

(u,v) for each image point:

u = (us — ¢;)/8y, 1)
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~—

v = (v = ¢y )/ sy,
where the viewport of the graphic overlay window is defined by (min. x,max_x.min.y,max.y) in screen
pixel coordinates, for example,(0,646,0,486) for a NTSC-size window’, with the image-plane scale and
translation factors for the horizontal axis s, == ¢, = max.x/2 and for the vertical axis s,=c, =
max.y/2. We now define a 3 x 4 camera calibration matrix C that relates 3-1) object points and the

transformed (re-centered and uniformly scaled)2-1image points by
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where w is an arbitrary scale factor for homogeneous coordinates, and
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The camera calibration matrix C defines the field of view angle, position, and orientation of the camera

The effective focal length f which is the distance from the lenscenter to the image plane (I'ig. 3) defines




the perspective projection P.and the vertical field of view anele is related by fory = 2 cot=1 . The
inverse of the 3-D viewing transform V describes the camera position and orientation relative to the
robat base frame. Appendix A counciselv describes the linear least-squares algorithm to compute the
camera parameters from {3) and ().

The linear least-squares algorithin described in Appendix A produces accurate estimates of camera
parameters, when the input correspondence data points are perfect with a well-prepared calibration
fixture. However, as the input data become less perfect. for example. ductoan imperfect geometric
modeling of the robot arm. the linear algorithm does not guarantee the orthonormality of the 3x3
rotation matrix describing the camera orientation. In general, aniterative nonlinear least-squares
algorithm must be employed to obtain the least-squares solution that satisfies the orthonormality of the
rotation matrix. In the nonlinear algorithm (Appendix B), three anglesinstcad of 9 elements of the
rotation matrix are used to represent the rotation. Theunonlinearalgorithm could, however, diverge
or converge to an undesired local minimum, if the initial guess is not sufficiently close to the actual
solution. In order to overcome this problem, we devised a new ttvo-step computational procedure:1)
first, obtain an approximate solution by the linear algorithm, and then 2)apply the nonlinear algorithm
by using the linear least-squaressolution as an initia guess. Once the cameraparameters are obtained,
the graphic model of the robot arm can be overlaid on the video camera view.

Four views from three cameras were calibrated for the JPI/GSFCremote servicing demonstration:
1) side view, 2) oblique view, 3) overhead wide-angle view, and4) overhead zoom-in view. In each
camera calibration, the operator typically entered about 15 to 30 data peints ill total from 3 or 4
different arm poses. lxamples of calibrated graphics overlays at four differentrobot arm poses for the

oblique-view camera are shown in Fig. 4.

3 Object Localization

In our VR calibration, the object localization is performed after the camera calibration to determine
the pose (position and orientation) of each object. This enables graphic overlay of both the robot arm
and the object(s) on live video. Since the object pose becomes known through object localization, the
operator can now cffectively use the semi-automatic computer-generated trajectory modein addition
to the manual telcoperation mode. Our object localization method has threekey new features: 1)An
operator-interactive method is adopted to obtain reliable correspondence data. 2) A projection-based

linear least-squares algorithm is extended to consider multiple camcra views. 3) A nonlinear least-
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squares aleorithm combined with the extended linear one is employed to obtainan accurate object pose
from multiple camera views. The operat or’sinteractive data entry procedure for t he object lo cali zation
is essentiallv identical to that for camera calibration (see Fig. v and Section 2 ). ex cept that the operator
this time enters corresponding points for anobject (not forthe robot arm)with several different camera
views.,

Determining the object pose from given 2-1) camnera views has been studied as one of the key
issues in robot vision. Roberts (196.5) showed in his pionecring work thatthe pose of anobjectcan
‘be conveniently described by a homogeneous coordinate transform, Hefurthershowed that the object
pose can be determined from a single view of an object by using a least-squares algorithm if 6 or
more 3-1) object model points and their corresponding ‘2-1) imagecoordinates are available. Sutherland
(1974) later developed a more straightforward least-squares algrorithm. Both Roberts’ and Sutherland’s
algorith Ins are projection-based 3-1) to 2-1) point matching, since 3-1) object points are projected onto
the 2-J) image plane to match with the actual camera image points.

