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A parallel solvers package of three solvers with a
unified user interface is developed for solving a range of
sparse symmetric complex linear systems arising from
disc~tization  of partial differential equations based on
unstructu~d  meshs using finite element, finite difference
and finite volume analysis. Once the data interface is set
up, the package constructs the sparse symmetric complex
matrix, and solves the linear system by the method cho-
sen by the user, either a preconditioned hi-conjugate gra-

dient solver, or a two-stage Cholesky LDL7’ factorization
solver, or a hybrid solver combining the above two meth-
ods.A unique feature of the solvers package is that the
user deals with local matrices on local meshes on each
processor. Scaling problem size N with the number of
processors P with N/P fixed, test runs on Intel Delta up
to 128 processors show that the bkxmjugate gradient
method scales linearly with N whereas the two-stage
hybrid method scales with TN .

1 lntrorluction

One of the common problems in scientific and
engineering computations is the constrcution  and solu-
tion of sparse linear systems arising from solving partial
differential equations based on unstructured grids[ll.
Many such examples occur in analysis by finite element,
finite difference and finite volume methods. As the scale
and complexity of the calculations grow, massively par-
allel computers are increasingly widely used in these cal-
culations. .

Fxisting parallel sparse linear system solvers can
be classified into to two distinctive classes(see  [2] and
references therein). One is the inerative  conjugate-gradi-
ent type of solvers where the key parallel part is the
matrix-vector product([2,3,4]); the other is parallel
Cholesky factorization solvers using colunm/row  based
matrix distributions[5,6,21.
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IIowever,  these solvers mostly are restricted to posi-
tive definite matrices. For a larger classs of symmetric com-
plex matrix systems, few analytical results are knowu The
solutions are typical Iy obtained by trying several different
methods. First, one may try an iterative CG type of solver to

see if it converges. If not, one may try a Cholesky  (a LLILT

factori~ation,  not the [tItT factorization for positive definite
matrices) solver, wh~ch is more robust and stable, but
~quirc.s more calculation and memory. This class of indetl-
nite matrix problem raises the need for a solver package
C.ombilling  very different solvers with a single unified user
interface so that user can easily switch to different solvers to
try to solve the system.

For this reason, we developed a package to provide
three different solvers with a unified user interface. After
passing the geometry (mesh) data and edge information (the
sparse matrix elements) to the package, the user may choose
one of the solver best suited to the problem,

We emphasize that both the solution methods and the
user interface make direct use of the underlying geometric
mesh of the problem. We use a geometric domain decompo-
sition[7,2],  in contrast to most existing solvers which typi-
catly take a algebraic decomposition (an exception is
described in [8] where the approach is close to ours). After
the mesh is partitioned (could be carried out in parallel with
a general-purpose partitioned independent of the solver
package[91),  the user deals with a local mesh whose bound-
ary points are either real boundary where boundary condi-
tion apply, or processor boundary which the user treat as
interior points and the solver uses to connect the local
patches into a global one.

This unique feature that user only deals with local
mesh enables the user to assemble the sparse matrix ele-
ments just as on a sequential computer. Thus the construc-
tion of the matrix and the solution of the linear system can
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procwd entirely with the solver package in a parallel fash-
ion. In contrast, all existing solvers deal with readily
assembled matrix; them how to assemble those matrix in
parallel remains an issue.

Below, we described the package in detail, focuing
on the domain decomposition and the corresponding
matrix structure. Key points in parallelization  of the solu-
tion methods are explained in detail. Parallel scaling char-
acteristics of the solvers running on Intel Delta are
provided. More systematic analysis of the solvers will be
given in a later report.

withou(  any Communications. Grid points on processor
boundaries serve as separators in standard sparse matrix
techniques: they partition the mesh (and thus the sparse
matrix) @to disjoint regions (independent blocks). We will
refer tc) them simple as “boundary points” in contrast to
these interior points. Note that a boundary point has owner-
ship: only one processor “owns” it, other processors share
it.

