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Abstract. General expressions (with potential applications in several areas of geophysical fluid dynamics)
arc derived for all three components of the contribution made by the geostrophic part of the pressure field
associated with flow in arotating gravitating fluid to the topographic torque cxerted by the fluid on arigid
impermeable bounding surface of any shape. When applied to the Earth’s liquid metallic core, which is
bounded by nearly spherical surfaces and can bc divided into two main regions, the “torosphere” and
“polosphere,” the expressions reduce 10 formulae given previously by the author, thereby providing further
support for his work and that of others on the réle of topographic coupling at the core-rnantlc boundary in the
excitation by core motions of Earth rotation fluctuations on decadal time scales. They also show that recent
criticisms of that work arc vitiated by mathematical and physical errors. Contrary to these criticisms, the
author’s scheme for exploiting Earth rotation and other geophysical data (eithier real or simulated in computer
models) in quantitative studies of the topography of the core-mantle boundar y (CMB) by intercomparing
various models of (a) motions in the core based on geomagnetic secular variation data and (b) CMB
topography based on scismological and gravity data has a sound theoretical hasis. The practical scope of the
scheme is of course limited by the accuracy of rea data, but this is a matter for investigation, not a priori
assessment,

Int reduction

The local gradient Vp of the instantaneous pressure p(r, /) at a
general point 1’ in a gravitating fluid which rotates with angular
velocity €2(¢) relative te an inertial frame of reference can bc
cxpressed formally as the sum of “gravitational,” “geostrophic”
and “agcostrophic” parts, Vp ", Vp@ and V p@W (scc (3.5)
below), each satisfying a precise diagnostic relationship with the
density p(r, ), Bulerian relative flow velocity u(r, f), magnetic
field B(r, 1), etc. The relationship satisfied by V p© is

V@@ n=-2p(r, ) QO xudr, 0. (1.1)

General expressions arc derived below (scc (4.1) to (4.5)) for all
three components of the contribution T§ ©Xr) made by Vp © to the
instantaneous topographic torque I;(7) (where ¢ denotes time)
excerted by the moving fluid on a rigid impermeable bounding
surface § of any shape through the action of normal pressure
stresses p on S. The expressions arc then applied to the Earth's
liquid metallic core, which has ncarly spherical bounding surfaces,
extends from the solid inner core to the overlying solid mantle,
and for certain dynamical purposes can bc divided into two broad
regions, the “pol(oid)osphere’” and the “tor(oid)osphere” (scc Fig.
1). Theresults provide further support for: (a) the author's
proposal that in the excitation of fluctuations in the rotation of the
mantle on decadal time scales by motions in the underlying core,
topographic coupling is an important and possibly the
predominant mechanism, (b) his ideas concerning the subtle but
crucia role of Lorentzforces j X B (per unit volume, wherej (r, )
is the eectric current density) in the dynamical processes
involved, which depend inter alia on the dimensionless measure
ReIVpDUV DO (scc (3.7)) of ageostrophic effects, and (c) the
theoretical basis and preliminary findings of his scheme for
exploiting Earth rotation data in quantitative investigations of the
topography of the CMB, by intercomparing various models of
motions in the polosphere (where R « 1nearly everywhere) based




on geomagnetic secular variation data, and various models of
CMB topography based on gravity and seismological data,
However certain geophysicists, whilst accepting (8) explicitly and
(b) implicitly in their recent work on core dynamics, claim (see
(2.2) below) that (c) “mustbe rejected,” asserting that the scheme
is “theoreticaly flawed” and “could provide no quantitative-
information about the CMB even with perfectly accurate
geophysical data.” The claim is thoroughly refuted by the present
study as being inaccurate owing to demonstrable mathematical
and physical errors. It is based on arguments that (i) not only fail
to recognise the essentially diagnostic (but nonetheless dynamic)
nature of the gcostrophic relationship, but (ii) also suppose
incorrectly that the axial component of I 9 (1) must be identically
equal to zero (cf. (4.5)) even when quasi-geostrophic flow is
largely confined to the polosphere (i.e., when R & 1 nearly
cverywhere in the torosphere), and (iii) overlook advection of
angular momentum in an inaccurate attempt to provide a physical
interpretation of the dynamical processes involved.