There arc also several object localization algorithms based on 3-D to 3-1) point matching (laugeras
& Hebert, 1983; Arun, Huang, & Blostein, 1987; Waker, Shao, & Volz.1991), when 3-1) object points
are given in two different coordinates, for example, one in object model coordinates and the other in
visual/range sensor coordinates. Whenstereo camera viewsare available for an object, both approaches
are possible in determining the object pose: 1) an extended projection-based algorithm that does 3-1)
to 2-1 point matching for both camera views, and 2) a triangulation method that computes the 3-D
position from the 2-].) stereo-pair image points by triangulation and performmatching in 3-1) space.
Simulation results comparing the two methods indicate that the projection-based method is preferred, in
particular,interms of the orientation estimation accuracy (Kim & Stark.1939). Another’ key advantage
of the projection- based approach is that a singleimage point data corresponding to cach object point
is acceptable as an input data, while a leasttwoimage points corresponding to each object point are
required for the triangulation-based approach. Thus. we developed projection-based linear/nonlinear
least-squares algorithms extended for multiple camera views.

Animage point (u,v) in camera image coordinates and its corresponding object point located at

(z,y,z)in object model coordinates are related by



where the camera calibration matrix C is given by (4), and the object pose matrix M contains a3 x]
colu mn vector t,, anc a 3 x 3 rotation niatrix R,,, describing | he positionandorientat ion of the object

model frame.respect vely, relative to the robot base frame.
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Whena single camera view of an object and ts camera calibration matrix are given for object
localization, we can proceed with the linear/nonlinear least-scjuares algorithins that are basically the
same as those of the camera calibration described earlier except that thistime theeffective focallength
f is known. When multiple camera views of an object are given, algorithins for locating the object are
computationally more involved as described below.

After some algebraic manipulation of (5)— (6), we can derive a linear least-squares algorithm that
determines the object pose for given multiple camera views with known camera parameters. leta, =
i f + Cgiu,bi:CQif‘f'CsiU for 1= 1,2,3,4, and X ::(7‘11,7'12,7'i3,r14,7‘21,7'27‘7‘23,7'24,7"31»7‘32,7‘33,7‘34)T

Then,
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Since each pair of object and image pointsyields two equations of (i), wecanhave a system of linear
actuations AX == b, where A becomesa 2N x 12matrix for ¥ pairs of object-image points entered.
When N =6 from 4 or more non-coplanar object points, the least-squares solution can be obtained
from the normalequations A7 Ax = ATb, where A'A is a 12 x 12 matrix. It turns out, however, that

the system matrix A is singular (therank of matrix A is 1 1), and the solutionin general has the form

x = kxi o x,, (®)




where x,, is anull-space vector solution of thehomogeneous couations Ax ‘- O. andx,isthe particular
solution of the nonhomogeneous equations Ax = b, The -cale factor & is determined by the uni
magnitude constraints of the rotationmatrix.

Gaussian elimination with complete pivoting can be applied to the normal equations ATAx = A'b
to compute Xi and X,. Since the rank of matrix’ A s 11 o one rank delicicnts one zero-pivor oceurs
during the pivoting procedure. By virtue of the complete pivoting which allows both column and row
interchanges,the zero pivot actually occursat the lastcolunin and last rowin the form of O . 2 =0,
‘where z is one of the 12unknown variables. The variable  is ralled a free variable (Stran g,1980), since
any value of z can satisfy the equation 0-z=- O. By setting z= O and procecding withthe standardback
substitution procedure, the particular solution x, is obtained. By setting x= 1 and proceeding with
the back substitution, a null-space vector solution X» is obtained. Sincethc abet'e linear least-squares
solution does not guarantee the orthonormality of therotation matrix, the solution isused as an initial
approximate guess for the following nonlinear least-squares algorithia.

