
.

IWruary  20, 1995

A New Solution for Dilaton-Maxwell Gravity.

Slava G. ‘1’uryshcw ] ‘z

Abstract

An interesting static sphmically  symmetric solution corresponding to Einstein-Maxwell
gravity couplcxl  to a clilaton  ficlcl  with negative kinetic tcr] n has km obtai]lcd.  I’llis  solution
is charactcrizccl  by tlIc set of two arbitrary parameters, the physical mass ILO and electric
cllargc  Q. It has two l]orizons on whic]l tllc metric , sdii~ curvature and both dilaton ancl
clcctroma.gnctie  fields arc rcgulal. Another feature of this solution is that, the physical mass
is bounded by tlm electric charge  as ~~o > {2Q (unlike t Ilc RcisI~er-Nor(istr6111  solution for
which l~o > Q). ‘1’lIc structure of the scalar curvature has been a~lalyml.
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‘1’llctllcorctical  l)roblcl~lsoflllc)dcrll  coslllolc)gy  alldgra~ityl  laverec{!lltly  been attacked fronl
the l)oint of view of the tcmsor-scalar  and lllal~y-di~llc~~siollal  theories of tl]c Kaluza-Klein type.
'l'llcsc a~]~)roacllcs  arcrcvivil]g  illtcrcst  illtlle socallcd dilaloll  fielcls(i.c. ~lcutral  scalar  fields).  It
is now bclicwcd that the scalar-tcmsor  theories of gravity ar{: the lmost  ]M olnising extension of the
theoretical bascnlcnt  of the gravitational theory [1], [2]. Although tliey ]laturally  arise in theory,
the cxistencc of the scalar fields conflicts with  the lmsic principles of tl)c ~,cncral  relativity. ‘J’bus,
the inclusion of the scalar field  in Ihc theory leads to a violation of tlic equivalence principle,
nlodification  of large scale gravitational phenomena, and ci~ts  doubt, u] ml the constancy of the
constants [2]. ‘J’hc behavior of the nlatter  fields in tllc presence of the dilaton  has been studied in
nlany  publications, notably [1]- [8]. 1 t was shown ill [3] thai  the cxtrcnw  charged dilatonic  black
hole solutions obtaillcd  in [4] behave as elementary particles in a sense and that there exists
a nlass gap in their cxcitatiou  spcctrun~. It was conjectured in [5], that, the supcrsynln~ctxy,
co-existing with the scalar fields, is likely playing the rob: of the cosnlic  censor by hiding the
singularities fronl external obscxvcrs. ‘1’hcse  conclusions make obtail  Ii np; a solution with regular
horizons in the presence of a scalar field quite intriguing.

A generic class of the theories with an arbitrary munbcr  of the scalars coupled to onc tensor
field has been recently considered in [6]. By studying the tensor-bi-scalar case, the authors
illustrated that  although these theories nlight  have the sanlt: posi,-Newt oniall linlits as the general
theory of relativity, they predict non-Einsteiniarl  bchavi{m  of the stellar objects in a strong
gravitational field. ‘J’his  discrepancy leads to an observable effects wllicll  lnight  be cxtractcd
fronl the binary pulsar clata. ‘1’hc generalized hi-scalar J ordan-IJrallcw  Dicke theory has been
investigated in [7]. Onc of the results of these investigations is that sonic of the scalar fields in
i,cnsor-nlulti-sc  alar theories n~ust  have non-positively dcfil  lccl kinct ic ternls.  ‘J’his  result conlcs
fronl  the necessity of nleeting  the constraints based on the post-Newtonian tests of the general
relativity pcrfornmd  to date. Rccausc  of these results, it would bc interesting to explore the
behavior of the static gravity couplccl  a scalar field with the negative kinetic tcrnl  in the prcscncc
of the other  fields of nlattcr.

In this ~)alxx- wc will focus our attention on the simldcst  cxtelwiol)  of gravity coupled to
interacting electrolnagmetic  and nlassless scalar fields. ‘1’hc form of the action is suggested by the
low-energy liulit of tllc string theory [1], [5] ancl niight bc written as:

(1)

WC also would like to study how the intcra.ction between i he dilatc)n a~d c]cctronlagnctic  ficlcls
(given by this cxprwssion)  will nlanifest  itself on the structlmc  of the sc)lution. ‘J’bus, cxtrcmizin.g
the action (l) with respect to g~,t~l, @ and A,,, it is easy to obtain the following fields ecluations:

g“’’’v,,tvnq+) +-

w/=iur’f+%J  = 0>

We will look for a solution to (2)-(4) together wit]] the covariant  CIC I )ondcr  gauge condition [8]:

JX1{-99’)L’L  “ 0) (5)

where Ilt,l is the covariant  derivative with respect to Minkovsky metric:
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Wc acmpt that tllc s tat ic  spherical ly symnctric fields arc cvcrywllclc  raclial (~ncaning  that
l’Io(t,  7, U, ff) = l;(r) and +(t,  r, 0, p) == d)(r)). ‘1’he  effective nwtric  then lnight bc .givcn by :