2

FIGURE 1. A Partitioned Mesh,

Domain  decomposition

Domain decomposition defines the structure of the
sparse coefficient matrix of the linear systcm.The  require-
ment that matrix assembly involves only local data leads
to a element-based decomposition, i.e., each finite element
of the mesh should entirely belongs to onc processor. The
decomposition bases on the geometric mesh, not the
graph associated with the sparse matrix. All points defin-
ing a finite element reside on one processor, thus no com-
munication is required in calculating contributions to the
matrix elemenk. The subdomain  boundaries always go
along edges on the mesh, and grid points sitting on these
boundary edges are replicakxl  (shared) among the proces-
sors who share the boundcrics.  This implies that the local
mesh is a complete simply connected one. Thus the user
can do all the usual sequential work on this local mesh
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F1(; URE 2. Sparse Matrix Structure.

An added benifit  of this decomposition is that the
adaptive or multilevel refinement of the mesh as a simple
local sequential process, since all information with regard to
the local mesh is locally available. The only constraint is
that the edges/faces on the processor boundary should be
dined consistently throught  out all the allocated
processors, e.g., creating new points only at mid-edge on
those boundary edges. An algorithm exists to match the
newly created nodes along the subdomain boundary, thus
connecting lod meshes  into a global one.
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3 Matrix  Structure

The sparse matrix based on geometric
decomposition (Fig. 1) is shown in Fig.2.  Only
shaded area are possible to have nonzero matrix
elements (actual storage schemes will be dis-
cussed later); the domain decomposition pro-
vides a natural ordering much like the one
resulted from nested dissection based on the
graph of the matrix. We can formerly write the
global matrix as

F%lkl=l! (1)

Block matrix K,,, standing for interior grids cou-
pled to interior grids, is itself a block diagonal
matrix

H
KAA

KBB
‘ I I  =

Kc c
KDD

2proc 1

1

(2)

where KAA stands fol interior grids coupled to themselves

in region A , ete; F~ch of the square block belongs to a
unique processor. It is important to note that all block matri-
ces such as here and below are themselves sparse matrices
in nature; their sparse pattern will change from one applica-
tion problem to another, and their storage may vary depend-
ing upon the solution method used. The matrix structures in
E/~s.(2-3) are the structures due to the domain decomposi-
tion used in the package, and it only indicates that there are
vast amount of block matrix elemenk  of the global matrix
which are identically zero, and thus am never represented in
the solver package.

Block matrix K,~ represents interior grids

coupled to shared boundary grids, and has the fol-
lowing block structure

II
KA,J KA ~ KA.?

KIS = KBb KBC KBe

Kcc Kcd Kc,

KDa KDd KDe

(3)

where, e.g., KAO stands for interiorA  cmrpled to shared

boundary a. Each of the block elements belongs to a unique
processor.

f<

procl  2 ~ proc2

k
proc3 proc3

proc 1 proc 2 proc 3
r >

A124 A145 ‘+ 7A*A347 ‘ ‘~4”% A4d5
’ 4 4=  ’ 4 4  ‘K44 ’ 4 4 + ’44 + ’44 + ’ 4 4

A124 ~ A234
’ 2 4 =  ’ 2 4 ’ 2 4 + o

Figure 3. Matrix Element Split. Thick lines indicate processor boundaries.
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Block matrix K~~ represents shared boundary grids

coupled to itse~, each of its matrix elements are usurdy
split into several processors, as shown in Fig.3. The reason
for the element split is twofold. Consider the global matrix
element associated with the edge 2-4 in Fig.3.  It has two
contributions from mesh element 124 on processor pl and
mesh element 234 on processor p2. If we assign to only
one processor, the other processor has to passing its contri-
bution to this processor, creating a special situation the
user of the package has to handle. We instead let both pro-
cessors have storage for (as shown in Fig.3) so that matrix
construction is local with no communication required..

