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Abstract

Wc consider the problem of finding a trellis for a linear block code that minimizes one or more
measures of trellis complexity. The domain ©f optimization may be different permutations of the same
code, or different codes with the same parameters. Constraints on trellises, including relationships
between the minimal trellis of a code and that of the dual code, are used to derive bounds on
complexity. We define a partial ordering on trellises: if a trellis is optimum with respect to this
partial ordering, it has the desirable property that it simultaneously minimizes al of the complexity
measures examined. We examine properties of such optima] trellises and give examples of optimal
permutations of codes, most notably the (48,24,12) quadratic residue code.
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1 Introduction

Every linear block code can be represented by ainimal trellis, originally introduced by Bahlet.
al. [1],which is a labeled graph that can be used as a template for encodingor decoding. As shown
by McElicce [26, 27], the minima] trellis simultaneously minimizes the inaximum number of states,
the tots] numbers of vertices and edges in the trellis, and the total numbers of additions and path
comparisons required for decoding with a Viterbialgorithm.

A code’s minimal trellis is unique as long as the ordering of the code’s symbols is fixed. However,
different permutations of the symbols yield different minimal trellises. An optimum minimal trellis
for the code is one which minimizes a suitable measure of trellis complexity over all possible per-
mutations of the code. ‘1’ here are no known efficient algorithms for constructing optimum minimal
trellises.

Using [27] as a starting point, wc examine properties of the minimal trellis representation of a
code and its dual for a fixed permutation, and use these results to examinc the problem of finding
apermutation that minimizes one or more trellis complexity measurcs. We extend these results to
the problem of finding a minimal complexity trellis over all codes with the same parameters. Wc
identify certain suflicient conditions for a code or a permutation to simultancously minimize all of
the complexity measures.

Section 2 reviews the subject of minimal trellises for a fixed perinutation of a code. We ex-
amine the building blocks of such trellises, and identify several different mcasures of trellis size or
complexity.

In Section 3 we illustrate the connection between the minimal trellis of a code and that of the
dual code which provides the foundation for duality relationships that appear throughout this paper.
The section includes results that describe the structure and complexity of trellises for self-dual and
other special codes.

in Section 4 wc discuss dimension/length profiles of a code [14, 10, 30], which are equivalent
to Wei's generalized hamming weights [32]. The dinlcnsion/length profiles are used to derive some
straightforward complexity bounds, We summarize some properties of these profiles including duality
relationships.

Wc define a partial ordering on minimal trellises in Section 5. If theminimal trellises for two
codes arc comparable in terms of this partial ordering, then each of the complexity measures for
onc trellis is bounded by the same measure evaluated for the other trellis. This partial ordering
can sometimes be used to identify the permutation of a code with the least (or most) complex
minimal trellis, or the code with the lowest (or highest) complexity trellis of all codes with the
same parameters. The extremal codes determined by this partial ordering turn out to meet the

complexity bounds described in Section 4. We illustrate certain properties and give examples of

such permutations and codes.



Finally, wc give some concluding remarks in Section 6.

2Minimal Trellis Representation of a Code

2.1 The Minimal Span Generator Matrix

For any lincar (n, k) block code C over GF'(¢) there exists a minimal span generator matrix (MSGM)
representing C. A minima) trellis 7 for the code can be constructed fromthe MSGM. The trellis
has n + 1levels of vertices and nlevels of edges. The vertex levels, called depths, arc numbered from
0to n; the edge levels, called stages, are numbered from 1 ton.Fach stage of edges corresponds
to onc stage of encoding or decoding using the trellis. Fach vertex at depth irepresents a possible
encoder sl ate after thie iii’ stage of encoding. The itP stage corresponds to the i*P col umn of the
generator matrix, whercas the ith depth corresponds to the “space between” columns i and ¢ + 1.
The edge-span of any row of the generator matrix is the smallest set of consecutive integers
(stages) containing its nonzero positions. Thevertez-span of therow is theset of depths i such that
al least oncnonzero symbol occurs before and after depthi. Using the generator matrix to encode
kinforination symbols in n stages of encoding, the edge-span of the j'" row represents the interval
of stages during which tbc ;" information symbol can affect theencoder output. The vertex-span
of the j*' row is the set, of depths at which the jth information symbol can affect the encoder state.

For example, tbc (6,3,3) shortened Hainming code has rinimal span generator matrix

111000

G=|01010 1]. 0
001 110

The edge spans arc {1,2,3}, {2,3,4,5,6}, and {3,4,5}. The vertex spans arc {1,2}, {2,3,4,5},
and {3,4}. Wc usc the term span length to refer to the cardinality of aspan.

A remarkable result is that the MSGM simultancously makes all of the spans as short as possible:
the edge-sl)ans (vertex-spans) for any other generator matrix representing C aways contain the
corresponding spans of somne row-prermuted MSGM [27]. Any generator mat rix can be put into
minimal spanforin using the following greedy algorithm: at each step, perform any row operation
that reduces the edge-span of any row of the matrix. I'he rows of the MSGM arc then “atomic
codeword s,” according to the terminology of Kschischang and Sorokine [21].

Fach vertex or state at a given depth can beuniquelylabeled using & or fewer symbols from
GF(g). But any given state-label symbol can be reused to represent several information symbols,
as long as the vertex-spans of the corresponding rows of the generator matrix do not, overlap. This
reassighment of state-label symbols to multiple rows of the generator matrix is the key to efficient
trellis representations of the code.

Example 1 The minimal trellis T produced for the (6.3,3) shortened Hamming with MSGM



given in equation (1) is shown in Figure 1. For this trellis we can definethe binary state label to be
s957 , where s, =1 at depth 7if the second information bit is1 and r’ is within tbc vertex-sl)an of
the second row; and s=1if either (@) the first information bit is 1 and ¢ is within tbc vertex-span
of thefirst row, or (b)the third information bit is 1 and ¢ is within the vertex-slJan of the third row.
This tine-sharing arrangement for state bit s;is possible because the vertex spans of the first and

third rows do not overlap. u

0 1 2 3 4 5 6 depth

stage

Figure 1: A minimal trellis for the (6,3,3) shortened Hamming code.

In the sequel we willbe primarily interested innondegcnerate codes, which we define as codes
whosc minimum distance d and dual code minimum distanced® arc both a least 2. Degenerate
codes have a simple interpretation: If d <2, the vertex-d)an of some row of the generator matrix
must be empty; ifL @ 2 some column of th. generator matrix must be identically zero. For a
degencrate code, we can simply ignore the extrancous symbol positions (if d! < 2) and/or separately
decode the unprotected information symbols (if d < 2). The code consisting of the remaining code

symbols is then nondegenerate.

22 Past and Future Subcodes

Following Forney [8], let us define the ith past, and future subcodes,denoted P; and Fj, to be the
sets of all codewords whose vertex-spans arc contained in [O, i — 1] and[i -1 1, 7] respectively. These

subcodes arc nested in the following manner:
{On}:Pl CPs C "'g7)11:c
C=F12F22 - 2Fn: {0}

Bach of these subcodes is linear: Pi is generated by the rows of the MSGM whose vertex-spans
arc contained in [0, ¢ — 1], and F; is generated by the rows of tbc MSGM whosc vertex-spans arc
contained in [¢ + 1, n]. Consequently, the dimensions of these codes can be easly determined from
the MSGM:fi.é_dim(f,-) is the number of rows for which t heleftmost nonzero entry lies in column

t+ 1 or later, and Pi=dim(P;) is the nhumber of rows for which the rightinost nonzero entry liesin




column r' or earlier [27]. This implies that p; and f; arc monotonic,
OZPOSPIS“-Spn::k 2

k=fo>hi> .02 fu::0 (3)

and never change by more than 1 from oneindex to the next
pi<pig+1i=1,...,n 4

fi—lei"l‘],i:]:"'v?l. (5)

For cach 1 <i< n, wc define the lefi- and right-basis indicators, l;, r; € {O, 1}, to identifly the

positions where the future and past. dimensions change:
A
= fio1— [

N
PP = P~ Pie1e

Forany¢,1;=1if aud only if the edge-span of solnc row of the MSGM G begins in column i, or
cquivalently, the i column of G is linearly independent of the i — 1 colurmns to theleft. Similarly
r;= 1if and only if the edge-spau of some row of G ends incolunm i, i.e, the /" column of G is
lincarly independent. of the n —i columns to the right. The columns wherel; = 1 and the columns
where »; =1 each forin a basis for the column space of G, and these sets arc caled the left basis
and the right basis, respectively. The positions of the left and right basis colu Inns can be regarded
as information positions whenthe generator matrix is used to encode the information left-t~right

or right-to-left, respectively.