Decadal fluctuationsin the Earth’s rotation

The principa manifestation of time-varying fluid motions in
the Earth’s liquid metallic core is the main geomagnetic field,
gencrated by the self-exciting magnetohydrody namic dynamo
process. The fluid motions also produce forces on the mamlc
which give rise inter alianto a fluctuating net torque 1‘(1)
Geophysicists now accept that tiny but detectable irregular
fluctuations in the magnitude of £, the vector rotation of the
mantle with respect to an inertial frame, on decadal ti me sca]cc are
largely produced by the action of axia componcmF 2 (if z isa
unit vector along the mean polar axis), It |s also possble that the
equatorial components of r, namely T’ JrandT .y y, cent ribute
significantly to observed polar motion on decadal time scales.
Here X and 9 arc unit vectors along the x and y axes of a Cartesian
frame of reference fixed in the mantle with its origin O located at
the Earth’s center of mass, with the x-axis pointing towards the
Greenwich meridian where the longitude angle ¢ = 0,and the ¥
axisin the direction ¢ = /2, sce Fig. 1. The vector distancer =r r
from O to a general point 1' satisfies r= xx + yy + zz. (For
genera] discussions of fluctuations in the Ear[h’'s rotation on all
lime scales and extensive lists of references, sec Munk and
MacDonald | 1960], Lambeck| 1980], Melchior [ 1986], Moritz and
Mueller [ 1987], Wahr [1988], Hide and Dickey [ 1991] and
I;ldmnks[ 1993].)

The forces that contribute to I"'(¢) are of four types, namely (a)
tangential viscous stresses in the thin frictional (Ekman-
Hartmann) boundary layer at the CMB, (b) Lorentz forces
assoc. iated with electric currents induced in the weakly -conducting
mantle by core processes, (¢) non-radial buoyancy forces
associated with gravitational interactions between the
helerogencous core and mantle (Jault and LeMouél [ 1990]), and
(d) normal pressure forces acting on topographic features
(“bumps’) on the CMB, which arc able to exert a net torque on a
non-spherical surface (see Hide [ 1969, 1977(a), 1986]; Hide et al.
[ 1993], Hinderer et OL1. {1990], Jault and LeMouél | 1991]
Voorhies [ 1991]). Denote by TI'(¢t) the contribution to F(t)
associated with topographic coupling, a mechanism first proposed
by Hide [ 1969] who (a) argued that bumps no higher than about a
kilometre might suffice to account for the magnitude of Iz
implied by observations of decadal variations in the length of the
day even with a high degrec of instantaneous cancelling between
positive and negative couples (scc Hide € al.[ 1993, especially
2.1)]), (b) outlined a strategy for research on the essentia fluid
dynamical processes involved (sce Hide [ 1977(a)], Anufriev and
Braginsky | 1977], Eltayeb and Hassan [ 1979], Moffatt| 1978],



Kuang and Bloxham [ 1993]), and (c) proposed and implemented a
method (independently put forward by Professor J-L L.eMouél) for
determining I'(r) from geomagnetic and other gecophysical data
(Hide [ 1986, 1989, cited as H89), Hide et al. [1993], Hinderer e
al.[ 1990], Jault and LeMouél | 1991 1]).

