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The failure probabilities for specific failure
mcdes of mechanical or electronic components
can be estimated by Direct Monte Carlo simulation.
The feasibility of alternative efficient methods for
such failure probability computations is discussed.
First and second order reliability methods are used
for fatigue crack growth and low cycle fatigue
structural failure modes to illustrate problems which
can arise when realistic applications with complex
nonanalytic failure models are considered.
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A procedure developed by the Jet Propulsion
Laboratory (JPL) for assessing failure risk of
mechanical or electronic components by means of
a quantitative methodology for estimating the
probability of occurrence of specific failure modes

Copyright O by the 1995 American Institute of
Aeronautics and Astronautics, Inc. All right reserved. 1

is presented in [1 ] and [2]. This methodology, called
Probabilistic Failure Assessment (PFA), is
applicable to failure modes that can be
characterized by analytical or empirical mcxfeling of
failure mechanisms, such as those of structural,
electro optical, propulsion, power, and thermal
control systems. It is especially useful when models
or information used in analysis are significantly
uncertain or approximate, which is typical in
advanced systems cievelopment projects. That
suitability is in contrast with pure sampling
probabilistic methods which typically require
infeasible amounts of test and/or operating data in
order to estimate failure probabilities with
acceptable confidence.

In ttle PFA methodology, analytical or empirical
models that characterize specific failure modes are
used in a prescribed probabilistic structure in which
quantified uncertainty in the information used in the
analysis and quantifieci uncertainty of the models
themselves are both considered in estimating
failure risk. These models are typically complex and
the approach requires an accurate characterization
of the left-hand tail of the failure probability
distribution function warranted by the available
information for each failure mode of interest. There
are various computational methods which can be
used in order to accurately generate those failure
probability distribution functions.

M.QDtRQ@Simulation

The most straightforward computational
procedure, in the sense that it can accommrxfate
naturally the forms in which engineering modeling
information is available, is Monte Carlo simulation.
Monte Carlo simulation provides an information
framework which mirrors the actual physical failure
process, minimizing tiny problems associated with
the modeling requirements of alternative
computational methods.
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The usual reasons advanced for preferring
alternative computational methods to Monte Carlo
simulation are

(1)

(2)

(3)

that for very small failure probabilities Monte
Carlo simulation is infeasible due to the iarge
number of simulations required,

that finite element analysis models and other
procedures used in complex deterministic
engineering analysis cannot feasibly be
embedded in a Monte Carlo simulation since
the computations for such procedures
themselves are extremely time intensive, and

that Monte Carfo simulation is inefficient when
performing repeated computations for the
failure models with small changes in the
characterization of the driver variables, as
might be done in the design process.

In the case of (1), for many practical problems the
state of knowledge about the failure mode will be
such that the failure probabilities of interest can be
feasibly estimated by direct Monte Carlo simulation.
For cases where it is necessa~  to estimate very
small failure probabilities, Monte Carlo simulation
may still be feasible by using variance reduction
techniques such as importance sampling, a
procedure which increases the number of failures
in any simulation of fixed size. Variance reduction
techniques are discussed in [3]. In the case of (2),
it is quite true that it is usualiy  infeasible to embed a
finite element analysis model or perform a
procedure like cycle-by-cycle crack growth
integration within a Monte Carlo simulation. But
response surface methods can be used to resolve
both of these issues and in the case of crack growth
integration there also exist block-by -biock
integration schemes which can be used. Response
surface methods are discussed in [4] and [5] and
block-by-block integration is discussed in [6]. In the
case of (3), if a more efficient method can be
valldated using Monte Carlo methods, then it may
be possible to achieve savings in repeated
computations, although those savings may not be
significant if more than one or two points on the
failure probability distribution are required.

Alternatives to Monte Carfo  simulation often fail
to give demonstrably accurate results or are not
significantly faster for realistic problems in which
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complex failure models are employed. Alternative
computational methods can be used in probabilistic
analyses which employ simple well behaved failure
models, particularity if the failure criterion is
expressed exiiicitly in a closed form equation as
opposed to a complex multi-step algorithm.
However, in these simpler cases execution time on
widely availabie modern computers usually is not
an issue, even for the direct Monte Carlo method,

A comprehensive discussion of computational
methods for generai probabilistic iife modeling is
provided in [7]. The alternative procedures
compared are (1) Direct Analytical integration, (2)
Numerical integration, (3) Direct Monte Carlo
simulation, (4) Efficient Monte Carlo simulation, (5)
Propagation of errors, and (6) g-function methods.
For the kinds of complex failure models in which we
are interested, the only conceivable alternatives to
direct or efficient Monte Carlo simulation are
g-function methods. g-function methods are
discussed in detail in [3], [8], [9], [10], [1 1], and
[12].