in the nonlinear least-squares algorithm, a rotation is represented by threcrotational angles instead
of 9 elements of the rotation matrix R,,. After some algebraic manipulation of (5)-(6), we can show

that each object point(z,y, z)and its corresponding image point (u.v) yield the two equations:
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When Vo= 30 there are 6 equations for the 6 unknowns, and Newron's method can be used. When
N > 4 Newton-Ganss method can be used to determine the nonlinear least-squares solution for the
object pose. The nonlinear algorithm requires the computation of the Jacobian for each iteration. As
an example, the partial derivative of function /' with respect to o is derived below by using matrix

dertvarive relations (Shutt, 1960; Lucas, 1963):

OF/Ja = K\(OX/da)+ Ko(DZ /D). (1)

“Where
OX /Do = e (OU D) + 1200V /D) + cy3(0VW /Do), (15)
0Z [0 = c31(OU ] dar) -t c32(0V/0a) 4 c33(OW /D), (16)

with )y = flZ, Ky= -- f(_,\’/f/,z), AU Jda = 1y - T12%, OV /Do = 123y T2s. g1 7Oc =T33y - T30z

The above lincar/unonlincar object localization method was applied to locate the ORU in the
JPL/GSFC remote servicing demoustration task by using four calibrated camera views. Examples
of calibrated graphics overlays for the fourcamera viewsafter the completion of the VR calibration are
shown in }ig. 5. Note that both the robot arrn and the object graphicsimodels arc now superimposed
on the videoimage. Graphic models can beoverlaid in wire frameand/o1in solid-shaded polygonal
rendering with varying levels of transparency, producing different visnal effects to the operator. The

hidden lines can also be removed or retained.

4 Experimental Results of Calibration lirrors

A's shownin I'ig. 5, four camera views were used in the JPL/GSEC demonstration to perform
an ORU changeout remote servicing task: side view (view 1), oblique view (view 2), overhead wide-
angle view (view 3), and overhead zoom-in view (view 4). An operator first calibrated eachof the
four camera views throughthe opcra,tor-interactive camera calibration procedure, and thendetermined
the ORU pose through the operator-interactive object localization procedure. In order to measure
calibration errors of our calibration techniques, an operator performeda complete VR calibration run
tentimes, each run consisting of four camera, calibrations and one ORU object localization. In each
camera calibration, the operator commanded the robot arm to move to 3 or 4 pre-defined arm poses
and entered 3 to 10 robot arm graphics model points and their corresponding video image points at

each robotarm pose.Inthe object localization, the operator entered correspondence data for the ORU




ustng the calibrated four camera views. The "t rue™ ob ject locat lon was also obtained by reading | he
actual joint angl o5 of the robot arm after fully inserting the nut driver ool of the yobot arm into the
top hole of the OR U, During this insertion, the compliant damiping contr ol mode was activated in order
not to move the ORU.

The averages and standard deviations of the object localization errors for the ten VR calibration
runs are listed in Tables 1 and 2, respectively, showing the effect of using different combinations of
camera viewson object localization errors. Theobject localization error was obtained by takingthe
difference betweenthe estimated object pose obtained by the VR calibrationandthe “trie™ object pose.
The x,y, and zaxesof the ORU object frame were aligned with the vertical, horizontal. and insertion
(depth) axes of the ORU hole entrance, respectively. Two kinds of positioning errors in inserting the
nut driver tool into the OR U hole were considered: alignment and deptherrors relative to the “true”

ORU hole position. The maximum (worst ) alignment errors at 95% confidence level were computed by

lftazyl 4+ 20a2y from Tables] and 2, where |uary | = \/;13\1 4 ;L’iy and oa,, = \/Uif 4 o,&y, and the

results are listed in Table3. Similarly, the maximum (worst) deptherrors a. 9.5% counfidence level were

computed by |pa.|t20,, from Tables ] and 2, and are also listedin ‘J able 3.