Suppose that the CMB is the locus of points wherer = ¢ + h (6,
¢), where ¢ = 3486km is the mean radius of the CMB, and
introduce the dimensionless parameter

S=hlc (2.1)

where h isthe rms value of #(8, ¢).1t is unlikely that % exceeds
the height of the equatorial bulge of the CM B, about 10%m, (sce
Gwinnetal.| 1986]), sothat § € 3x 107, Define a spherical
surface r = ¢ — A in the free stream near the top of the polosphere
and suppose that the Eulerian flow velocity u=: u, on that surface,
with components (i, v, w) in the (r, 6,¢ ) directions equa to (u,,
vi,w ) Herewu, is typicaly much less than v; and wyin magnitude,
by a factor &, and can be neglected for some purposes, but not all
(scc e.g. (4.5) below). Expressions for all three components of I'(r)
to lcading order in R in the polosphere and in & arc given in terms
of (u, v, wy) by equations (2. 1, 2.8, 2.9 H89), where R is a
measure of agcostrophic contributions to the momentum equation
(sce (3.7) below).

Many geophysicists now accept that topographic torques may
be important and possibly even dominant, but unsubstantiated
criticisms of the validity of the author’s expression for I‘.%(scc
(2.9 1189)) have been voiced in well-publicized abstracts of papers
presented at various recent scientific meetings. Thus:

(a) “... although such calculations (based on the z
component of (2.9 H89)) arc essentially kinematic in
nature, dynamical considerations show that they arc flawed,
since geostrophic flow cannot in itself results in
topographic coupling”; (b) “(} lide’s) scheme (would be)
inapplicable even if wc had perfect knowledge of the core
flow and topography (for) geostrophic balance preciudes
the transfer of angular momentum, so, for a core in
geostrophic balance, the (instantaneous axial component) of
the topographical couple is(identically) zero”; (c) “maps of
the fluid flow a the core surface and length of day
observations have been used (by Hideet O1., [ 1993]) to
place a constraint on the amplitude of topography at the
core surface, Wc argue . . . that such constraints have been
wrongly applied....”; and (d) “the geostrophic pressure
yields no information on the topogi aphical torque”. 2,?)

(sec c.g. J. Bloxham et al., EOS Trans. Am Geophys. Un.
Supplement, April 20, 1993, p. 51; November 1, 1994, pages 58
and 84). These statements arc vitiated by demonstrable
mathematical and physical errors in the arguments upon which
[hey arc based. They stcm from misconceptions concerning tr)\e
dynamical processes involved, and from an expression for I'. z,
namely I'. £,= O, which is incorrect owing apparently to an
clementary but crucial mathematical error in its derivation. I.%.is
cerlainly not identically equal to zero in the situation envisaged by
the critics, namely when quasi-gcostrophic balance is confined to
the polosphere (see (4.5) below). And the statements fail to take
into account of the essentially diagnostic (as opposed to
prognostic, scc Hide| 1977, 1982]) nature of the geostrophic
relationship, and would in the author’s view be unacceptable on
that basis alone. Bernoulli’s celebrated equation (see e.g. Birkhoff
[1960)), is another useful diagnostic expression in fluid dynamics
whose poor prognostic properties can lead to highly erroneous
conclusions, as in the well-known d’Alembert paradox concerning
the drag on a moving body in afluid of low viscosity.




Expressions for the topographic torque

Denote by p (r, ¢) the pressure at a general point P and by S the
closed surface (see Fig. 1) that coincides with the “CMB,” the
shape of which in the following general analysis need not be
nearly spherical, The topographic torque Ii(r) exerted by the fluid
“core” on the overlying “solid mantle” is

T = [ pryrxds (3.2)

where the integral is taken over the whole of S, the vector element
of area dS of which is dirccted generally away from O. Clearly
I(r) =(1 for a sphere r = constant, for then r xd$ = O everywhere.
Also equal to zero would any component of IX?) in a direction
about which Swere afigure of revolution.

Introduce mathematical control surfaces C within the fluid
“core” where by definition C-surfaces arc spherical and centered
on O (i.e. r = constant on C), sce Fig. |; the pseudo-torque

INOE j(j plrt)rxds 3,2)
is therefore equal to zero. It follows from (3,1) and (3.2) and a
well-known vector identity that

INOE m rx Vp(r, 0 dt (33)

where d7 isthe volume elementand the integral is taken over the
whole volume of fluid lying between the surface S (the “CMB”)
and the spherical mathematical control surface C lying at or below
r=c-A(sce (21).