2.3 Primitive Structures of a Minimal Trellis

There are four basic building blocks that can be used to construct the minimal trellis for any
nondegenerate code. At any given stage ¢, al primitive structures are of the same type, which is

determined by the values of I; and »;. The primitive structures are:

1. Simple extension (-): This primitive structure appears at stage i whenl;= O, ;= O, eg,
stage 4in Figure 1. Simple extensions at stage ¢ mply asingle edge out of each vertex at
depthr — taud a single edge into each vertex at deptlii, hence the number of vertices remains

constant.

2. Simple expansion (<): corresponds to /; =1, r;== O, c.g., stages 1 and 2 in Figure 1. ‘1’ here
arc q edges out of eachout of each vertex at depth i - 1, and a single edge into each vertex at

depth i, hence multiplying by g the number of states from one vertex depth to the next.




3. Simplemerger (>): corresponds to I; = 0,r;=- 1, e.g., stages 5 and 6 inFigure 1. A simple

merger is a time-reversed simple expansion, reducing the number of states by a factor of g.

4. Butterfly (x ): corresponds tol; =1, »; = 1, eg., stage 3inlFigure 1. ‘1'here arc g edges out of
each vertex at depth i — 1 aud q edges iuto cach vertex at depthi, hencethe number of states

is constant.

T'he total numbers of such primitive structures in the trellis are denotedby N. , N, N>, aud N,
respectively. For example, the trellis in Figurel has N_=3 = N>, Ny =2, N_=4.Because the
graph has cxactly onc initial node and onc terminal node, the total number of simple expansions

must equal the total number of simple mergers:
Ne = N>,

The total number of edges inthe trellis, ¥, canbe found by counting the number of edges

associated with each primitive trellis structure:
I = N' ‘f(]N<’{q1V> + (ijg . (6)

Similarly, the total number of mergers M is the sum of the number of simple mergers aud the

mergers included in butterflies

M= N> +4g¢Ny @

If we count the total number of vertices associated with each primitive. structure, then each vertex
inthe trellis (excluding initial and terminal nodes) will be counted twice, so the total number of
vertices V satisfies

2V —2=2N_ 4 (¢+ I)N<c 4 (g-1 1)N> -1 2¢ Ny

which gives

V=1+N_4 (g4 )N qNg. (8)
Combining (6), (7), and (8) we find
-Vl
=03

This is the generalization of the binary version of this result fouud in [27].

2.4 Measures of Trellis Complexity for Viterbi Decod ng
The vertex space dimension at. depth 7 is

vi=k—fi-pi, 1=0,...n 9)
aud the edge spat.c dimension at stage i is

¢; = k—Ji—pica, i=1.. . n. (lO)




The total number of vertices at depth i is ¢¥* and the total number of edges at stage ¢ is ¢®. Of
course »; > O for dl 7 since at lcast one vertex must exist at each depth. Also, for nondegenerate
codes, e;> 1 for dl ¢, i.e,, no stage consists of asingle edge.

The most commonly used measure of Viterbidccoding complexity for aminimal trellis is the

maximumdimension of ils state space,
A
Smax = m?X Vi . (11)

This complexity metric has been cited as one of the essential characteristics of any code [28]. Sitni-

larly, the naximum dimension of the edge space is
A
€1 ax = IMax ¢;. (12
1

Forney argues that this is a more relevant complexity measure because, unlike spmay, this quantity
cannot bereduced by combining adjacent stages of a trellis [1 O].

A different metric, used in the derivation of the MSGM [27], is the totallength of all the edge-
spans of the rows of the MSGM:

}\.
FANE
= }, €; (13)
j:l

where €; denotes the Iength of the edge-span of the 5" row of the MSGM. A similarspan length
J g ge-sp

metric is the totallength of all the vertex-spans:

k
-

e

Vi
ju:1
wherey;=¢;-1 is the length Of the vertex-span of the ™ row of the MSGM. These two metrics
arc equivalent to thesuns of al the edge dimensions or ver texX dimensions (sunmmed over stages or

depths, respectively):
n n

l/+k:6:ZC¢:k+Zvi.
i=0

i=1
It is argued in [26, 27] that more meaningful measures of Viterbidecoding comnplexity arc the total

number of edges I/, vertices V, and mergers M, rather than simply the vertex or edge dimensionality:

1= "¢ (14)
121
V= }_: q (15)
10
. N RN 1<
M = Zriqv' = Lliqv“’ = - Lliqei = - Lriqek (16)
i=1 i=1 g i=1 9 i=1

12 is equal to the nummber of binary additions required to compute pathmetrics, and M is the
number of g-ary comparisons required to merge trellis paths. The cornputational complexity of

Viterbi decoding is proportional to E [27].




sMinimal Trellis Representation of the Dual Code

Inthis section wc explore the relationship between the minimal trellises for a code C and its dual
c.

3.1 Past and FutureSubcode Relationships

As discussed inScction 2.2, i = O if and only if the *" colunm of the MSGM can be written as some
lincar combination of the i — 1 columns toits left. In other words, there exists a dual codeword y of
the form
y=XXX--X1000---0
i-1 n-1
Where XX X ... X denotes some sequence of symbols from GI'(g). Defining ¥, vz, ..., Yn_pinthis

manner for each of the left-dcpendent columns in the MSGM produces 7 -- &k dual codewords of the

form
0 = XXX--- X1000--- 0
Y2 = XXX X1000---0
Yn—p =XXX ... X1

These dual codewords arc clearly linearly independent and thuscanbeused as the rows of the
generator matrix for C+. Wc scc that the positions where »;* = 1 are precisely the positions where
li = O; the same argument applied to the right-dependent columns shows that the positions where
I} = 1 arc preciscly the positions where r; = O. lerel} and { arc the left- and right-basis

indicators for C! Thesc observations lead to the following thcoren.

Theorem 1 For each O < i< n,thelefl- and right-basis indicators for a code an d its dual are

relaled by
l; + 1’17L = l,“L 47y =1

and the dimensions Pi, [;, of the past and fulure subcodes of a code arc giveninierms of those of

the dual code pf, f* as follows:

pi=k—n+it+ f

fi=k—i+pf.

Wc believe that this result, which relates minimal trellises of a code and dual for any fized
permutation, is more fundamental than similar dua relationships for permutations of codes. This

result is also contained in [1 Q], bul derived by first considering permutations of codes.




3.2 Primitive Trellis Structures for the Dual Code

Much information about the trellis for the dual code can beinferred fromthe trellis structure of the
code. For example, if the code has a simple expansion a theith stage, thenli=1,r; = O, which
implies, using Theorem 1, that the dual code has I,-l = 1,7/ = O, hence the trellis of the dual code
also has asimple expansion structure at this stage. Repeating this procedure we find the “dual” of

cach primitive structure, shownin ‘I'able 1.

Code Structure Dual Structure
imple Extension (=) —“l_h_ltt‘crﬂy (x)
li=0,7,=0 F=1rt=1
imple Expansion (<) | Simple Expansion (<)
L=1r=0 =1t =0
Simple Merger (>) Simple Merger (>)
L,=0,r=1 I =0, =1
Butterfly (%) Simple Extension (-)
Li=1r=1 I =0,7t=0

‘Jable 1. Dual primitive structures.

Given an unlabeled trellis, Table1 can be used to determine the nuiber and type of primitive
structures present at every depth of the trellis for the dua code. However, as the following example
illustrates, wc cannot in general determine the interconnections without additional information about

the code.

Example 2 Let € and C2 be the codes with generat or matrices G,= [(E.i](.)l and G,=
0110

]]0]1 respectively. From Iigure 2, which shows the minimal trellises for these codes and thcir
(I-ua]s,wc cansce that 7 (€, ) and 7 (C2) have the samne structure (only the cdge labels are different),
but 7 (€i+) and 7 (C5) do not. u

Pigure 2: Minimnal trellises (a) 7(C;) and 7(Ci+) (€1 is self-dual), (b) 7 (C2), (©) 7 (C3).
The dua relationship for primitive structures shown in ‘1'able 1 implies that
N =N

= N> = N



and

N_ :QN;.
3.3 Dual Code Complexity Measures
The following  well-kuow]l result, first noted by Forney [8], is a consequence of (9) aud Theorem 1.
Lemma 1 A codeandits dual code have equivalent veriex spaces, namely for each i,
Vi = ‘Uil.

Jonsequently, many of the trellis complexity measures for a code can be determined by evaluating

the saine measure on the dual code:

V=vt
— 4
Smax = Smax

5—k:y:1/l :;51-4(71»16).

Note that this implies e =¢* for auy rate 3 code.

The number of edges inthe minimal trellis of a code aud its dual arc not as conveniently related.
From (1 O) aud Theoremnd,

c; = C;-L + (- Til - lil')

for cach 1 < i <n.Consequently, since| 1-- 7} — ] < 1, and from the definition of I,

k< Et<gl.