The basic problem can be couched in the
evaluation of the following integrai:

(1)
PI = ~ “; ~ f(xl, . . ..xn)dxl  . . . dxn

where p, is the probability of failure, f(xl, . . . . Xn) is
the joint probability density function of the drivers
xl, . . ..xn and D = {(xl, . . ..xrl) : g(xl, . . ..xn) < O} is

the  region of  fa i lure .  The boundary ,
g(x,, . . ..xn) = o, which divides the multi-
dimensional driver space into regions of faiiure and
regions of safety is known as the limit state or
g-function. This integral can be evaiuated  in closed
form for a very limited set of driver distributions and
limit state functions. The direct numericai evaluation
of this integral is also only possible in simple cases
of iimited practical interest.

In the Monte Carlo method this integral is
evaluatecj  by a direct simulation of the failure
process. If the failure analysis is structured properiy
and a particular parameter identified (e.g., life, in a
fatigue analysis), then the entire cumulative
probability of failure curve against that parameter is
readily obtained. In the Monte Carlo simulation, the
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failure model analysis can follow the same
procedures used in a state-of-the-art deterministic
failure analysis. However, the failure analysis has to
be performed a large number of times, typically ten
to one hundred divided by the lowest probability of
failure of interest. There are numerous techniques
such as importance sampling, response surface
methods, directional simulation, and others which
are designed to decrease the simulation effort
required.

In the first and second order reliability methods
(FORM/SORM), the approach is to transform the
integral of Equation 1 to an approximately equal
integral which can be efficiently evaluated. This is
done by: (1) transforming the driver variables to a
space where the region of the main contribution to
the probability integral can be located; (2)
approximating the limit state function as a simply
defined surface in that region (linear for FORM,
quadratic for SORM); and (3) analytically or
numerically computing pl using the newly defined
g-function and the transformed variables. The
transformation used in step 1 is one which maps the
probability distribution for each driver into a
standard normal distribution. For a given limit state
function, the main contribution top, comes from the
region where g is closest to the origin in the
transformed driver space. The closest point to the
origin in the transformed driver space is called the
Wesign  polnf” or the@point.  The g-function is then
approximated by a simply defined surface at that
point and step 3 can readily be performed. Thus the
problem has been changed from a complex
integration problem to a mathematical optimization
problem for finding this closest point using the
gradients of theg-function. For analytic g-functions,
numerous techniques for solving this problem exist;
however, for complex nonanalytic g-functions, this
optimization problem has often been found to be
unstable.

There have been numerous algorithms
developed which fall under the broad classification
of Mean Value First Order (MVFO) techniques [10].
All of the MVFO methods presented in the literature
usc a linear g-function approximation obtained by
expanding the limit state function about the mean
value of the tmsicvariables.  Thus, these methods do
not require formal optimization schemes to locate
the design point as is needed when one uses the
FORM/SORM algoriihm. Note that the dependence
on linearization is a serious drawback if the

g-function is a product of some of the drivers. The
Iinearg.function approximation cannot be expected
to properfy represent the actual g-function under
that circumstance. By taking logarithms one could
transform a product function into a summation;
however this scheme (or any similar scheme) breaks
down when the driver clependence is mixed or is not
explicitly known, as is the case for the class of
engineering problems with which we are concerned.
Some of the current MVFO methods can be applied
repeatedly in an attempt to improve the initial
reliability y estimates. These methods involve more
calculations than the MVFO methods and there is no
guarantee that the final estimates are superior to the
initial ones. In contrast, FORM/SORM  algorithms
involve a similar level of calculations but approach
the exact reliability for a unique ~-point  provided the
optimization algorithm is stable.

The instability problems associated with the use
of FORM/SORM for ccjmplex nonanalytic problems
would not be apparent in the evaluation of reliability
using MVFO methods, However, we may clearly
conclude that the use of MVFO methods for these
problems would also not give correct answers,
since it is highly unlikely that the approximations
associated with MVF”O methods will allow a correct
answer to be generated when a FORM/SORM
evaluation would fail to do so. There have been
published validation examples for MVFO methods
which used nonanalytic g-functions [10] and [11 ].
However, in these validation examples the
g-function dependency on the drivers was generally
monotonic, the failure models were relatively
simple, the number of drivers that need not be
treated deterrninistically  was small, and the
coefficient of variation of the stochastic drivers was
never large. Thusthe robustness of MVFO methods
has not been verified for engineering problems
where the g-functions are complex nonlinear,
non-monotonic, nonanalytic multi-step algorithmic
functio]ls of products of highly non-normally
distributed drivers and where the combination of
incomplete knowledge and intrinsic variation often
causes the driver distributions to have large
coefficients of variation (e.g., greater than 1).

