February 20, 1995

A New Solution for Dilaton-Maxwell Gravity.

Slava G. Turyshev !?

Abstract

An interesting static spherically symmetric solution corresponding to Einstein-Maxwell
gravity coupled to adilaton ficld with negative kinetic terin has been obtained. This solution
is characterized by the set of two arbitrary parameters, the physical mass /o and electric
charge Q. It has two horizons on which the metric, scalar curvature and both dilaton and
clectromagnetic fields are regular. Another feature of this solution is that, the physical mass
is bounded by thie electric charge as o >+/2Q (unlike t he Reisner-Nordstrém solution for
which /20 > Q). The structure of the scalar curvature has been analyzed.
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The theoretical problems of modern cosmology and gravity have recently been attacked from
the point of view of the tensor-scalar and many-dimensional theories of the Kaluza-Klein type.
These approaches are reviving interest in the so called dilaton fields (i.c. neutral scalar fields). It
is now belicved that the scalar-tensor theories of gravity arc the most proinising extension of the
theoretical basement of the gravitational theory [1], [2]. Although they naturally arise in theory,
the existence of the scalar fields conflicts with the basic principles of the general relativity. J bus,
the inclusion of the scalar field in the theory leads to a violation of the equivalence principle,
modification of large scale gravitational phenomena, and casts doubt upon the constancy of the
constants [2]. The behavior of the matter fields in the presence of the dilaton has been studied in
many publications, notably [1]- [8]. 1 t was shown in [3] that the extreme charged dilatonic black
hole solutions obtained in [4] behave as elementary particles in a sense and that there exists
a mass gap in their excitation spectrum. It was conjectured in [5], that the supersymmetry,
co-existing with the scalar fields, is likely playing the rob: of the cosmic censor by hiding the
singularities from external obscrvers. These conclusions make obtaining a solution with regular
horizons in the presence of a scalar field quite intriguing.

A generic class of the theories with an arbitrary number of the scalars coupled to one tensor
field has been recently considered in [6]. By studying the tensor-bi-scalar case, the authors
illustrated that although these theories might have the samc posi,-Newt onian limits as the general
theory of relativity, they predict non-Einsteinian bechavior of the stellar objects in a strong
gravitational field. This discrepancy leads to an observable effects which might be extracted
from the binary pulsar data. The generalized hi-scalar J ordan-Brance-Dicke theory has been
investigated in [7]. One of the results of these investigations is that some of the scalar fields in
tensor-multi-scal ar theories must have non-positively defiried kinet ic terms. This result comes
from the necessity of mecting the constraints based on the post-Newtonian tests of the genera
relativity performed to date. Because of these results, it would be interesting to explore the
behavior of the static gravity coupled a scalar field with the negative kinetic term in the presence
of the other fields of matter.

In this paper wc will focus our attention on the simplest extension of gravity coupled to
interacting clectromagnetic and massless scalar fields. The form of the action is suggested by the
low-energy limit of the string theory [1], [5] and might be written as:
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We also would like to study how the interaction between 1 he dilaton and clectromagnetic ficlds
(given by this expression) will manifest itself on the structure of the solution. ‘Jbus, extremizing
the action (I) with respect t0 gmn, ¢ and A, it is easy to obtain the following fields equations:
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We will look for a solution to (2)-(4) together with the covariant de | donder gauge condition [8]:

Dm\/jggm“ =0, ©)
where I, is the covariant derivative with respect to Minkovsky metric:



Ymn =7 diag(l, "‘], - 7‘2, -—7‘2 sin? 0)

We accept that the static spherically symmetric fields arc everywhere radial (incaning that
Fio(t,r, u, @) = E(r) and é(t, 7, 0, p) = ¢(r)). The effective metric then inight be given by:

Gmn = dia‘g( 'lL(T), »v(r),’-w(r),’w(r) Sil]2 0) (6)
Note that if the scalar field is absent (i.e. ¢ == O), the solution resulting from the action

(1) describes acharged black hole with mass ft0 and electromagnetic charge @, which, in the
harmonic coordinates of the Minkovsky space-tinw, might be presented as follows:
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This is the harmonic Reisner-Nordstrom solution. 1t describes a charged black hole with one
horizon j¢ >0 which is defined by the relation g = \ﬂl(?, - Q2

The general static spherically symmetric asymptotically flat solution of the system of equa-
tions (2)-(4) together with the covariant harmonic condition (5) might be obtained as follows:
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where >0, Q and k arc some parameters (arbitrary for the moment). It is easy to scc
that because of the first term in the expression for ¢ (8b), this solution isin general singular.
Fortunately, by choosing the paramcter & = 41 /2, onc may climinate t he logarithmic term and
hence can avoid the singularity °. For example for k= 1/2, from the solution (8) onc will obtain
a qualitatively different result:
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where wc have taken ¢o, = O. Note that in the case (Q — O) this result correspond to harmonic
Fock solution for a static spherically symmetric distribution of matter [1 O]:
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3Note that if the interaction between the dilaton and the clectromagnetic fields is neglected (i.e. setting ¢ = 1
in the action (1)), the choice k= +1/2 corresponds to exti acting of the dilaton from the action. The solution in
this case is presented by expression (7).