=

Equality is possible only for the degenerate (n, n, 1) code oy its dual

3.4 Minimal Trellises for Self-Dualand Other Special Codes

For self-dual codes, the theory of the previous two sections collapses neatly to yield stronger results

because for any such code ii = I} aud »; = r} for alli. Consequently from Theorem 1:
Theorem 2 For any self-dual code C, for each == 1,2, . . . n,cither:
1. ;=1 and r;= O, or
2L =0andr; =1,

i. c., every slage corresponds foaninformation symbol when encoding fromone direction and a
parily symbol when cncoding from the other direction. The only primitive trellis structures in T (C)

arc simple expansions and simple mergers.

10



We say that two trellises 71,72 have equivalent structures, denoted 7;~ 7 if 7,can be made
identical to 7,by an appropriate relabeling. ¥.g., for the codes of example 2, 7(Cy) ~7 (C2) but
T(CH) £ T(CH).

The converse Of Theorem 2 does not hold: a code whose minimal trellis contains only simple
cxpansions and mergers need not be self-dual. In fact, C may not be self-dual even when 7(C) ~
7(CY), eg. the code whose MSGM is G = [ 01?]1(]’1 However, a relabeled trellis for this code is

self-dual.

L cmma 2 Given any binary code C such that 7 (C) coniains only simple expansions and simple

mergers, there exists a sclf-dual code €' such that T(C) ~ 7 ((').

Proof: Let G denote ary MSGM for C. Form a k xn MSGM G’ for €' by setting each element of G
to 1if the corresponding clement in G begins or ends a span, or zero other wise. Then 7(C) ~ 7( C')
and C' is a self-dua code with minimun distance two. u
The following theorem, which is a consequence of Theorem 2 and equations (6), (7), and (8),
shows that for self-dual codes, the complexity measures F, V, and M arc linearly related, and the

maximum edge and vertex dimensions arc equal.

Theorem 3 For any self-dual code,

Smax = Cmax .

There is another case where we can restrict the type of structures that can appear inthe trellis

for a code:
Theorem 4 If Cis such that all codeword weights arc divisible by someinteger m >2, then

1. There docs nol exist a position i such thatl; = r,= 1, ie., 7(C) contains no bullerfly

structures.
2. Ccannol have rale grealer ihan%.

3. €max ~Smax

1
Lvs 150 gy
« 9 )
5. M< A n
. 20"

11




6. Vi < (”—%-1> Y41

7. Mt > l]«,‘l
2

Proof: If §; = r; = 1 then the ¢'" column begins and ends spans in the MSGM. This implies the
cxistence of codewords of the form 2= XXX ... X10" Pandy = 0" 1(-1)XX X .- X, where (-1)
denotes the additive inverse of 1in GF(¢)and X X X -. X denotes some string of symbols in GF#'(g).
Thenz+y is a codeword of weight |#]+ |y| — 2 which cannot be divisible by 7. This proves 1. ¥rom
1 we have li + 7, < 1 for alld, so 2k = 300y (5 -t 76) 32721 1=, which Proves 2. The fact that
7 (C) can have no butterfly structures proves 3. From (16), 2¢M =370 (Li4ri)g@ <3299 =1,
proving 5, and 4 follows directly. Since I; + 7;<1, Theor cm 1 implies !} 474> 1, which gives 6
and 7. |

Codes for which all codeword weights arc divisible by some integer other than one arc called
divisible codes [31]. Jixamples of divisible codes include the (31,1 0,12) cyclic codes and doubly-even
sclf dual codes such as the extended Golay code.

The converse of 'Theorem4 does not hold- a code is not necessarily divisible when I; 4-7; <1
for al i, eg., code C;of Example 2. If a code and its dual satisfy the conditions of “T'heorem 4 then
the code strongly resembles a self-dual code: the code must have rate 1} andits trellis contains only

sitnple expansions and simple mergers.

4 Trellis Complexity Bounds

Although the results of the previous sections assume afixed coordinate ordering for the code, the
trellis structure, and hence trellis complexity, depends on the PETIMUati0n of the code. Massey refers
to the procedure of re-ordering the code symbols to reduce the trelis complexity as “the art of trellis
decoding” [25, p. 9].

Inthis section wc identify code paramncters that affect the possible trellis complexity, describe
upper and lower bounds based on these paraneters, and illustrate propcertics of certain codes that
have low complexity trellises.

First, some notation. Let 8, denote thic set of all permutations of {1,2, . n}, and for any
n € S, let Cx denote the code C with coordinates rc ordered according to m. Because the code and
dual code provide symmetric. constraints ounthe code’s minimal trellis, the complexity bounds arc
developed by considering the characteristics of both the code and its dual. Wc refer to an (n, k,d)

code with dual distance dt asan (n,k,d,d*) code.



4.1 Bounds Relating One Complexity Measure to Another

The following lemma arises from the definition of s,ax aud emax, and the fact that the vertex and

edge dimensions change by 110 more than one unit from one index to the next.
Lemma 3 The verlez dimenstons and edge dimensions are upper bounded by
v <min{i,n — 4, smux}, 0<i<n

ei <min{i,n-+1-~14enax}, 1<i<n

Summing the inequalitics in Lemma 3 leads to the following bounding relationships among the

complexity measures.

Theorem & The tolal complexity measures v, e, V, Fare upper boun ded interms of the mazi-

mum complexily Measures Sy, ax,Curax Y

v < sm a>€ N~ Smax) (17)
€ < €max L 41 --en a).) (18)
g+ 1 2
\Y n+ - ’*'?’ﬁnax Saue 1 1
< P 1 1 q g- 1 ( 9)
2q 2q
I <n A4 — ~2¢m qe,,,,.,._ T 20
R i s (20

Sincethe average edge dimension over all stages is €/n aud the average vertex dimeunsion over

thelast ndepths is v/n, 100SC lower bounds on V aud ¥ canbeobtained from Jensen’s inequality.

Theorem 6 The tolel complexity measures V, I are lower bounded inlcrms of 1he total span

length complexily measures v, ¢ by

v > 14ng""

E>ngl™.

‘I’here arc also tighter lower bounds on V and 1'interms of v aud E.

Theorem 7 Given a total span length v ore, let Ae =¢—¢™(n+ |--¢) and Av = v—s (11-S-),

whcrees < (n+1)/2 and S'<n/2 are the largest integers such that A¢ > () and Av > O. Then

T4 .- 2 -
Vo>nd+——-2s¢" - — +(¢g - D¢ Av
-og-1 l q-1 ( )

2q - 2q -
204 ——0 - 270 - == 4 (g 1)¢° Ae.
[ q_] 1 q»] (q )q 4

13




I'his theorem follows from the observation that, for givenv or €, a vertex or edge dimension
profile such as the one in Figure 3 minimizes V or /5. Notice the similarity of these lower bounds in

terms of s and cwith the corresponding upper bounds (1 9), (20) In terms Of smax and ¢y, ax-

—Ag

PR
T .

Figure 3: Ancdge dimension profile that minimizes ' subject to a constraint, on total edge span €.

42 Complexity Lower Bounds Based 011 MSGM Span lLength

Every row of a generator matrix for an (n, k,d, d*) code must have edge-sl)an length ¢; > d and
vertex-s])a]l lenglhy; >d - 1. Applying this simple bound to both the code and the dua code and
using the fact that vt = v = g — k leadsto the following lower bounds on the spanlength complexity

mcasures 7 and €.

Theorem 8 The total lengths v and € of the vertex-spans and edge-spans for any (n, k, d, dt)
code arelower bounded by

v >max {k(d - 1), (n— k)(d* - 1)}

€ >k+max {k(d—1),(n - k)(d+ —1)}.

Applying the Singlcton bound to the incqualities in this theorein gives the weaker bounds v >
(d—1)(d* —1)and € > k4 (d— 1)(dt - 1).

W c say that a code meecting the bounds in Theorein 8 with cqualily is aminimal span code. A n
examnple is the (n,1,n, 2) repetition code. To construct a nondegenerate (n, k, d, 2) binary minimal

span code for any d >2 and n>d + (k- 1) [$], let the first row of the MSGMbe

1111000
S
n__

and form cach successive row by cyclically shifting the previous row at ](:ast[g]positions but not
more than d positions to the right, suchthat the total of al the shifts isn— d.
The dual of a minimal span code is also a minimal span code. 'I'hese codes arc not usually good

in terms of distance, though they have very low complexity trellises.
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The span length bounds in Theorem 8, combined with the bounds (1 7) and (18) lcad to lower

bounds on the complexity measures s,,ax, Cmax fOr auy (n, k,d, dt) code:
Smax (7 - 81yax ) > Max {k(d -1), (n- k)(dJ‘ --1 )}
C)nax(" +1- Cmax)zk + max {k(d -- 1), ("' k)(dl - 1} .