When a single camera view is used for object localization, the object localization error along the
camera optical axis tends to belarge. When the side view (camera view ]) was used only, the alignment
error (10. 89 c¢m in Table 3) waslarger than the depth error (1.27 cm). By contrast, when an overhead
view (camera view 3 or 4) wasused, the alignment error (4.20 or4.57 ¢m)was smaller than the depth
error (6.46 or 9.04 cm). As a more nuinber of camera viewsaie used for object localization, the object
localization error tends to decrease, InTable 3,themmaximun positioning alignment error was in the
range of 3.2S to 10. S9 c¢m for one camera view, 1.15 to 2.91 c¢m for two camera views, 1.13 {0 2.08
cmn for three camera views,and1.07 ¢m for four camera view: . The maximumdepth error was in the
range of 1.27 to 9.04 em for onecamera view,0.73 to 5.04cin for two camera views, 0.60 to 2.23 ¢m
for three camera views, and 1.37 ¢m for four camera views. Object localization with two well chosen
camera views, for example, 1-+2,143, or 144 (near orthogonal views),wasucarly as good as that with
four camera views. Object localization with two poorly chosen camera views, for example, 344 (similar
viewing anglesexceptzoom settings), yieldedlarger errors.

In our demonstration task, all four camera views were used for the ORU object localization. The
positioning align menterror for a tool insertion into the ORU hole using four camera views was 0.51¢m

, s 2 - . . . . )
on the average (computed by |ptar,| ‘- \ﬂ&\;- Fhayronl'd able 1), witha 1.07 cm maximum alignment
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error al 95% conlidence level (from Table 3). The depth error was 0.65 em on the average. with a 1.37

cm maximim depth error at 93% confidence level.

5 Preview/P1-edictive Displays

Ground control of spacerobotshas potential operational benefitsinfuture space missions. Possible
future applications include ground-controlled satellite servicing in space, telescience experiments on
space platforms suchasthe Space Station, and ground-controlled reinote assembly/const ruction work
on the Moon or Ma rs. Insuch ground-cont rolled remote operations, however, there is an unavoidable
comiunication time delay. The theoretical lower bound of theround-trip communication time delay
imposed by the speed of light is 0.56 s to thelow Earth orbit vica geostationary communication satellite.
and 2.5 s to the Moon. When the existing NASA cornmunication facilities, areutilized, the round-trip
time delay between the ground station and the low Earth orbit is expected to be 4 to 8 s to relay data
via several communications satellites and ground stations.

As the communication time delay exceeds beyond 0.5 s. it is increasingly more difficult for the
human operatorto perform remote manipulation tasks. A wellknownstrategy to cope with time delay
is the “move and wait” strategy (}errell, 196.5). In this strategy, the operator moves the manipulator
a small cl istance and then wait to see what happens before the nextmove. T'woimportant schemes
that enhancetelemanipulationtask perform ance under communication time delay are predictive display
(Bejczy, Kim, & Venema.1990; Kim & Bejczy,1991; Sheridan, 1993) and shared compliance control. A
recent investigation (Kim, Hannaford, & Bejczy,1992) based on peg-in-hole telcoperation experiments
under O to 4 s time delays indicated that the use of shared compliance control at the remote site is
essential for time-d~laycci teleoperation.

h’eves and Shovridan(l%:l) in the MIT Man-Machine Systems lLaboratory pioneered the first pre-
dictive display for telemanipulation by using -a stick-figure graphics model overlaid on the delayed video
picture of the manipulator, In this predictive display, the operator drivesthe graphic model which re-
sponds immediately to the human operator’s control command, while the actual video image of the arm
responds with time delay, following the graphic model. Inecffect, the graphic model leads or predicts
the actual robot arm motion. The effectiveness of the predictive display technique was demonstrated
using simple models of the manipulator arm and simple tasks (}Hashimoto, Sheridan. & Noyes, 986;
Sheridan, 1993).