On proc O

4 Locd  Matrices I On proc 1 .

The element split of thus allows the user to con-
struct/assemble  the stifness matrix in a entirely local man-
ner (Fig.4).  On processor po, the user has a local mesh A ,

and he construct the matrix based on this local mesh; the
only consideration due to the fact that mesh A is a subdo-
main of a global mesh is that the user has to separate inte-
rior points on A from boundary points dA . Thus the local
linear system is

where
K

[ 1~aA = KAO  KAb KA,

because 3A consists of a, b, e . TheseK~o, KAb, KA, appear

in K1~ in E4.(3).  On processor pl, user construct a similar

equation based on subdomain B. Note that M consists of
b, c, e and has an overlap with i)A . These overlapped
matrix elements are added up indirectly in the PBCG; they
are added up explicitly in the two-stage factorization
solver.

These description of the global matrix leads to the
local matrix stored on each processor as shown in Fig.4 for
processors pO and pl. Note the duplication of Kbb on two

[po]processors: Kbb contains contributions from elements

on PO and K& ’l] contains those on pl. Similarly, Kee is

duplicated on all 4 processors, Only in the two-stage
Cholesky factorization solver these pieces are explicitly
summed into one piece by the solver; in both the PBCG

(4)

❑ Kii ❑ Kis ❑ Kss
Figure 4. Local matrices. On proc O, we also
indicates the storage schemes used in two-stage
Cholesky  factorization solver.
and tlm two stage hybrid solvers, they are summed up indi-
Rctly.

The labeling of processor boundaries a, b, c, d, e here
is for i Illustration purpose. In actuat  implementation, all of
them are treated same. Facts such as points in e are repli-
cated on all 4 processors, or points in a are replicated on
processors pO and pl, etc. are recorded in a proc-list  associ-
ated with each point: a processor-id is stored in the list if the
point resides on the prwessor.

It is important to note that the matrix structure on
processor.pO as showned in Fig.7 is the same matrix strnc-
ture one would get as if he is dealing with the local mesh on
a sequential computer; the only difference is that the grids
on processor boundary are not real boundary grids and thus
a variable (unknown) is assigned to it, This is the central
idea throughout the designe of the package: user deals with
the local mesh the same way as he deals with a global mesh

Ding&Ferraro 4



on a sequential computer. This provides complete freedom
for user to handle and modify the problem at hands.

s Prwonditioncd  Bi-conjogate  Gradient Solver

For complex symmetric matrix, we implemented
the hi-conjugate gradient method[lO]. This popular itera-
tive solver is fast and preserves the sparsity of the matrix,
thus saving computer memory. However, the iteration
does not always converges, depending on the properties of
the matrix. The solver involves two kinds of communica-
tions. One is the dot product of two global vectors, which
are implemented by using global_sumo  type of commu-
nication subroutines. The other is a global matrix-vector
multiplication, which is implemented as a local matrix
multiplication plus an inter-processor communication
called globalizeo.  Suppose the matrix-vector multiplica-
tionis~=Kx. Let’s look at the component .iZ (see

Fig.3). Noting that KM is split on processors pl and p2,

We have

( )[p]] + Kb2]  X4+  K23X3i2 = K2,x1 + Kw

( )r )=  K2,x1 +  K$’]x, + t(~2JX4  +K23X3

i.e. thk becomes local  matrix multiplications on relevant
processors,

~[pl] = K[pl]x[pl] ~[p2]  = K [Pa ~ ml
( 5 )

plus the summation of the resulting local vectors on rele-
vant processors. Because point 2 is replicated on proces-
sors pl and p2, the variable associated with point 2 will be
the sum of the appropriate entries on processors pl and p2;
the sum is then replicated on the two processors. Similarly,
The variable associated with point 4 will be the sum of
entries on pl, p2 and p3. Me. This can be implemented as
the non-owned boundary points sending value to the
owned boundary points; the sum is done at the owner pro
cessor  and then broadcasted back to those non-owned pro-
cessors. This summation and replication process on shared
boundary points is called globalization of vector.