A dlightly weaker version of this bound on s,ax has been proved for bothlinear and nonlinear codes
[22]. This bound implies, for instance, thatthe average edge dimension ¢;,ax cannever be lower
than the asymptotic coding gain led/n. We can also obtain bounds on V and I¥' for any (72, k,d, dt)
code by substituting, the right hand sides of theboundsinTheorem8 for v aud ¢ in Theorems 6
and 7.

4.3 Dimension/Length Profiles

We cansee from the complexity measures (11) - (16) that a permutation of Cthat makes f;and p:
large (small) wherever possible will produce a low (high) complexity trellis. It is useful, therefore,
to find bounds on these quantities.

The support of a vector x isthe set of nonzero positions inz. Thesupport of a set of vectors is

thecunion of the individual supports.

Decfinition 1 For a given code € and any O <i< n, let K;(C) be themazimum dimension of a
lincar subcode of C having supporl whose size is no greater thani. Thesed {K;(C),i= 0, ... .n} is

called the dimnension/length profile (DLP) [9, 10,14, 30].

The DLP contains thc same information about a code as the minimum support weights [11,
17, 18], which have more recently been called thc gencralized Hamining, weights (GHW) or weight
hierarchy [32]. The 7 mininum support weight or GHW is the sinallest support size of any j-
dimensional linear subcode of C.

Since the past and future subcodes P; aud F; arc subcodes of € with support size no larger than

1andn — 7, respectively, the past aud future subcode dimensions arc bounded by the DLYP:

p < max p:(Cr) = K;(C) (21)
fi S ]\/n—i(c)- (22)

These bounds, which also appearedin [14, cq. (1 .4)], are tight in the following sense: for any 1,
there exists a permuted version of € that meets the bound (21), aud onethat meets (22), though it
may not be possible 1o meet both simultaneously. The DL} of a code canbe used to lower bound
the trellis complexity for any permutation of that code, as wc shal scein Section 4.5.

Since cach K;(C) is associated with a linear subcode of €, we cau usc bounds on the best possible

linear codes (i.e., codes with the largest possible minimum distance) to upper bound the DLP:
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Theorem 9 For an(n, k, d, d*) code C and any O <i<n,
pi < Ki(€) < Ki(n, k,d,db)
fi S ]\/’n—i((") S R"rl—i(“; k» dy dl)

Uhfe re
Ki(n,k,d, dl)é\rmin[kmax(i,d),k =i+ kpax(n - i, d4))

and kyax(m, d) isthe largest possible dimension for any g-ary linear block code of length m an d
minimum distance d. The set {Ki(n, k,d,d*),i = 0, ., n} is called the upper dimension /length

profile (UDLP) for the code parameters (n, k, d, d*).

Proof: Since K;(C)is the dimension of a code with distance d and support size not excceding i, wc
have K;(C) < kmax(7, d). Using Theorem 1,

Ki(C) = max p;(Cr)=k -n+i+4 ym:j~(C17r)

1€ES,
and f;(C* ) is the dimension of a subcode of distanced! and support size not exceedingn — i, s0
Ki(C)<k —n4i+ kpax(n — i, d%). The theorem is a combination of these two inequalities. H

T'he usc of parameters for the Lest linear codes (or bounds on such codes) to bound 1)1,1', GHW,
or other quantitics related to trellis complexity also appears in [7, 10, 12, 14, 19, 20, 28, 30].

Bounds based on the UDLY may be 100 SC, as it may not be possible for a single (n,k,d, d*) code
and its dua to both have a series of subcodes, al with the maximum code dimensions. However,
these bounds are important practically, because much data about the best possible codes has been
tabulated [4], and in many cases, the UDLP bounds can be achieved with equality.

Since for any (n, k) code C, p; and fiboth reach maximum values of k (fo = k and p, = k)
and can fall from these values at amaximum rate of one u nit per trellis stage, p; and f; arc lower

bounded as follows:

Ki(C) > pi> Ki(n, k) & max(0,k —n + i) (23)
Ko :(O)> f;> K, —i("’k) =max(0,k - i). (24)

The set {K;(C),i =0, 1,...n}is caled the lower dimension/length profile (LDLFP) for the code
paramncters (n, k). The 1,1)1,1' stays at O until the last possible depth heforeit can rise linearly at
the rate of oncdimension per depth to reach its final value of k a depthn.The LDLYP can be used

to upper bound the complexity of a minimal trellis for an arbitrary (n, k) code.

4.4 Properties of Dimension/Length Profiles

The DLPs possess many of the same properties as the past and future subcode dimensions which they

bound. For example, the monotonicity and unit increment properties (2) and (4) of {p;} aso hold
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for K;(C), K;(C), and £:(C): the increments Kisi(n, k,d,dY) = Ki(n, k,d,d* ), Ki41(C) - K:(C),
and ﬂi“(",k)—l\:i(",k) must equal O or 1 for al 7. Similarly, duality propertics canbe easily
extended.

There is a convenient relationship between the DLP of a code and that of its dual, stated in [14, cq.
(1 .12)] and [10, Theoremn 3], which is equivalent 1o the duality relationship for generalized Hamming
weights [32, Theorem 3].  Similar relationships hold for {he upper and lower dimension/length
profiles. The following lemma gives these relationships along with a proof of the DLP result, that is

somewhat simpler than those that have appeared in the literature.

Lemma 4 For all 0<¢ <n,the DLP,UDLF and LDLP salisfythe following duality relation-

ships:
Ki(CH=r —k+K,_;(C)
Ki(n,n - k,dl,d) =i-k+ K, ,~(n,k,a’,dJ )
Kinyn—k)=i- k+ K, ,(nk)
Proof:

Ki(c') = nax pi(Crm)=max (i —k + fi(Cn)) =i -k + max fillm)=r1r —k+ K, _;(C)

TEOn TES,

where the sccond equality follows from Theorem 1. The other equations follow directly from the
UDLP and LDLP definitions. n
The DLP of an(n,k,d, d*) code C is related to the 1.D1LP and UDLP as follows:

Ki(n, k,d,dv) > K:(C) > K y(n k) for all i (25)

Ki(n,k,d,d") = Ki(C)= K;(n,k) if 0<i<d-1or n- d*-1<i<n (26)

Ki(n,k,d,db) = Ki(C)= K (n,k) + 1if d <i<min n~k,d+ [2] -1} -
or ma){ n—k,n-dt- [—dqiw + ]} <i<n-—dt.

The DLP and UDLYP arc lower bounded everywhere by the 1,1)1,1' and equal the 1.1)1,1" at both ends

of the interval [0, n]. Their range of departure froin the LDLP is [d, n - d]. Inside this range the

DLP and UDLP stay cqual to cach other for an additional [d/q] depths from the left and [d! /q]

depths fromthe right,.

The above propertics follow from the definitions of the profiles, thie properties of p; stated in Sce-
tion 2.2, the duality relationships inl.emma 4, and the fact t hat kpq-(n, d) equas the corresponding
Griesmer bound when kpax(n,d) = 2. A more thorough discussion of the DLP is contained in [10].

Example 3 Suppose Cis the (6,3,3)3) shortened Hamming code whose generator matrix is given
m (I). The LDLY for this code is {0,0,0,0, 1,2,3}. Since c1 = 71 — d’- = 3, the DLP and the UDIL, I’
equal the LDLP except a i = 3. Thus the DLP and UDLY arc both {O, 0,0, 1, 1,2, 3}. O

17




Example 4 The 1,1)1,1' of the (15,5,7,4) BCH code is {0,0,0,0,0,0,0,0,0,0,0, 1,2,3,4,5}. Ap-
plying (26) we find that the DLP and UDLY equa {0,0,0,0,0,00, - ,--, - —,- ,2,3,4,5}, and (27)
fills inthe five missing values. the DLP and UDLP equa {0,0,0,0,0,0,0,1,1,1, 1,2,2,3,4,5}. O

In the two preceding examples, the DLP is completely determined by the code parameters n,
d, and d*. In fact the DLP is completely specified by (26) and (27) whenevern - k < d + [g]
and k < dt 47[—‘%]. Computation of the DLY for large codes is usually much more diflicult
than these examples might suggest. For many codes the complete DLYP is unknown, andmuch
research has been devoted to determining partiadl DLP (or equivaently, GII W) information for
codes [5, 7, 12, 18, 29, 33].