We have recently extended this original stiCk-figure-fy])C predictive displayto high-fidelity pre-
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view/predictive displays. High fidelivy is achieved by the VR calibration consisting of operator-interactive
camera calibration and object localization procedures, enabling reliable and aconrate overlay of araphic
models on the live video image of a quasi-static telerobotic task environment. Aftor the VR calibra-
tion. the operator can actually perform a remote servicing task with preview/predictive displavs, which
provides effective vis nal prediction, vertlication to the operator tor boti contact wnd Bon-C ontacilass s,

The operator first generates the simulated robot motiontrajectory ei-her by akand controller or
by a computer trajectory generator,and then visually verifies the generated robot motion trajectory
through previewing the simulated graphics motion of the robotarmagainst the actualvideocamera
lmage of the quasi-static remote-site work scene. Once verified, the recorded mmotion command is sent
to the remote site for actual motion execution. in ordertoeliminatethe problem associated with the
varying time delay in data transfer, the robot motion trajectory command isnot execute’d untilthe entire
trajectory data are received at the remote site. During the e¢xecution. compliance/impedance control
can be activated. At thelocalsite, the operator monitors the actual motion executionby observing
the returned video image of the robotarmn motion. Whenno contact is involved, the videoimage of
the real arin follows the same trajectory as the simulated preview motion. When contact is involved.
however, the final positions of the simulated graphics and actual robot arm s can be quite different. For
this reason, after the comnpletion of the robot arm trajectory command, the simulated graphics arm is
updated with theactual final robot joint angle values. Thisupdate eliininates accumulation of small
motion execution errors as well as large compenisation errors due to the compliance /impedance control.
Fxamples of preview/pred ictive displays with calibrated graphics overlay during the performan ce of the

L

JPL/GSYFC demonstration task are shown inl'ig. 6. review/predictivedisplays are not only useful for
space telerobotic applications with time delay but also very useful for terrestrial applications with 110
time delay, such as in disposa and remediation of nuclear waste, for safer andinore reliable operations.

To support both manual and supervisory telerobotic operation withpreview/predictive displays,a
graphical operator interfacehas been developed by using two Silicon Graphics workstations anti one
NTSCvideo monitor. The primary workstation (IRIS-4D/310VGX) is used for preview/predictive
displays and for various GUIs.T'hesecond workstation (IRIS4D/70GT)issolely used for sensor data
display, providing graphical visualization of robot arm jointangles,6-dof forceltorcluc sensor data, and
capaciflector proximity sensor data (Das, ]992). Fig.7 shows a top-levelscreen layout onthe primary
workstation screenduring the actualtask execution. A calibrated preview/predictive graphics overlay

on the live video picture appears on the upper left window,and it dso appears on the full screen of a
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19-7rneh NTSC monitor for better viewing, A Silicon Graphics VideoLab board allows this simnltaneons
live video displavs. An operator-defined synthetic (virtual} camera view which can be <et to any desired
viewing angle, position and zoom is displaved on t he lower leit window

The graphics/robot con trol main G Ul (lower right window in Fig. 7)) allows the operator to issue
an individual command tnteractively, 7 le upper 4 panels arcfor graphics cont rol suchas 1Y graphic
view selection, 2) view translation.rotatio n.and zoont. 3) rendering mode selection (wire- frame, solid-
shaded, wire-frame with hiddenlineremoval. wire-frame wit hsemi-transparent solid surface model), and
<) video image selection (no~i(lco.live video, or stored video intage file). The lower -+ panels are for robot
control. The first panel allowsthe operator to defineanddesignate “tag” points (target/(Icstillatioll
points indicated by zyz coordinate fraines) for the computer generatedtrajectory mode. The second
panel allows the operator to select a desired cartesiancontrol mode for the hand controller control:
world (robot base), tool (endeffector),andcamera-view referenced control.witha specification of the
cartesian control frame origin, for example, a the end effector or at thetocl tip. The operator can also
set the position and orientation gainsof the hand controller motion. Thesame inverse inverse Jacobian
cartesian control algorithms that drive the actual remote robot arm wereused to drive the local-site
simulated robot arm (l.eake, 1991). The third panelallows the operator to record, stop, and play back
thehand controller motion trajectory for preview simulation. The serial 1/O aud trajectory data buffers
were effectively used to avoid any missing data insending the hand controller motion data from the
real-time system to the UNIX-based Silicon Graphics workstation at 30 1z through a 9600-baud serial
1/0 line. Thelast panel allows the operator to send a remote executioncommandindividually to the
remote Site.