There is a computation time advantage to the
MVFO ntethods as compared to the FORM/SORM
methods. However the FORM/SORM methods are
sufficiently fast to make the need for increased
speed superfluous. The lack of a theoretical means
for establishing the level of error due to the
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Table 1 Commonly Used Methods for the Computation of Probability of Failure in Engineering

Method

Analytical
—

Numerical
Direct

Monte Carlo
Direct—

Monte Carlo
Efficient

FORM/SORM

Formulation ~

Direct Integral

Direct Integral

Simulation

Selected
Simulation

Limit State
Function

—.

Attributes

Only possible for extremely limited set of driver distributions and
failu~ models. Academic interest only.— -———

Only possible for limited set of driver distributions and failure models
of limited practical interest._ .. ———.. ——- ——-—— — -—-—— — —.. —

General, accurate solution fc]r all driver distributions and failure
criteria. Many simulations required.———.——.———— —- -— — -. ----—

Generai, faster than direct Monte Carlo. Not yet demonstrated as
effective for our very compk:x,  non-analytic multi-step failure models.—. — .-. .——
Approximates exact solution for low probabilities of failure.
Significantly faster than Mollte Carlo methods. Maybe unstable for
complex, non-analytic failure models..——-

atwoxirnations  within the MVFO approaches in
contrast to the sound mathematical basis of the
FORM/SORM approaches leads us to conclude
that for those problems where approaches other
than Monte Carlo simulation are desirable and
tractable, the method of choice would be a
FORM/SORM  approach. A summary of the
computational methods discussed above is given
in Table 1.

In addition to the approaches listed above there
are many other methods for estimating reliability,
e.g., the optimal distribution estimator, propagation
of errors, and the Markov process model [13]. The
use of these methods can significantly reduce
computation time relative to direct Monte Carfo
simulation. However, these methods, like all the
other approximate techniques for reliability
analysis, (i) are not general; (ii) can yield
significantly inaccurate reliability estimates; and (iii)
may not converge when based on iteration
procedures.

~onverg~nce  Problems w

One problem that can arise with FORM/SORM
methods is that SORM may fail to converge for
some modeling parameters. Consider the following
simple analytical problem:

Let the limit state be defined by

x 2= –.05X1

2 + 3 + c sin(coxl) (2)

w h e r e  X1 ,X 2 N N(O, 1). The failure  re9ion  is

indicated in Figure 1 fore = O and the convergence
region for SORM in Figure 2 as a function of o and
c, The SORM algorilhm fails to converge when the
noise in the iirnit state, c sin(axl), fluctuates rapidly
and its amplitude is not small. Such noise can occur
in practical problems when the limit state is not
available in closed-form.

F ORM/SORM results were computed using the
STRUREL program documented in [12]. That
program also generates efficient Monte Carlo
simulation results using an importance sampling
algorithm, at the cost of additional computation
time.

The convergence problem illustrated in Figure
2 is not just of acaciemic interest. Probabilistic

x 2

I

I

,111

Figure 1 Failure Region For c = O
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Figure 2 SORM Convergence Region

Failure Assessment for the fatigue crack growth
failure mode in a Heat Exchanger (HEX) tube using
direct Monte Carlo simulation has been described
in detail in [2].

Results using a simplified version of the HEX
tube assessment were presented in [1 4]. A
simplified stochastic driver specification was used,
a shorter load history with only three stochastic
loads was used, aerodynamic load factors were
fixed, and a generic stochastic stress analysis
accuracy factor was used rather than separate
dynamic and static factors. Results were calculated
for five points in the tail of the failure probability
curve. Convergence was achieved for all but the
smallest failure probability SORM value.

A granularity problem induced by removing
those simplifying assumptions prevented STRUREL
SORM algorithm convergence and FORM failed to
converge for the smallest failure probability. Those
results are summarized in Table 2 where the Direct
Monte Carlo results were based on 10,000
simulations.

Another problem that can arise with
FORM/SORM methods is that there may be more
than one ~-point. Consider the foIlowing simple
analytical problem:

Let the limit state be defined by

Table 2

.—
Direct

Monte Carlo

.0001_—— —

.0002_—— —

.0004——-—

.0006

.0008

.0010—.-—

.0020—--—

.0040

.0060—-——

.0080—-——

.0100

HEX Tube Flaw Propagation
Failure Probabilities

Efficient
FOF{M Monte Cario SORM

—
-. —

—-
.0007 .00009 –
.0019 . 0 0 0 3 -
.0027 .0005 -
.0032 .0007 -

.0048 - .0010 -

.0268 .0106 I --—

X*= 3- (x, + .01)2+ 2(x, + .01)4 (3)

where X1,X 2 -N(O, 1). The failure region is

indicated in Figure 3.

The FORM/SORM results are presented in Table 3
where Direct Monte Carlo simulation with 1,000,000
simulations yields a failure probability,
p, = .000914.