Example b Suppose C is a (48, 24, 12, 12) self- dua code (e.g., the quadratic residue code with

these parameters). Applying (25)- (27) produces the DLP bounds for € shown in ¥igure 4. O
24
20 =
------- =+ T.ower Bound
16—
—O0—— UuUDLP
9 12 -=--0----  LDLP /
Na ¢
8 —
4
0
J g 9

Figure 4. DI.P bounds for a (48,24,12) self-dual code

4.5 Complexity Bounds from Dimension/l .ength Profiles

The DLYP bounds (21) and (22) and complexity definitions (11) - (16) lead tosiinple bounds on trellis
comnplexity that arc useful when the DLP of a given code i« known. These bounds can be tightened
slightly by using the additional fact that the vertex and edge dimensions must be nonnegative
everywhere. (In fact, if a trellis converges to a single vertex at depth ¢,i.¢.,v;= O for some r’ # O or
n,then( is a direct sum code, sec Appendix A.)
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Theorem 10 The complexity measures for the minimal trellis 7 (Cw) corw.spending o any per-

mulationw of a given (n, k) code C arc lower bounded by:

Smax(CW)Z IE,E(?X] k - ](,'(C) - ]\,n—i(c)) (28)
emax(Cm) > .giax] (k - K;i21(€C) Kn-i(C)) (29)
e(Cm) > Z max{0, k - K;(C) - Ku-i(C)} (30)
1=0
n
V((’ﬂ') > quax{() k-K,(C)- Kn—i(C)} (31)
i=0
B(Er) > 3 g0t Kues(€) Ko@) @
] n
M(Cr)> gZ[K,-(C) — Kioy(Q)]gm 0k Ken (O ey, (33)
=]

The DLP bound (28) on state complexity has been derived in [1 O, 30, 23]. Some of the bounds in
Theorem 10 can be improved slightly when C is nondegenes ate because this condition implies that
¢; > 1.

The UDLY bound (Theorein 9) leads to similar lower bounds on trellis complexity that apply to

al c.odes with given code parameters.

Theorem 11 The complezily measures for the minimal (rellis 7(C) representing any (n, k,d,dt)

code Care 10 wer bounded by:

Smax(C) > igfg,ﬁ} [k — Ki(n, k,d, dl) ~ Kp-i(n,k,d, d* )] (34)
emax(€) > max [k =Koy (n k. d db) - Koumi(n b, d, dt)) (35)
E(C) Zimax ©, k — Kioy(n,k,d,d") - K, _;(n,k,d,d* )} (36)
i=1
v(c) > }5qmax{o,k-?.-(n,k,d,d*)-)fﬂ_.-(n,k,d,d*)} 37)
i=0
1(C) > ;} gmax{o,k—}&_,(n,k,d,d*)-K,l,,»(n,k,d,dl)} (39)

]W(C) > % Z []—(i(", k,d, dl) _ —]?i»]("; k,d, dl)] qmax{(l,k—?.‘_;(n,k,d,dJ )_.7\;",.(11,k,d,di)} (39)

i=1]

Finaly, the LDLY bounds (23) (24) lead immcdiately tosimple explicit upper bounds on the

various complexity measures that apply to all codes with givenlength and dimension.
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Theorem 12 The complexily measures for the minimal trellis 7 (C) corresponding {o any (n,k)

code C arcupper bounded by:

Smaz(C) <min(k,n - k) (40)
€mar(C) <min(k,n— k- 1) (41)
e(C)<k(n-k+ 1) (42)
V(C) < 7} + —Z{ifi — 2min(k,n — k) qii"(k’”_ B _ . -92_- 1 43
2
E(C) < 1[1 + —9—2{—1—' — 2min(k,n - k+ 11 gmin(kn- k41) g _q I (44)
M (C) < — + max (0, 2k 1 n) g k)-d-_—i (45)

The incquality (40) is the well-known Wolf bound [34]. Note that (17) (20) arc tighter than
(42)- (44), except when (40) and (41) are met with equality, in which case the bounds are the same.
The derivation of the inequalities iu Theorems 10, 11, and 12 is rather straightforward, with the
exception of the boundson M (equations (33), (39), and (45)). Theseboundscanbe derived using

the same arguments as used inthe proof of Theorem 13 in the next section.

5 Best and Worst Trellises

5.1 Uniform Comparability

In general, to determine which of two minimal trellises is less complex, wc must first choose the
relevant complexity measure. however, iu some casesonc trellis may be simpler than another at

every stage aud depth with respect to al of the complexity measures simuliancously.

Definition 2 For two (n, k) codes ClI, Co having minimal trellises 7(Cy) and 7(Cq),we say that
T(C) < T(Co) if pi(C1) > pi(Co) and fi(C) > fi(C2) for all i If cither T(C;) < T(C2) or

T(C2) < T(Cy ), then the two trellises arc uniformly compar able.

The binary relation < defines a partial ordering onany set of codes with the same length and
dimension. [f 7(C;) <7 (C2)and 7 (C2) < 7(C; ) theu the two minimal trellises have equivalent
complexity, though they may not have the same structure. 1 ‘or example, for the code C2 of example 2,
T(C2) < T(C+) and T(CF) < T(C2) but C2 o Cf.

Note that if 7(Cy) <7 (C2)thenat every depthandst age 7 (C1) has nomore vertices or edges

than 7 (C2), but the converse is not necessarily true. ¥or example, the codes with generator matrices
1100 1100
0011 ]a“d 0111
tLaI is a ](‘ast as sitnple at every stage thanthat of the sccond. We define comparability in teris

l are not uniformly comparable, even though the first has a minimal trellis
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of past and future dimensions rather than edge and vertex dimensions because this gives a closer

connection to the dimension/length profiles.

Theorem 13 1f 7(Cy ) < T(C2), then all of the following trellis complezity measures for Cy are
upper bounded by those for Cy:

1. mazimum stale complezily: smax (€, ) < Smax(C2)
2. total span lengths: £(Cy) < €(Ca), v(C1) < v(C2)

3. total vertices: V(Cy) < V(Cq)

=

. total edges: 15(Cy) < 12(C2)

<y

. 1otal number of path mergers: M(Cy) < M(Cy)

Proof: Incqualitics J - 4 follow iminediately from the definitions. It remains to show 1y, M(Cy) <

M(C2). ¥rom (16),

¢ 1 ' e
M = EZ?’,‘QC' = aZriqkﬂf' TP-1 qk ! Z”q_f‘q- P-- 1
=1 i=1 i=1

Now ;= 1 in preciscly the k places where p; is incremented, so the nonzero values of r;¢7Fi-? arc

¢°,¢77,...,¢~ %=1 which gives

k-1
M = qk_] Z: q_]q'f“i
=0

where Jt; is the position of the j*" 1in (r1,72,... m). Uniform comparability implies pi(C1) > pi(C2),
thus It; (C) < I (C]), and

Tr;0)(€1) 2 Trie)(C2) 2 frej(e)(Ce)

k-1 k-1
]\4((3]) - qk—l jq~jq*fnj(c,)((’1) < qk—] Zq—Jq‘fnj(Cz)(Cz) — ]\4((}2).
j=0 j=0

|

If two minimal trellises are not uniformly comparable then the choice of the less complex t rellis
may depend on which of the complexity measures is used as the criterion.

Uniform comparability iS a very strong property that iS not guaranteed to exist between auy two
trellises. Our motivation for defining it and studying its consequences lies in the correspondingly
strong results obtained for the problem of finding a minimal trelis in the first place, i.e, finding
the least complex trellis that represents a fixed permutat ion of afixed code. As shown in (27],
the minimal trellis is uniforinly less comnplex at every stage and depth than any other trellis that

represents the code.

We dcfine four categories of best and worst minimal trellises based on uniform comparability:
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Definition 3 For a fixed code C, a permutation #* and th« corresponding minimal trellis 7 (Cx*)

arc
. uniformly cfficient if 7(Cx*) <7 (Cr) for all m€ Sy,

« uniformly ineflicient if 7 (Cx) < T (Cx*) for all w€ Sy .

Definition 4 An (n, k,d,d* ) code C* and ils corresponding minimal trellis 7 (C") is
« uniformly concise if 7(C*)=< T(C) for all (n, k,d, d*) codesC

« uniformly full if T(C) <7(C*) for all (n, k) codesC

If a minimalirellis is uniformly eflicient or uniforinly concise, wc can drop the quaifier “minimal”
and refer to it simply as a uniformly eflicient trellis or a uniformly concise trellis, respectively. As
shown later in Theorem 22, the two worst-case categories, uniformly ineflicient and uniforinly full,

turnout to be equivalent.

The inclusion of d+in the above definition elucidates symimetries that arc hidden by consideration

of only n, k, and d. ¥First, it preserves duality relationships, as we shall scc below in Theorem 14,
Sccond, from a practical point of view, d and d* have syinmetric impact on the potential trellis
complexity. There also appears to be a deep conncction between d andd? for good codes: often
when d is large, d* must aso be large, eg., the extended Hammingcodesand MDS codes.

A direct consequence of Theorem 1 is that Uniform comparability of codes and their duals arc

cquivalent:
Theorem 14 7 (Cy) < T(Cy) if and only if T(Ct) < T(C3). Conscquently:
1. A permutation 7*is uniformly efficient for Cif and onlyif #* is uniformly cfficient for C*

2. A permulation* is uniformly inefficient for Cif and only of #* is uniformly inefficient for

Ct [14, Theorem 1].
3. C* is uniformly concise if and only if C** is uniformly concise
4.C*is uniformly full if and only if C* is uniformly full.

