Innovative Power Source Concepts for Pluto Express

By: Dr. Mark L. Underwood

Jet propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91109
Ph# (818) 354-9049 fax#(818) 393-4272

Presented to 1995 Space Power Workshop
April 19, 1995

This work was done by the
Jet Propulsion Laboratory, California Institute of Technology
and sponsored by the
National Aeronautics and Space Administration
Pluto Express Overview

● Mission Objectives
 » Revolutionize knowledge of Pluto and its moon Charon
 – Characterize global geology, morphology, and atmospheric structure
 » Be a pathfinder for next generation of outer planet and interstellar explorers

● Mission Overview
 » 2 Sciencecraft to be launched on 2 protons or Deltas
 » Launch in -2003, arrive at Pluto -2015
 » Sciencecraft CBE mass: 79 kg (dry)
New Pluto Top Level Design Space

Major Cost Drivers

- Power Options

- Advanced RPS

- Solar Panels

Upper Stage Options

- PAM-D

- Gravity Assists

- SEP

Launch Vehicle Options

- Proton

- Delta II (7925)

2 Spacecraft possible on 1 launch vehicle

- Each spacecraft requires its own launch vehicle; launch costs higher
Power Requirements

- End of Life Power Demand: $73 \, W_e$
 - CBE + 20% contingency
 - 10% flight margin is desired (additional $7.3 \, W_e$)
 - Assumes cycling of telecommunications system off during encounter
 - $104 \, W_e$ is needed to provide the power for operations flexibility

- Striving for the Lowest Power, Near-term technologies
 - Still keep operations cost to a minimum
 - Examining possibility of reducing power demand to $c20 \, W_e$ average
Power Source Options

Spacecraft Electrical Power Requirement

Collect Power in Space

Take Energy with the Spacecraft

Solar Power
1.4 W/m² available solar intensity at Pluto (-1/1000th of Earth orbit)
Photovoltaic Converters, produce 0.24 W/m² at 1770 efficiency
Concentrator Converters, produce 0.35 W/m² at 2570 efficiency
Arrays have been operated in the laboratory at Saturn equivalent conditions
Solar power at 30-AU conditions has never been demonstrated

Chemical Energy
Fundamental Limit -3.7 kWₜₜ/kg
Nuclear Energy
RTG -300 kWₜₜ/kg for >10 years
Mechanical Energy - Very Massive
Magnetic Energy Storage - High Temperature Superconductors
Space systems possibly available in > 10 years
Solar Power Requires Large Collectors

Solar Intensity and Constant Power Solar Array Area for Increasing Solar Range

Distance from the Sun (AU)
Solar Power at Pluto

- Solar intensity at Pluto about 1/1000 of the intensity at Earth
 » Appears as deep twilight
- Solar powered Sciencecraft options are being considered
 » Require large concentrator arrays
 » -350 m² needed to supply continuous power demand
 » > 50 m² needed to supply ~10 We to charge a battery and operate the Sciencecraft periodically
 » These strategies still require RHUS for thermal control
 » Solar power Sciencecraft control and operation challenges are significant
Thermal-to-Electric Options

● Radioisotope Thermoelectric Generator (RTG)
 » Scaled down version of Galileo, Ulysses, and Cassini RTGs

● Radioisotope Power Sources (RPS) with an Advance Converter:
 » AMTEC: Alkali Metal Thermal-to-Electric Converter
 – Thermally regenerated sodium concentration cell
 » TPV: Thermal Photovoltaic
 – Photovoltaic conversion of thermal radiation
 » Stirling Engine Converter
 – closed cycle heat engine

● All Options use Existing Heat Sources
 » General Purpose Heat Source (GPHS) modules inherited from Cassini spare RTG
 » Available after 1997 launch of Cassini
Small RTG

- **Advantages**
 - Proven technology
 - High inheritance from previous programs

- **Issues**
 - Mass
 - Low efficiency and large number of heat sources required
 - Not considered a technology that will enable low cost planetary exploration

6 GPHS version
17.8 kg

74 W_e after 10 years with Cassini spare GPHSS from Schock, IECEC '94

4/1 4/95, pg 8

M.L. Underwood
AMTEC RPS

● Advantages
 » Low mass
 » Few GPHSS
 » Small radiator
 » Rejected heat (300 C) useful for thermal control
 » No radiation degradation
 » Static except for Sodium
 » Potential for space solar-thermal and commercial terrestrial applications

● Issues
 » Microgravity operation not demonstrated
 » Lifetime not demonstrated

2 GPHS version
6.1 kg

87 We after 10 years with Cassini spare GPHSS

Drawing courtesy of R. Sievers, AMPS

4/14/95, pg 9
M.L. Underwood
TPV RPS

- Advantages
 - Simple system
 - Few GPHSS
 - Appropriate PVS highly developed
 - Active space and terrestrial programs
 - Low mass

- Issues
 - Large radiator
 - Waste heat not useful for spacecraft thermal control
 - Radiation degradation of Pvs
 - Lifetime not demonstrated

Drawing Courtesy of A. Schock, OSC

2 GPHS version
7.2 kg
75 W after 10 years with Cassini spare GPHSS

4/14/95, pg 10
Stirling RPS

● Advantages
 » Long life ground operation demonstrated
 » Few GPHSs
 » Many potential terrestrial applications

● Issues
 » Redundancy strategy
 » Mass
 » Vibration potential
 » Moving parts for potential to wear

2 GPHS version (radiators and structure removed ~13 kg
-80 W_e after 10 years with Cassini spare GPHSS
Drawing Courtesy of B. Ross, STC

M.L. Underwood
Future Directions for Pluto Express

- Power source selection will occur over the next two years
 - Advanced radioisotope convert technologies are strong contenders
 - State of development in 1997 will be a key factor
- Solar/low radioisotope options will continue to be evaluated