‘1’bus, the obtained result (9) is a conformal modification of theFock solution in the presence
of the dilaton ant] clectromagnetic fields. This solution is labeled by the means of two parameters
s« and Q and has two regular events horizons (74 ), which correspond to the physical mass fto
and the clectric charge Q of the hole as follows:
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It is easy to sce that the determinant of the metric gmn cor responding to the solution (9) is aso
regular on the horizons (11):
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The solution, analogous to (9), might be obtained in the Schwarzschild coordinates as well.
Indeed, by changing the gauge conditions from ones given by (5) to:
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from the Eqgs.(2)-(3) one will get the following result:
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Note that the metric and both ficlds in this case have a singularity at the point r= O. However,
this singularity is hidden by the horizons (r4)Ed. (11 ) on which the metric and both ficlds arc
regular.

One might expect that the scalar curvature for both solutions (9) and (13) will be also
regular on the surfaces (11). It is well-known that as far as the clectromagnetic part of the
energy-momentum tensor corresponding to action (1) is traceless, the only contribution to the
Riemann curvature It comes from the dilaton field. By taking the trace of the equations (3), we
might present R for the solution (9) as follows:
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Analogously, the scalar curvature Itg might be obtained with the help of solution (13):
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An interesting case arises when p2 =2Q?(the extreme black hole). Thus, from the expression
(12) we will obtain p=py = jt0/2 and, as a result, thescalar curvature g in the extreme
regime for the result (14a) can be given by:
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The scalar curvature (14b) tends to be zero at a large distance (Ry(r) --->0, r — co0). For any
non-zero value of the physical mass /0, the curvat urc Ro 1)chavesnear the horizon as:
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One might casily scc that the solutions ( 7) and (9) coincide in the post-Newtonian limit
(p/r — O). By expressing these results in terms of the physical mass 19 and electromagnetic
charge Q, we will obtain the same result for the lincar element ds? in the weak field approximation:
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It is quite interesting that up to the post-Newtonian level of accuracy, t 1 icsc results, which were
obtained with and without the scalar field, produce the samc contribution of the electrostatic
energy in theeffective metric. This means that they can not be distinguished by any experiments
in the solar system performed to date [10]. Moreover, this contribution in the effective metric is
unlikel y to be detected even in the next generation of experiments [2]. Indeed, the constraints
imposed on new weak forces from the behavior of the astrophysical objects [12] gives as the
maximum possible electric charge Qmqr carried by celestial bodies t he following estimation:
Qmar < 10%%¢. Using this, the parameterized post-Newtonian parameter 3 in the case of the
celestial body with the physical mass fto==nMg might be obtained as:
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where Mg is the mass of the Sun. However, even with n =1, this result gives a practically
unmecasurable value for the contribution of the clectrostatic energy in the gravitational field
generated by the charged astrophysical body.

‘1'bus, wehave obtained the static spherically symmet ric solution of the Einstein-hJaxwecll
gravity coupled to the dilaton field with the negative kinetic term. It has has two regular
horizons which coincide for the extreme black hole. The distinctive property of this solution is
that the physical mass fto is always bounded by the electric charge as jio >+v2Q (unlike the
Reisner-Nordstrom solution (7) for which the extreme value of for the 1nass defined as o = Q).
For Q = O the obtained result coincides with the Fock (9) or Schwarzschild (13) solutions of
Einstein’s equations. Another interesting feature of that type of solution is that it satisfies
the no-hair theorem, which st ates [13] that no parameters other tharimass, electric charge and
angular momentum may be associated with a black hole. It is casy to sec that the dilaton charge
D in this case is not an independent variable. By analyzing the behavior of the dilaton field at
a large dist ance, one might get the following value of dilaton charge 1) = Q?/2j. This result
states that the solution is characterized by the set of two independent parameters only (physical
mass fto and electric charge Q).

Unfortunately, the negative kinetic term —g"" V¢V, ¢ in (1) generaly leads to a theory
without any stable states, Thismeans that when the system is quantized, any flat wave will
have negative energy and the more negative the energy, the bigger the amplitude or the frequency
of the waves. The authors of [2] note the need for scalar fields with the negative kinetic terms in
nlulti-scalar-tensor field theories, and point out the potential of such ficlds for approaching the
problems with the stellar and quantum stability. However, it was shown in [7] that for the theory
with the negative kinetic terins, the cosmological solutions which arc suitable for experimental
tests in the solar system arc unstable. Because of these results, we bclieve that although the
obtained solution (9) is unlikely to be stable, it might provide an interesting possibility for
investigating the behavior of the fields of mat ter in the tenisor-multi-scalar theories.
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