In the next sections wec show that the trellis complexity bounds derived in Section 4.5 are met

exactly for the four categories of extremal minimal trellises.




5.2 Best Permutations

The following theorem shows that uniformly efficient trellises arc those that achicve the DLP bounds

in (21), (22), and Theorem 10 with equality.

Theorem 15 A permutation 7 is uniformly cfficient for a nondegencraie code Cif and only if

Cm* mecetsthe DLP bounds (21) and (22) with equality, i.e.,
pi(Cn*) = Ki(C) and fi(Cx™) = K, _;(C) for all i.

This guaraniees that Cm* meels all of the lower bounds on complexity (28) - (33) with equality.
Conversely, if Ct*meets any oneof the lower bounds (30) - (32) with equalily, thenm* is a uniformly

efficient permutation for C.

The proof of thistheorem is given in Appendix B.

Theorein 15 shows that uniforinly efficient permutations, which arc defined interms of trellis
comparability, turn out to be the same as “eflicient” [10] or “strictly optitmum?” [14] orderings which
were definedin terms of the DLY bounds. Note that a code may not have a permutation that meets
these conditions.

A uniformly efficient periutation, if it exists, is notuniquc: If 7 is uniformly eflicient for C,
then SO is thereverse Of #n*, and in fact the number of uniforinly efficient perinutations must be at
least as large as the automorphism group of the code. There may aso be different permutations
that arc uniformly eflicient aud produce distinct MSGMs for the code.

Example 6 The following MSGMS produce uniformly efficient iminiinal trellises for the (8,4,4,4)

extended Hamming code:

11110000 11110000
000O0T1111 0000 ] 111
01 a1 10 01 01 2 2 % y 10
(001 1 35y 1 0y o1 1 11 00

wherein each case # aud y cau beassigned arbitrarily, and %,y denote the complement of x aud y
respectively. O

Iiven though uniform efliciency is a very strong properly to require of a trellis, there arc many
codes that have uniforinly eflicient permutations. For example,the standard permutation of any
Reed-Muller code is uniformly eflicient [14, Theorem 2]. Additional examples of uniformly efficient
c.odes arc giveninSectlion 5.3, which lists trellises that arc both uniformly eflicient and uniformly
concise.

We now include some theoretical results that impose nccessary conditions on uniformly eflicient

perimutations.
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Theorem 16 Suppose C is a code that has seme uniformly cfficient permutation ©*. Then for
any 1,3 such that i + j < n,
Kiyj (C) > Ki(C) + K; (C).

Proof: P;(Cn*) and F;(Cx* ) are digoint subcodes of C7*. Since n—j >, Fi(Cn*) D F, ;(C7*), SO
Pi(Cr*) and F,,—; (Cm”) are digoint subcodes of C7*. Since 7*is unifornly efficient for C,K;(C) =
pi(C7*) = dim(P;(C7*)) and Kj(€C) = fn-;(C7*) = dim(F,_;(Cn*)). Conscquently Pi(Cm™) U
Fo—j(€Cm*) is alincar subcode of Cx* of dimension K;(C) -1 K;(C) and support not exceeding i + j.
|

Theorem 17 If #%is a uniformly efficient permutation for an (71, k, d, d1) code C,then Cn* con-
lains codewords of the form X407~ ¢, o"~9X9 and Cta*contains codewords of the form XdLO"'dl,
0"=¢" X4 where 09 denotes j consecutive zeros, and X7 denotes some scquence of j non. zero sym-

bols from GF'(g).

Proof: Uniform efficiency implies p;(C7*) = K;(C) for all i, so pa(C7n* ) = K4(C) =1, j.e., Cx*
hasq- 1 codewords of weight d and support confined to thefirst d positions, thus xdon-de cmr.
Similarly, fu_a(C7*) = Ka(C) = 1 establishes that 0" ¢X e Cx*. 1'he rest follows because, from

Theorem 14, 7* is uniformly efficient for C if and only if it is uniformly eflicient for C1. |

Corollary 18 If C is a binary (n, k, d, d1) codc that has some uniformly efficient permutation

7*, then min(d, d*) must be even.

Proof: ¥rom Theorein 17, 14074 € Cn* and 14+ gn-d* € Ctx*, butif min(d,d*)is odd then these
sequences cannot be  orthogonal. n

Here arc some examples of specific codes which cannot, have a uniforily efficient permutation,
according tothe preceding necessary conditions:

Example 7 Let Bbe the (3,1,3,2) repetition code, and let Cbe the direct sum code C = BoBt.
Then € has DLP {0,0, 1,2,2,2,3} so Ke(C) < K3(C) + K3(C), hence by Theorem 16, € has no
uniformly efficient permutation. As wc shall scc later, this code aso has no uniformly inefficient
permutation. O

Example 8 By Corollary 18,the (23, 12,7,8) Golay code has no uniforinly efficient  permutation,
ncither dots the (2™ — 1,2'" — 271 - 1,3,2”-1 ) Hamming code for any > 3.Consequently, no
nont rivial perfeet binary linear code has a uniformly efficient permutation. O

Example 9 The (1 0,5,4,4) formally self-dual code with generator matrix

1066000111
0100010011
0010011001
0001011100
0000101110
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has weight enumecrator 1 + 15z% + 1526 + 201f this code has auniforinly efficient permutation
then by Theorem 17 it inust have two digoint codewords of weight four, henceit must aso have a
codeword of weight 8. But the weight enumerator reveals that no such codeword exists. Wc shall sec
in Scetion 5.3, however, that there is a (1 0,5,4,4) code that has a uniformly eflicient permutation. O
The same argument shows that the (1 5,5,7,4) BCH code has no uniformly efficient permutation.
Example 10 The (15,7,5,4) BCH code dots not have a uniformly eflicient perinutation, because
this code dots not have a minimum weight codeword whose support contains the support of a
minimum weight dual codeword. (This code is small enough that this fact can be verified by
exhaustive search.) O
The precediug examples show that many codes lack uniformly efficient permutations. However,
for many such codes there exists some permutation that simultaneously minimizes all of the trellis
complexity measurcs. For example, if ¢, and C2 arc two different codes with uniformly efficient
permutations, it is not usually true that the direct sum code ¢ ®C2 has a uniformly efficient
perutation (e.g., code ¢ of example 7), even though the cor responding trellis 7 (C@ C2) cannot be
improved upon according to any of the complexity measures. ‘Jbus, it can be argued that 7 (C;®Cz) is
efficient, though not uniformly so. Another example is the (7,4) Hamming code, which is sufliciently
small that wc can verify by cxhaustive search that there are permutationsthatl arc optimal with
respect to all of the complexity measures despite not being uniformly eflicient.
For self-dua codes, Theorem 3 tells us that there is dways a single permutation that simultane-
ously minimizes 4, V, aud M. We suspect that not every code has a permutation that simultaneously
minimizes al of the complexity measures, though wc do not yet know of an example that confirms

this conjecture.

5.3 Best Codes

Uniformly concise codes arc optimum in a rather strong sense. Not only do they have an efficient
permutation, but they also minimize all of the trelis complexity measures compared to al codes
with the same paramecters. The following theorein shows that codes that achieve the hounds in

Theorems 9 and 11 with equality arc uniformly concise.

Theorem 19 An(n,k,d, dt ) code C* is uniformly co ucisc if the dimensions of its past and

Juture subcodes meet the bounds in Theorem 9 with equality, i.e.,
pi(C*) = Ki(n, k,d,d") and f;(C*) = K. i(n, k,d,d*) jor alli.
in this case C*meels all of the lower boun ds on complezity (34) - (39) wilh equality. Conversely, if

7 (C*) meels any of the bounds (36) through (38) withequality, then C* is uniformly concise.
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Wc suspect that acode can be uniformly concise without mecting the bounds of Theorem 9 with
equality.

T'able 2 lists known uniformly concise binary codes. In cach case, the complexity values listed
arc the lowest possible for any code with the same pararetcrs, From Theorem 14, the dual of each
code is aso uniformly concise. Generator matrices for many of these codes are given in Appendix C.
All of the rate% codes in the table arc either self-clual, or have duas that arc permuted versions of
the origina code.

The first entry in the table comes from applying the DLY properties to some of the minimal span
codes discussed in Section 4.2. These codes al have dimension k < 3 andinclude the (n,1, 71,2)
repetition codes. Since minimal span codes minimize €, every minima span code is either uniformly
concise, or nouniformly concise code exists with tile same paraineters. We shall sec in Example11
that not al minimal span codes are uniformly concise.