The multiple ~-point problem illustrated by this
example is also not just of academic interest.
Probabilistic Failure Assessment for the Low Cycle
Fatigue (LCF) crack initiation failure mode in a
turbopump turbine disk using direct Monte Carlo
simulation has been described in detail in Moore, et
al. (1992a). Two /?-points were found and the
corresponding computational results are presented

1
“ 2.875YUIUL#

●

-.51 -.0; .4’9 xl

Figure 3 Failure Region
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Table 3 FORM/SORM Computations

4~-Point  #1
P

Pf

~-Point  # 2  P
Pf

FORM I

=!2.913

JXM79

2.914

.00178

E!i!lA.z%.
2.W ! 3.259 ! 3.244

. 0 0 1 5 1  I  J30058 I .(KO59

~ti--i-  3.203

. 0 3 1 5 8  I .m58 I .fxK)87

in Table 4 where the Direct Monte Carlo results were
based on 400,000 simulations. The approximate
probabilities of failure based on a single/?-point can
differ significantly from the “true” failure probability
determined by direct simulation. FORM/SORM
approximations of the failure probability when there
is more than one ~-point can be obtained by using
concepts of system reliability. However, one
generally does not know in a complex problem how
many #?-points exist. Therefore, the use of system
reliability concepts encounters serious difficulties.

For the HEX tube fatigue crack growth
application the following three alternative computer
systems were used to perform computations.

(1) a 33 MHz 80386/80387 PC using the Lahey
FORTRAN F77L-EM/32 Ver. 5.01 compiler

(2)

(3)

a 33 MHz 80486DX PC using the Lahey
FOFiTRAN F77L-EM/32 Ver. 5.01 compiler

an Intel Touchstone Gamma parallel
processing computer system with
hypercube architecture using the Pacific
Group’s pgi compiler (8 of the 16 available
nodes were used)

Monte Carlo results were computed for each of
these three systems and STRUREL results were
derived using system (1). The computation times for
10,000 Monte Carlo simulations were 17.8 hours,
12.1 hours, and 1.1 hours for systems (l), (2), and
(3), respectively. These results illustrate the ability
to take advantage of a parallel processing computer
system for Monte Carlo simulation. STRUREL
results in Table 2 required 37.4 hours of system (1)
computation time. Approximately 50°A of that time
was rec~uired to generate the FORM solutions, with
the renlaining  time required to generate Efficient
Monte Carlo results using 100 samples in the
FORM-based importance sampling procedure
available in STRUREL.

For the turbine disk LCF application both Monte
Carlo results and STRUREL  results were computed
on system (1). The computation time for 400,000
Monte Carlo simulations was 3.8 hours and the
STRUREL results presented in Table 4 required 4.5
hours. Less than 1% of that time was required to
generate the FORM and SORM solutions. Almost all

Table 4 Turbine Disk LCF Failure Probabilities

I ——

.0001 .00008 .00006 .00003

.0002 .0003 .0002 .0001

.0004 .0006 .0004 .0003.—— —. —.——

.0006 .0008 .0006 .0004—— .—— — .——. .

.0008 .0012 .0009 .0005

.0010 – .0013 .0010 .0006..—. —.

.0020 .0025 .0020 .0012

.0040 .0047 .0040 .0023

.0060 ‘ .0067 .0059 .0033

.0080 .0087 .0079 .0045

.0100 .0106 .0098 .0056
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.0002 .0002 .00007

.0004 .0003 .0001

.0005 .0005 .0002

. 0 0 0 7  -
.0 0 0 7 .0003

.0008 .0008 .0003—.——— . ..— —— . .

.0016 .0017 .0006.— —

.0030 .0034 .0013— . .

.0043 .0051 .0019— — .

.0056 .0069 .0026—— .——. .—

.0069 .0086 .0033. .——

I nd Astronautics



of that time was spent generating Efficient Monte
Carlo results using 2000 samples in the
FORM-based Importance sampling procedure
avallabie in STRUREL.

These computational results illustrate that to
derive accurate numerical results for complex
problems computation time constraints relevant for
Monte Carlo simulation are not a serious issue with
available computer systems.

There are numerous conceptual alternatives to
Direct Monte Carlo simulation for the evaluation of
small failure probabilities. For relatively simple
failure models with closed-form g-functions,
FORM/SORM methods can be a useful alternative.
However, for complex nonanalytical problems,
such as the crack initiation and crack growth
analyses discussed in this paper, Direct Monte
Carlo simulation is necessary to validate
FORM/SORM results. In fact, for the HEX tube
fatigue crack growth failure mode model, it was
found that SORM did not converge. And, for the
turbine disk LCF failure mode model it was found
that there were two /?-points, so that FORM/SORM
results could not be used.
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