An expression for Vp can be obtained from the equations of
fluid dynamics. For our purposesit is sufficient to consider the
equations of mass continuity and momentum. The first of these is
dplar+V.pu = O, which can be written

V.U=0 (3.4)

(if U = pu) without fear of serious crror when dealing with highly
subsonic motions. The second is conveniently written asfollows:

Vp+2QrxU+pVV=4A (3.5)

where Vis the potential clue to gravity and centripetal effects ancl
A comprises al the “agcostrophic” terms. Thus

A =AM y=jx B+Fyisc-PQx r— plouior+@.V) ] , (3.6)

where the Lorentz force (per unit volume), jx s, is the largest
contribution to A in the core outside the thin Ekman-Hartmann
viscous boundary layers (see Hide | 1977(a)]). #visc isthe viscous
force, p€2xris a '(fictitious’ force associated with time-
variations in € (since Q=d Q/dp),and p [du/dt + (u . V)u ] isthe
acceleration of a moving fluid clement relative to the rotating
reference frame. The flow would be strictly geostrophic in regions
where the dimensionless parameter

R=141712Q x Ul 3.7)

iscqual to zero, quasi-geostrophic in regions where O <R «1 and
non-geostrophic where R «1.
Since Vp=A—pVV —2Q2 x U, it is convenient to write

LO=TM0 + T + T (38)
where (see (3.3))

= E[.grxAd‘r (3.9)

is the contribution to Igassociated with the agcostrophic terms in
the momentum equation,

rvs - HJ r x pVVdr (3.10)
S-C



is the contribution associated with the non-radial components of
VV, and

o= 20 f[[rx&xuvdr (3.11)
AN QS

is the contribution associated with what wc here term the
“gcostrophic pressure ficld” p‘©@.

The geostrophic contribution to the topographic
torque

Making usc of a well-known vector identity and the facts that
2(r.U)=V.(r*U) and V.U = O (see (3.4)), (3,11) gives

re = 20f[[2 (Wyk + Uy + U 2)az @1
S C

where U =(Uyx& + Uy +U;2) = p(r, Dy + uy ¥ +Uz ~).The
validity of (2.8 1189) can bc demonstrated by noting that the exact
equation (4.1) reducesto (2.8189) when terms of second ordei
and higher in the small quantity & (see (2.1)) arc neglected. in
carry ing out the comparison, the volume of integration is taken to
extend outward from that spherical control surface C where r=c -
A, inthe “free stream” (scc(2.1)), to the CMB where r = ¢ + h(8,
), and expressing (4 Hy “z)interms Of (U, g Ug).

A more revealing comparison can bc made by noting first that
in virtue of (3.4) and the vanishing of U.dS cverywhere on the
impermeable and rigid surface S (but not cm C!):

r9% =20 [[[xzv.ds + {[[ xva1], 4.2)
C $-C
r9y=-20 [[[yev.ds + [[[yv.at], @.3)
C s-C
r'9z=-Q [[20.4s. 44)
C

in general, none of these components of I‘S(G’ isidenticaly equd to
zero. Wc note here in passing that (4.4) refutes the assertionin
(2.2b).

The physical interpretation of (4.4) becomes evident when it is
re-wrilten as

roz= l'f [pow+ ) Juds=0 (ay)  (45)

(remembering that a2 + y2 + z2 = ;2and r = constant on C).The
quantity in the square bracket in the integrand is the axia
component of the angular momentum of a fluid element of unit
volume cat a distance (x? + y2)'/2 from the,-@xis associated with its
rotation about that axis, and Q. is therefore the rate of advection
of that quantity across the surface C. The equivalence to first ordes
in & of (2.8 H89) to the more general equation (4,4) (or (4.5)) is
readily demonstrated alongthe samec lines as those followed when
comparing (4.1 ) with (2.8 H89). Thus, wc take C to bc the surface
where r = ¢ — A and infer the radial motion on C by applying the
boundary condition that #.4$ = O on the CMB, wherer = ¢ + A(6,
¢). It isimportant to note that whilst this radial motion can safely
bc neglected to leading order in the equation of motional induction
when deducing core motions from geomagnetic secular variation
data (sce (4.1 1189), also Bloxham and Jackson [1991, equation
(38)] and Backus and LeMouél [ 1987]), it is certainly non-zero in
general and plays a crucia role in angular momentum transfer and
torque balance!