Thesccond entry in Table 2 follows from Theorem 20 below. The remaining examples arc ob-
tained by discovering a column permutation that meets the 111)1,1'. Uniformly cfficient permutations
for the (24,12,8,8) extended Golay code and the (32,16,8,8) second-order Reed-Mullcr code have
been rcported elsewhere [8, 14], and it is easy to verify by referenceto the table in [4] that the
trellises for these permutations arc uniformly concise. The other examples have not been reported
clsewhere and are briefly discussed here or in Appendix C. The last two entries are somewhat triv-
ia, since they arc direct-surns of other uniformly concise codes. Howcver,applying the direct-sum
construction) to uniformly concise codes does not always produce another- uniformly concise code.

The (48,24,12,12) code with generator matrix given in Appendix Cisuniformly concise. This
code isanoptimally permuted version of the (48,24, 12, 12) quadratic residue code.

Uniform conciseness for first-order Reed-Mullcr codes and extended Hanuning codes is established
in the following theorem.

Theorem 20 A2, m+1,2"71 4) first-order Recd-Muller codes and th cir duals, the (27, 2™ —

m —1,4,2"=1) catended Hamming codes, are uniformly concise.

Proof: This can be proved using the explicit GHW for first order Reed-Muller codes derived by
Woeci [32,T'heoremn 5] together with the result of Kasami ct. a. [14, Theorem 2] that the standard
permutatio n is uniformly eflicient. The result for extended Hamming codes then follows from duality
(Theoren1 3). L

There arc aso examples of code parameters (n,k,d,d!) for which no uniforinly concise trellis
can exist.

Example 11 The (9,4,3,2) minimal span code has DLP {0,0,0,1,1,2,2,3,3,4}. If Cisthe
direct sum of the (6,3,3,3) shortened Hamming code, and the (3,1,3,2) repetition code, then €
is a (9,4,3,2) code with superior 1)1,1' {0,0,0,1,1,2,3,3,3,4} but larger edge span length ¢.This

proves that there is no (9,4,3,2) uniformly concise code. O
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From definitions 3 and ,4, clearly if C#* is uniforinly concise then#* must be uniformly eflicient
for C.

Example 12 The U])],]’ of any (6,3,2,2) code is {O, O, 1,2,2,2, 3}, but we saw in example 7 that
this profile doesn’t satisfy the constraints of Theorem16 for uniformly eflicient permutations. So no
such code has a uniforinly eflicient permutation, hence no (6,3,2,2) codecan be uniformly concise.
O

Example 13 ‘Jhere is no binary (18,9,6,6) uniformly concise code,(e.g.,the quadratic residue
code with these paramecters).If there were such a code, Theorem 17 tells us that # 816012 must
beinthe optimally permuted code and its dual. The UDLP of auy (18,9,6,6) code begins with
{0, 0,0,0,0,01 ,1,1,2,... .}, which is thebeginning of the D1.P for the quadratic residue code. This
implics 7o =1 for such a code, i.e., there mustbe some codeword y whose span ends in position
9. Now d = Gimplics |2+ y|> 6 aud |y|> 6, so y must be of the form X¢130° where X¢ denotes
some permutation of 1°0°. But in this case,z and y arc not orthogonal, contradicting the fact that
zect. D

This argument also shows that there is no binary (n, &, 2m,2m) code that meets the U])),]’
bounds whenk > 1 andm is odd, e.g., the (42, 21, 10, 10) quadratic residue code. The R(r,m)
Reed-Muller codes when(m =6, r = 2, 3), (m=17,r = 2,3,4) are also codes that do not meet
the UDLP bounds. This is established by comparing the UDLP bounds to the known optimal
permutations for the Reed-Muller codes.

Results such as the examples above and Theoreins 16 and 17 illustrate that iu many instances
the U 1)1,1' bounds on complexity arc not tight. Au area of further research is to produce tighter

bounds on trellis complexity based on the code parameters (n, k,d,d").

5.4 Worst Minimal Trellises

The following theorems show that uniformly inefficient and uniformly full minimal trellises are thc

same as the trellises that achieve the 1,1)1,17bounds with equality.

Theorem 21 An (n, k) code Cis uniformly fell if and only if the dimensions of the past and
Julure subcodes of C mect the bounds (23), (24) with equalily, i.c.,

pi(C) = max(0,k — n + i) and f;(C) = max(0, k - 7) for all i.

in this case C meelsall of the upper bounds on complexity (40) - (45) with equality. Conversely, if
C meets any one of the upper bounds (42) - (44) with equalily, then Cis uniformly full.

Theorem 22 A minimal trellis 7( Cr*)is uniformly fullif and only if n* is a uniformly incffi-

cienl permutation of C.
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Proof:If Cis k-dimensional, any generator matrix for C has & linearly independent columns. Lct
w1 and 7r,be two permutations which place kindependent columns in thefirst and last & positions,
respectively. Then pi(Cma) = max(0,k —n + ) and f;(Cmy ) = max(0, k -~ i), i.e., 72 achieves the
LLDLP bound on the past subcode dimensions, and 7;achievesit for the future subcode dimensions.
I #* is uniformly ineflicient, then p;(C7*) < p;(Cmy) and f, (Cx*) < fi(Cmy ), i.e, n* must achicve
the LDLP bounds on both the past and the future. ‘1'bus, a trellis is uniformly ineflicient if and
only if both the first & columns and last k columms of the corresponding generator matrices arc
lincarly independent. This proves that a uniformly inefficient minimal trellis is aso uniformly full.
Thereverse implication is trividl. u

Many codes have uniformly ineflicient trellises iu their standard permutations. For example, the
minimal trellises for al cyclic., extended cyclic, and shortened cyclic codes are uniformly inefficient
[15, 20]. However, not every code has a uniformly incflicient permutation, e.g., code C of example 7.

Additional examples of uniformly ineflicient trellises are given in the following two theorems.
Theorem 23 A self-duo! code always has a uniformly inefficient pcrmutation

Proof: By Theorem 2, any (2k,k) self-dual code has & stages of simple expansions and k stages
of simple mergers. Thek columns of the generator matrix corresponding to the expansion stages
form a linearly independent set, as do the k columns corresponding to the merger stages. Thercfore,
any permutation which groups al k of the expansion columns followed by allk of the merger columns

is uniformly ineflicient. n

Theorem 24 If and only if a code is mazimum distance separable (M1DS),every permutation =

is uniformly incfficient and the corresponding trellis complezily measures equal the upper bounds in

(40) - @45).

This theorem follows from the fact that a code is maximum distauce separable if and only if
every subset of k columns of its generator matrix is linearly independent. A peculiar consegquence
of Theorem 24 is that every permutation of an M DS code is aso uniformly eflicient, as noted by
Torney [10]. This observation emphasizes that uniform efliciency isonly a relative measure of trellis

complexity.

6 Conclusion

Inthis paper we have attacked the trellis complexity problem by first considering the minimal span
generator matrix for a fixed permutation of a code. McEliece [27] snowed that the so-called minimal
trellis indeed minimizes not only the maximum state dimension of the trellis but aso a whole gamut

of complexity mcasures. 1 crc wc have augmented the list of reasonable complexity measures and
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interrelated themn. We have also illustrated the connection between the complexity measures and
the four primitive structures of a minima trellis for a nondcgenerate code.

The trellis complexity analysis for a fixed code gencralizes natur aly to similar results for c.odes
alowed to vary over a domain of optimization. Wcidentified two useful doinains, the set of permu-
tations of a given code and the set of all codes with given code parameters. Within each domain we
defined uniforinly best and worst minimal trellises that arc guaranteed to simultaneously minimize
or maximize al of the complexity measures. We showed that it is easy to gencralize the bounds on
maximum state complexity derived by other authors from the dimension/length profile of a code
tosimilar bounds on al the complexity measures over each optimization domain. Furthermore, if
a minimal trellis altains the bounds for some of the complexity mcasures, it must necessarily be
uniformly extremal, but this is not true for the simpler measurcs of maxinnnn state or edge dimen-
sion considered by other authors. 'This lends further credence to the argument that a measure of
total complexity (such as the total number of edges) is more useful than aincasure of maximum
complexity [27].

Unlike the case of afixed permutation of a given code, uniformly best and worst minimal trellises
are not guarantecd to exist within the larger domains of optimization.llowever, we demonstrated
the usefulness of the concepts by presenting several examples of uniformly best trellises, most notably
the optimum permutation of the (48,24) quadratic residue code, hcretofore unknown. Conversely,
by deriving somne necessary existence conditions, we aso identified soine cases for which uniforinly
extiremal minimal trellises cannot. exist.