In performing an actual telerobotic servicing task involving a long sequence of graphics/robot coritrol
commands, it is much more efficient to utilize. anautosequence task scriptthanto enter each individual
command interactively. The task auto sequence GUI (upper right windowin}tig.7) displays a selected
auto sequence script on the scrolled list window, and the current command to be executed is highlighted.
The operator can execute the highlighted command by clicking the “step™ button. The operator can
interrupt the current execution by ‘(cancel” button, or abort the script completely by “abort>"  button.
Two types of commands exist: local and remote execution commands. I.ocal execution commands
that effect only the local site include Graphics, Video, Camcal, Objloc, Reference frame, Tag.point,
and Object grab/release commands, Theremoteexecution commands currently supported include

robot armmotion trgectory (TRAJF.CTORY), control algorithm selection (INVOKF_ALGORITHM),
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sensor data request (REQUEST) such as joint angles and force/torque seusor data, camera selection
and set point (CAMERA) robot joint move {GOTO JOINT ) and robor cartesian move commands

(GOTO.CART)

6 Telerobotic Servicing Demonstration

InMay 1993, the developed VR calibration and hig h- fidelity preview /predictive displays weresuc -
cessfully utilized in demonst rating a ground-simulated ORU changrout remote servicine task under
varying communication time delays of up to severalseconds.In this denounstration, JPL acted asthe
operator site simulating the ground control station, and GSF(C, more than2,500 miles away from JPL,
acted as the remote work site with a life-size NP (Fxplorer Platform) satellite task mock-Lip, a Robotics
Research Corporation K- 1607 robot arm, and a Lightweight Servicing Tool (1.57;socket driver power
tool) mounted at thcend of the arm. Two key technologies employed to cope with communication
time delay were high-fidelity preview/predictive displays described in this paper and wrist force/torque
sensor referenced compliance/impedance control (Leake, 1991 1implemented at GSI'C.

The NASA Sclect television broadcasting channel was used for a live videolink (30 frames/s) from
NASA-GSIC to |JI],. A TCP/1Psocket communication through the Internetcomputer network was
used for a bidirectional command/data link. 7The round-trip Internet sccket communication delay
between JPI. ant] NASA-GSFC was measured about 0.1s ontheaverage,although there were sometimes
long time delays (e.g., a 10-minute testing indicated that about 0. S% of the delays was longer than 0.5
s and about 0.01% was longer than 4 s).

The ORU changeout task scenario used in the remote servicing demonstration had the following
sequence. 1) Performcamera calibration. 2) Perform object !ocalization to determine the ORU pose.
3)Move the arm from the start position to a position where the LST tip is about 20 crmin front of
the entrance of the hole o the ORUmodulée.4)Move the 1.ST to the immediate entrance of the hole.
.5) insert the 1, S'1’. 6)Latch the I.STto the ORU.7)Turn on the power tool to loosen thescrew.8)
Pull out the ORUby 5 cm. 9)Continue to withdraw the ORU so that it is about 15 cm apart from
the satellite. 10) Move the ORU to a stow position. 11) Movethe ORUbacktol5cm in front of the
satellite frame. 12) Align the ORU for insertion. 13) Insert the ORU. 14) Turn on power tool to tighten
the screw. 15) Unlatch the LST from the ORU.16) Pull out the LST to about 20 cmaway from the
ORU.17)Finally,move the arm back to the start position.