The storage in the C(3 type solution is non-zero
only, i.e., only non-zero matrix elements are stored. This
minimum storage scheme presaves the sparsity of the
matrix. At present, only diagonal preconditioning is
implemented. Incomplete Cholesk y preconditioners  are
not implemented, because their usefulness for the symmet-
ric complex matrices has not been documented.

6 ‘ho-stage Cho]esky factorization solver

The Cholesky  factorization method proceeds in
two stages, using the domain decomposition
described above. The separation of interior girds
from boundary grids leads to the sparsity  pattern
in the global matrix (see Fig.2),  which greatly
facilitates this process. Starting with the global
equation Eq.(1).  Since each block matrix in K,,

reside entirely on one processor, we can do a
complete local factorization to obtain its inverse,

thus obtaining K~~ without any inter-processor

communication. Solving the equation with respect
to X, and substitute into the equation with respect

to x$ , we obtain the reduced equation

(KSS  -  ‘SIKI;  ‘IS)XS  = fS  -  ‘S IKi:fI ( 6 )

or simply

kssxs = fs ( 7 )

Since  fl,fs,  Ks!,  Kl: are known, ks$,js can be cal-

culated. This reduced equation deals with only the
shared bounclary grids, as schematically shown in
Fig.5.;  all the interior grids have been eliminated.
Thus one we have reduced the original larger sys-
tem to a relatively much smaller system. The
reduced matrix is still symmetric and preserves
the positive-definiteness, i.e., if the original
matrix is positivedefinite, the reduced matrix is
also positive-definite. This property is important
both for the two-stage Cholesky  solver described
in this section, and for the two-stage hybrid solver
described in the next section.

The first stage of the solver is to define and calcu-
late local reduced equations on each processors
independently: for example,we have

[ ‘3A i)A
-  KaAAK~~KAaA)laA  = f~A  -  KaAAK~’~A ( 8 )

or simply

‘;IA aA “ ‘~A  = 
hA ( 9 )
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on processor PO for the boundary of subdomain A, That
this local version is possible is due to the important fact
that every entry in uniquely belongs to one processor
(unlike the element-splited entries in ), and so are every
block  matrices in. One can view this equation as directly
obtained from F4.(4)  on a sequential architecture. Local
reduced equations on other processors are similarly calcu-
lated.

During the local factorization we use a simple variable-
banded (also called profiling or skyline) scheme in which
on each row, we store every element between the first non-
zero element and the diagonal element (see l?ig.4).  With
this storage scheme, the local factorization of proceeds
easily. The rwtangle matrices coupling between the inte-
rior and boundary, such as KAaA  (see Fig.4)  are stored

simply as nonzero  only (same as in the iterative method
cases), because they are only involved in matrix multipli-
cat ions. The boundary block matrix KaAaA (see Fig.4) is

stored as a lower triangular dense matrix,  Because these
matrix elements are typically split into several processors
as explained previously, a deme matrix representation
makes it simple to keep track of indices across many pro
cessors  in later reshuffle of data.

The second stage is to solve the reduced equation
via a parallel Cholesky  factorization. First the global
reduced equation is explicitly summed up via inter-proces-
sor communications as explained in Sec.4, and so is the
globaJ  vector on the sha~d boundaries. At the same time,
the resulting and are redistributed with each processor
holds several rows of in a cyclical fashion, much like a
dense matrix factorization. The symmetric complex
matrix is stored as a variable banded matrix, i.e., on each
row storage is allocated from the first nonzero element to
the diagonal. Numerical factorization and back substitu-
tion are performed in parallel.

In summary, the reduction of global matrix are cal-
culated through local matrices based on local meshes and
then followed by the inter-processor summation which is
structured enough to be handled by the solver. The simple
correspondence in matrix blocks between the global and
local reduced equations are due to the particular matrix
distribution method we choose.