Possibly the simplest model of the Earth’s liquid core that onc
could imagine for the purpose of an exercise in estimating I'(s)
from first principles would comprise a largely quasi-geostrophic
polosphere within which R;., the average value of R, satisfies Rp «
1 (scc (3.7)), and a possibly non-geostrophic torosphere where R;
(the average value of h’ there) may be significantly larger than Rp,
even of order unity or greater. T} ” would then provide a good




leading approximation to I" (with errors no more than R,), and
only in very special circumstances would T, z vanish, namcly
when R; « 1 and the shape of theinterface between the liquid core
and the underlying solid inner core is a figure of revolution about
the z-axis!

Beyond the scope of the present short article is (a) the
inclusion of al the details of the analysis leading to the general
expressions deduced in §§ 3 and 4, and (b) full discussions of their
implications for redlistic models of the core and aso for
theoretica studics of the dynamics of oceans and atmospheres of
the Earth and other plancts. These matters will have to be treated
clsewhere.
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Figure 1. Schematic diagram illustrating the gencralsystem
analyzed in Ibis paper and the proposed division of the Ear[h's
liquid metallic core inte two main regions, the “pol(oid)osphere”
and the “tor(oid)osphere” (which merge at the (rmn-spherical)
“pol(oid)opausc™), on the basis of the comparative strengths of the
toroidal magnetic field B, (which has no radial component and is
largely confined 10 the core owing to the low electrical
conductivity of the mantle) and the poloidal magnetic field B, In
the polosphere IB ! is typically no larger than IB,l and in
consequence polospheric flow is expected to be quasi -geostrophic
nearly everywhere (scc (3.7)). But in the torosphere B, by
definition has its highest values which may bc at least comparable
with|B,l and may even exceedIB,l by as much as an order of
magnitude, in which case torospheric flow would bc highly non.
geostrophic. 2 is the rotation vector of the mantle, S isthe core-
mantle boundary and C a general mathematical control sal-face
used in the mathematical analysis presented in §3 (see (1..1), (3,1)
and (3,2)). Vertical scales of the bounding surfaces arc greatly
exaggeraled. The position of the polopausc is a matter for
investigation, but its typical depth below the CMB may bc much
greater than & but much Icssthan ¢ (scc (2. 1)).

Figure 1. Schematic diagram illustrating tbc general systemanalyzed in this paper and the proposed division of the
Earth’s liquid metallic core into two main regions, the “pol(oid)osphere” and the “tor(oid)osphere”™ (which merge at the
(non-spherical) “pol(oid)opause™), on the basis of the comparative strengths of the toroidal magnetic field B, (which
has no radial component and is largely confined to the core owing to the low electrical conductivity of the mantle) and
the poloidal magnetic field 12, 10 the polosphere 1Bl is typicaly no larger than ¥, and in consequence polospheric
flow is expected to be quasi-geostrophic nearly everywhere (sce (3.7)), But in the torosphere tB,1 by definition has its
highest values which may be at least comparable with|B,l and may even exceced I3 ,l by as much as an order of
magnitude, in which case torospheric flow would be highly non-gcostrophic. Q is the rotation vector of the mantle, Sis
the core-mantle boundary and C a general mathematical control sol-face used in the mathematical analysis presented in
§ 3(scc (1.2), (3.1) and (3.2)). Vertical scales of the bounding surfaces arc greatly cxaggerated. The position of the
polopausc is amatter for investigation, but its typical depth below the CMB may bc much greater than /2 but much less

than ¢ (sec (2.1)),