Steps 5, 6, 7,8, 13, 14,and 15 were executed autonomously by invoking an appropriate algorithm
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using the INVOKE_ALGORITHM command. During these steps the robot arm motion involves actual
contact wit b the task environment, and thus was atded by wrist force; torque senzor re erenced co m-
pliance/ imped ance control. Steps 3. -1, 9. 10, T 12016, and 17 were execnted by the TRAJECTO RY
command.wheretherobot trajectory data was generatedeither b\ teleoperation using a handcon -
froder or by a cotputer automaticallv for o designated target frame. Jofacilitaicautomatic trajectory
gene ration, sever al fixed target frames (destina tion /tag points) relative to the ORU were pre-defined
and displayed (seelig.6). Whenthe ORU pose was determined throughthe VR calibration (Steps !
and 2y, the poses of these target frames were also determined automaticallv. Inthe teleoperation mode.
these target frames were merely used as a visual aid to the operator in generating arobot trajectory
with a hand controller. In the computer-generated trajectory mode, the operator just designateda
target frame, and then the computer generated a straight linetrajectory fromthe current robot pose to
the designated frame. Theteleoperationmode using ahand controller was helpful for fine alignment to
compensate for any errors caused by imperfect modeling and gravity compensation, while the computer-

generated trajectory mode was verv helpful for global robot motion under a quasi-static telerobotic task

environment.

“7 Conclusion

We developeda virtualreality (VR) calibration technique for matching a graphically simulated vir-
tual environment with actual camera views of a remote site task environment. This technique enabled
high fidelity preview/ predictive displays with calibrated graphicsoverlay on live video, providing an
effective VI interface fortelerobotic servicing. Thisnewly developed technique was successfully uti-
lized in the recent JP’I, /NASA-Goddard ORU changeout remote servicing demonstration, showing the
practical utility of high-fidelity preview/Preclictivc displays combined with compliance control, Cur-
rently, an insertion of the VR calibration techniqueinto acommercial graphics software product is
on-going through a NASA-Industry Joint Technology Cooperation Task. }uture planned work includes

semi-automated VR calibrationusing model-based image processing.
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APPENDIX A. Lincar Least-Squarcs Camera Calibration

From (3) and (8, we can show that an object point P locased at {00y 20in object model coordinartes

A

and the corresponding image coordinates (wu, v) are related by

11l - erpy + Craz 4+ 1y -
T e (17)

C312 - 32l €337+ Cay

212 - €Y + Craz + Cou .
y o gl Czay A cans ok Cog (18)

€312 + cay + €337 + Caq

Rearranging (17) and (18) into a standard form of the systent of linear equations Ax = b, we have

X 1 0 O OOuJ:uyuzu]
x= 0.

v (19)
OOOOmyzlvarvyv:vJ’
where the unknown camera parameters are represented by a vector - (CU=C12>CI3*CH’CDI.cn,
Co3y Couy ca1/ [y a2/ [y caa/ [y esa) F)T. Since €ach object point and the corresponding image point yields
the above two equations, N object points and their images generate 2N linear equations with the di-
mension of matrix A becoming a 2V x 12 matrix. Since the equationsare homogeneous (b = 0), only
11 equations can be independent (the rank of matrix A is 11 ) to have anon-trivialsolution other than
x = 0. A simple approach to obtaining the non-trivial null-space vectorsolutionis to set one of the
variables c34/f = - 1 and then solve for 11 remaining variables. Namely,(19) can beeasily rearranged
as By =: ¢, where y consists of the first 11elements of x with a constant scale factor £. I1{ & :':5%,
the solution for’ y canbe determined by the” well-known Gaussianelimination method. If N >6,the

system becomes overdeter minedandthe jeast-squares solution can beobtained by

y = (BB 'B7c. (20)

In the actual numerical computation, the normal equations B7By:=-137¢ are directly solvedby Gaus-
sian elimination or by the Cholesky method (I, awson & Hansen, 1 974) withoutever computing the
inverse of BY1 for computational efficiency. Once the null-space vector solution is obtained, the unity
magnitude constraints of the rotation matrix can be used to obtainthe camera parameters. T'he polarity

of the scale factor & can beresolved based on the fact that all the object points entered by the operator
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ave in front of the camera. In the actual implementation. the centroid of all the object points entered
(.2 is first computed, and then the polarity is determined so that the centroid is in front of the
CAMOTA, So 7= Capd b enl 1t ea3l 4 cgy < 0.