7 TMo-stage hybrid solver

We can also solve the global reduced equation on
boundary grids, Eq.(6), by using the Preconditioned Bi-
Conjugate Gradient method in Sec.5. Identical routines are
used, except that here we are dealing with only boundary
points and the local matrix-vector is , instead of in Sec.5.

Iixplicit  construction of k~~ is not needed. Since the dimen-
sion of is far more smaller than , we expect a better conver-
gence property for PBGC on this reduced system. Also, this
hybrid method has the best scaling property; it scales as
when the problem size increases in proportion to the total
numbw of processor .

8 Usage

The solver is designed for minimal requirements on
the user side. The user prepares for one data interface to the
package, and solve the system by invoking one of the three
solvers.The  interface between the user and the package has
two parts. First, the user passes to the package the list of
local grid points, including usual entries like grid-id and
coordinates etc., and a proc-list  which contains the proc-id’s
which share the grid. These information come with the par-
titioning of the unstructured mesh in a separated proce-
dure[9]  outside the solver package.

Second, based on the list of local sets of grid points
(the elcmenk in finite element methods or the stencils in
finite clifference  methods), the user calculates the problem-
depenclent  matrix elements associated with each local sets,
as if he is in a single processor environment. The user
passes the local sets information and the contributions to the
global sparse matrix elements by two rounds of subroutine
calls. (rhe user does not need to know how to construct the
sparse matrix). The first  round of calls to subroutine
allocK() with the local sets information is made to setup
the lKSI and global indices and to allocate the storage
needed. A second round of calls to subroutine addKfo is
made to pass to the solver package the local sets informa-
tion and the user-calculated sparse matrix element entries
and right-hand-side entries. Typical boundary conditions are
spectied  by the user through subroutine calls to addKfo.
These calls completes the assemble of the sparse matrix ele-
ments.

The linear system is then solved by one of the three
methods chosen by the user. IIowever,  since the storage
scheme depencls  on the solution method, user has to specify
the solution at the beginning, by linking in one of three dif-
ferent subroutine sets. Note, however, the interface the user
specified remains identical.

9 Performance

We have completed the solver package. The solver
package is applied both to a finite element solution of elec-
tromagnetic wave scattering from conducting sphere, and to
a finite difference solution to a static heat distribution prob-
lem governed by the Poisson equation.
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In Fig.5, we plotted  the scaling behavior of the
solver for the heat problem (data for two-stage Cholesky
solver will be presented in a later Rport). We let the prob-
lem size scale with number of processors while fixing
1600 grid points per processor. The data shown is the ratio
of the timing for the entire problem on processors vs.
solving a 1600-grid problem on one processor. The pre-
conditioned hi-conjugate gradient methods scales as ,
where one comes from the matrix-vector product (sparsity
reduced to ) and another comes the order iterations.
Since , we expect the scaling be linear in , and our data
supported this scaling clear] y. The two-stage hybrid solver
first does a sequential factorization on the interior points
and then does a parallel hi-conjugate gradient method for
those boundary points. The first part remains a constant for
the fixed size per processor, and the second part deals with
those boundary points which increase as square root of the
total points. Once the first part saturates, the total time for
the hybrid method should increase as , as our data indi-
cated.

‘“~

30
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o ?0 40 60 80 1 0 0 120 1 4 0

Number of Processors

Figure 5. Scaling Characteristics of the solv-
ers on Intel Delta.

10 Conclusions

We have implemented a software package for con-
structing and solving the sparse coefficient matrix linear
systems arising from solving partial differential equations
based on unstructured grids. The sparse symmetric com-
plex linear system can be solved by either a precondi-
tioned hi-conjugate gradient solver, or by a two-stage
Cholesky  factorization solver, or by a hybrid solver com-
bining both. The interface of the solver is designed so that
one interface fits to all three different solvers. Scaling test

runs for fixed problem-simYprocessor  indicate good scaling
behavior of the two-stage hybrid method,
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