Woc devcloped a series of useful relationships between the trellis complexity of a code and that of
its dual, againin a natural progression first from a fixed code and then to larger code domains. This
approach yields many of the sameresults obtained by other authors for dimension/length profiles or
generalized |1 amming weights, but it emphasizes that all the duality results stem from fundamental
minimal trellis relationships valid for a fixed permutation of a code. In fact, we have argued that the
symnclry of the constraints iimposed by the code and its dua on trellis complexity is so fundamental
that theminimum distance of the dual code should be included as one of theintrinsic code parameters
that limits achicvable complexity. The duality relationships lead to interesting connections among

several of thecomplexity measures for the specia case of self-dual codes.

Appendices

A Direct Sum Codes

Definition 5 (Direct Sum Cocks) [24,p.76] 1fCiand Cz arc (ny,k1,dy,di') and (ng, ke, dy, di)
linear block codes respectively, thenthe direct sum code C (denoted C=Cy®Cy)is the selof
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all codcwords of the form ¢y |c2 (i. ., ¢ followed by ¢2) where ;€ Ci and C,€C2. C is an
(ny + n2,ky + k2, min(d; , d2), min(di, d3 )) linear block code. We refer to Cyand C2 as component

codes of C. Direct sum codes of more thantwo codes arc defined inthe obvious manner.

For direct sum codes, the DLP can be computed from the DLPs of its com ponent codes i the

following manner.
Lemma b If C = €y @© Cq then
Ki(€)=max K, (C1) -t K;_m (C2)
me[o,1]

wh ere we interpret K; (B) to equal dim(B) when j caceeds th ¢ length of code B.

Proof: Let Q denote the linear subcode of C associated with K;(C). Since C is a direct sumcode,
Q=01 ® Q2, for some subcodes @1 C C1, @2 C C2. Then K:(C) = dim(Q) = dim(@,) + dim(Q3)
aud supp(Q) = supp(Q; ) + supp(Q2) < i. Letting m =supp(Q;), clearly we maximize dim(Q) if
dim(Q1) = K (Cr),supp(Q2) <i — 771, and dim(Q3) = K; _ m(C2). [ ]

The definition of uniformefliciency has the desirable property that, if 7 (€)is uniformly eflicient,

thentheminimal trelis for the direct sum of € with itself, 7(C® C), is also uniformly efficient.

B Proof of Theorem 15

Proof: For cach O <i<n, wc can always find permutat ions mp, 77 such that pi(Cmp) = K;(C)
aud fi(Cmy) = Kn_i(C). By definition, if «* is uniformly efficient then 7( Cn*) <7 (Cn,) and
T(Cx*)=XT7(Cny), S0 pi(Cr*) > K;(€C) and f;(Cr*)> K, _;(C). This combined with (21) and (22)
proves the first stat ement.

If Cx* is uniformly cflicient then by the above argument clearly Cx* meets (28) - (33) with
equality, so it remains only to show the converse for (30) - (32). If Cx*mcets (32) then for each
1 <i<n,either (@ ¢; = O or (b) pio1=K;_1(C) and f; = if,,_.j(C), If (&) occurs thenC is
nondecgenerate, S0 (b)must hold everywhere, hence 7% is uniformly cfficient for C.

If C7*meets (30) or (31)then for each O < i <neither (8 v;= () or (b) p;= K;(C) and
Ji = K,-i(C). We have just established that if (b) holds for all O < i < nthen#* is uniformly
efficient for €. We will now show that whenever (a) holds, (b) must also hold. If (8) occurs at one
or more depths, then Cr* is a direct sum code and every depthi where v;= O marks a boundary
between component. codes. Let the first of the component codes be denoted by B, an (ng, ks, ds,df)

code. Yor dl 7 < ng, p;(B) = p;(Cn*) = K;(C) > K;(B).But from (21), p;(B) < K;(B), so

]\’,‘ (B) = ]'),'(B). (46)
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Similarly, for al @ < ng, fi(B) + k — k= [fi(Ct*)=Ku_i(C) >k — kp 4 Knp-i(B) thus f;(B)>
Ky, —i(3). Butfrom (22), fi(B)<K,,—i(B),thercfore

K nei(B) = f:(B). (@7

Iquations (46) and (47) establish that 7 (B) is uniformly efficient. This procedure canbe repeated
for the other component codes in Cz™.

Since C7* (and by implication also B) is assumed to be nondegenerate, ds > 1,d§ > 1, and
ni >1s0 depthns —1 cannot bea boundary between component codes, i.e., (b) holds at this
depth , thus

K 5o1(C) = pup—1(Ct*) = pup1(B) = Kppy1(B) = kn 1.

"This last equality follows fromn {26). Since the DLY is incremented by nomore than one unit each

tine index,

Kupw(C) € Kpp1(C)+ 1= ks,

Also Ky (C) > pnp(Cr*) = kg, therefore K, ,(C) = kg = Pus (C7*). A similar argument establishes
that K,,_np, (€) =k — ks = f,,(C7*), so (b) holds at depth 5. Repeating this at each boundary
between component codes establishes that (b) holdsat all indices hence 7= is uniformly efficient for

C. |

C Some Uniformly Concise Codes

in this appendix wc give minima span generator matrices for several uniformly concise codes in
their optimal permutations. Since Cis uniformly concise if and only if its dud is, in each case wc
give the gencrator matrix for the smaller of ¢ and C*.

Fxample 9 showed a (10,54 ,4) formally self-dual code that was not cven uniformly efficient.
Another formally self-dua] (10,5,4,4) code bas MSGM

0
0
0
1

and is uniformly concise. This is a quasi-cyclic]24, p. 506] code with weight enumnerator 1+ 1024 +
162% 4 Ha®.

Other uniformly concise codes include a (12,6,4,4) forma lly self-dua code:

111100000000

i

000000001111
0101]0101010
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a(16,4,8,2) code:

(this MSGM can be obtained by dcleting a row from the MSGM for the (1 6,5,8,4) first-order Recd-

1111111100000000
0000111111110000
0000000011111111
0011001111001100

Muller code), a (20,6,8,4) code:

a (24,7,8,4) code:

a (24,8,8,4) code:

aud a (40,7,16,4) c.ode:

Finally, here is an optionally permuted generator matrix for the (48,24,1 2,12) self-dual quadratic

11111111000000000000
00001111111100000000
00000000111111110000
00000000000011111111
00110011110011001100
01010101101010101010

111111110000000000000000
000011111111000000000000
000000001111111100000000
000000000000111111110000
0000000000000000] 1111111
001100111100110011001100
010101011010101010101010

[ 111111110000000000000000 1
000011111111000000000000
000000001111111100000000
000000000000111111110000
000000000000000011111111
001100111010110011001100
010101011100101000000000
000000000011010110101010

1111171111111111 1000000000000000000000000
0000000011111111 111111110000000000000000
00000000000000001 11111111111111100000000
0000000000000000000000001 111111]11111111
000011110000111111110000111100001 1110000
00110011001100]111001100110011001 1001100
0101010101010101101010101010101010101010
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residuc code:

0000000000000000000000000000000000001 11111111111
0000000000000000000000000000001 11111111111000000
0000000000000000000000000001  11000111111000111000
00000000000000000000000001 10010010111101001"00110
00000000000000000000000011001  1011110100001001100
0000000000000000000001 11110110010000100011010000
(00000000000000000001 11]000101001101" 1010100000000
00000000000000000010101 1011111011001100110100000
00000000000000001 1]011111110001010110001 10000000
00000000000000010101011011110101  1101011000000000
0000000000000011 1]11010001011001 1(111110000000000
000000000000010001 111011001110101000000000000000
0000000000001011100001001100010101  11000000000000
0000000000110001 11100000001111001010000000000000
0000000001100000001001 11111010100100000000000000
0000000011000111 10101001111110110000000000000000
00000001010010001 1010111100110000(100000000000000
000000101101101 101110101000000000000000000000000
00000100100001110011001 1010101000(100000000000000
000011111010010101 100110000000000000000000000000
00010101001011101 10] 1101 ]11000000000000000000000
001111100100011 100111000000000000000000000000000
010101110001111 111000000000000000000000000000000
111111111111000000000000000000000000000000000000
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Figure Captions
Figure 1. A minimaltrellis for the (6,3,3) shortened Hamming code.
Figure 2. Minimal trellises (8) 7(Cy) and 7(Cf) (C; is self-clual), (b) 7 (Cs), (c) 7(C3).
Figure 3. An edge dimension profile that minimizes } subject to a constraint on total edge span ¢.
Iigure 4. 1)1,1' bounds for a (48,24,12) self-dual code.
‘1’able 1. Dual primitive structures.
Table 2. Soine known uniformly concise binary codes. Codes arc grouped with their duals, which arc

also uniformly concise. Kxpressions too big to fit, into the table: (8) €7 420 — 4, (p) 2272420 _

Comnplexity expressions for first order Reed-Muller and extended Hamming codes arc valid for m > 3,

excepl €y ax = 3 whenm = 3
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