Our testing revealed that the above linear algorithm tends to vield poor estimates of e3p.e32. and
cyy. when the object is far away from the camera. This is vecause the chmera view approaches the
orthographic projection as the object is farther away from the camera (the denominators of (17) and
(18) approach es4), and only 9 parameters among the 12 unknowns can be estimated properly by the
linear method. The poor solutions of ¢3,. ¢aa. and 43 are thus replaced by using the vector cross product

relation (€31 €3 ¢33) = (€11 €12 €13) X (€21 €22 c23).

APPENDIX B. Nonlinear Least-Squares Camera Calibration

The above linear method uses only 2N linear equations obtained from N object points and their cor-
responding images without considering 6 additional noulinear equations iinposedby the orthonormality
constraint of the rotation matrix (Moffitt & Mikhail.1980;Horn,1986). The nonlinear algorithm is
necessary to take into account this constraint. It is simpler iun the nonlincar algorithm to use 3rota-
tional angles (roll, pitch, yaw) in stead of the 9 elements of therotationmatiix. From (17)and(18),
we can observe that each object point (z,y,z)and its correspondingcjnp'mm‘(u’l,) yields the two

equations:

Foe= ot f-; = 0, (21)
e v f 20, (22)
P
where
R, = Rot(z,v)Rot(y,B)Rot(z, ), (23)
U z
v =Ry |, (24)
W z
X [ U 1 €14
Y | =| Vv |+ o (25)
VA i 5% C34
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Rotlz. o), Rot(y, ) and Rol(z.4) are a rotation o about the o axis. a rotation 3 about the yaxis, and
a rotation v about the = axis. respectivelv. When .V = 31 there are 7 egnations for the 7 unknowns
X = (a3 oy e eogeong S350 When V> L the noulinear least-squares solution can be obtained by

the Newton-Gauss method (Murray, 1972), which is a combination of Newton's method and the least

squares method originated by Gauss. The &-¢4 iteration can be deseribed as

Xpgp = X = (J(XA)JJ(\;)) Jixg) Fixg). (26)
where ¥ = (7,6, - - SN, G for N corresponding-point pairs, and the Jacoblan is defined as
J = d¥/dx (2N x 7 matrix). An eflicient Jacobian computation can be derived by using matrix

derivative relations (Shutt, 1960; Lucas, 1963). For example, partial derivatives of function /' for each
corresponding point pair are: 0F/0a = Ki(c13y — ¢122) + Koleasy = ra02), 0F/03 = KNiWcosy -
Ko(Ucosy + Vsiny), 0F [0y == ~ IV, 0F[0cry = Ky, OF[dcay = 0, 0F[/degq = Ko, 0F/0f = XN/Z,
where Ky = f/7Z, Ky = —fX/Z?, and K3y = —fY/Z?. One might try to define new functions by
multiplying both (21) and (22) by 7. However, the use of these new functions tends to yield severely

under-estimated values (close to 0) for f and caq.
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viewsonobject localization
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Table 3. Object localization maximum positioning errors at 95% confidence level
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Figure Captions

Fig. 1. A typical telerobotic system with a virtual eavironmert interface.
Fie. 2. Graphical operator interface during the camera calibration.

Fig. 3. Camera image formation geometry described by perspective projection. The center of projection
is located atthe camera lens center. To avoid the reversal of the image, *hie linage plane is placed in

{front of the lens.

Pig

g. 1. Calibrated gverlays of the robot arm graphics model on the live video picture after the camera

calibration at four differentrobot arm poses.

Fig. 5. Calibrated overlays of both robot arm and ORU grapliics models onlive video images after the
camera calibration andobject localization using four camera views. (a) side view, (b) oblique view, (c)

overhead wide-angle view, and (d) overhead zoom-in view.

Iig. 6. Snapshots of preview/predictive displays during the JPL/GS1'C ORU changeout demonstration.

(a) Approach the armto ORU. (b) Pull out ORU.

Pig. 7. Graphical operator Interface during the task execution.
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