!hn = dkd t~(~), ‘~(~)1 - ‘~~(~),  - ~~(~) sin2 O (6)

Note that if the scalar field is abselit  ( i.e. @ T= O), tllc solution resulting from the action
(1) dcscribcs  a chargccl black hole with nlass ~Lo and electromagnetic charge Q, which, iu the
harmonic  coordinaics  of the hfinkovsky  space-tinw, nlight bc prescmtcd  as follows:

( ‘-
r – /10&2 . —

(-42

) (
&–

)

~2 -1

+  (?’+ /L,)~
- + -–---—j
‘r+ pfJ (r+ po)

dr2– (T-I p[,)2(d02+sin2  t9d~2). (7)
r + }io

‘1’his is the hannouic  Rcisncr-Norclstrthn  solution. It dcs(:ribcs  a charged black 1101c with onc

horizol)  II >0 which is dcfiued by tile relation p := &Gz
‘1’hc general static spherically symnctric asynlptotical]y  flat solution of the systcnl  of equa-

tions  (2)-(4) together with the covariaut  harmonic concliti(m (5) Inight bc obtained as follows:

r2 – /12 Q_c2@(7  ) ,
u(r) := —1— == —-–- E(r) : = — (8cL)

v(r) w(r) ‘ w(r)

Q2

~,(.) = ‘-~#E hi ~T~~- + j6TF~z  [ 1- (fi~)2k  ] -1 I#)m, (8b)

(8c)

w h e r e  IL > 0, Q ancl k arc some paranlctcrs (arbitrary for the nlonlcnt).  It is easy to scc
that bccausc  of tllc first term in the expression for @ (8 b), this solutio]l  is ill general singular.
l?ortunatcly,  by choosing the paramctcw k = +1 /2, onc may climillatc  t llc logarithn]ic  tcrnl  and
hcncc cau avoid the singularity 3. For example for k =: 1/2, from the solution (8) onc will obtaiu
a qualitatively different result:

+(r)  = $(1 - ~-~f )>
Q 2

[ (

r—p
w(r) = (r+ IL)2CX1) ---— 1 – —

2/L2 )1?-+// ‘

(9a)

(9b)

U(T) == & = (=J Cx]) [j;; (~ -- l)], (9C)

where wc have taken & =: O. Note that in the case (Q ~ O) this result correspond to harmonic
Fock solution for a static spherically syn~mctric clistributi(~n  of matter [1 O]:

(lo)

3Note that if the inkrac.tion  bctwccn the dilaton and the clcctroma~:netic  fields  is nc~lcwted  (i.e. setting e- 24 = 1
in the action (1 )), the choice k =: +1/2 corrcsponcfs  to cxt] acting of the dilato~i f] on] the action ‘1’hc  solution in
this case is prcscntccl by expression (7).
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‘1’bus, the obtained result (9) is a confornlal  modification of the Fock solution in the presence
of the dilaton  ant] clcctronlagnetic  fields. This solution is labeled by tllc Inca) M of two parameters
IL and Q and has two regular cvcnt,s  horizons (TA ), whicl)  corrcs})ond  to the physical nlass ILII
and the cdcxtric  charge Q of the hole as follows:

(11)

It is easy to scn that tllc dctcxminant  of the nlctri{:  g,n,l co] responding to the solution (9) is also
rc.gular on tllc horizons (11):

Q’[( ?’-p
g == W(T)2  sin 2 O == --(r -1 p)4 cxp ;L~- 1 – —-- )1 si112 f?,

‘r + /!
(12)

‘J’hc solution, analogous to (9), might  bc obtained in the Schwarzscllild coordinates as WC1l.
lndecd,  by changing the gauge conditions fron~ oncx given by (5) to:

1us(r) = —– = p(r)cz~sq‘vs(r) ‘Ws(r) m r2~- 2d’S(”),

fron] the l’k]s.(2)-(3)  one will get the following result:

211
~~s(r) := $:,

Q
p ( r )  = 1 – ;-, Es(r) == p.

(13a)

(13/))

Note that tl)c nlctric  and both fields in this case have a sill.gularity  at tllc point r = O. However,
this  singularity is hidden  by the horizons (r+) Eq. (11 ) on which the nletric  and both fields arc
rcgu]ar.

Onc nlight  expect that the scalar curvature for both  solutions (9) and (13) will bc also
regular on the surfaces (11). It is well-known that as far as tllc clcctronmgnct  ic part of the
cllcrgy-ll~olllclltu~l~  tensor corresponding to action (1) is tracclcss,  the only contribution to the
Ricnnann  curvature R conm fronl the dilaton  field. By taking the trace c)f the equations (3), wc
nligllt ~)rcscnt  1/ for the solution (9) a~ follows:

Analogously, the scalar curvature Iis nlight  be obtained with the help of solution (13):

Q 4 Q2

Rs(r) =  ~4(1 – 2#:)cxP( – fi;).

An interesting case arises when IL: == 2Q2 (the  extreme black hole). ‘J’hus, from the cxl)ression
(12) wc will obtain ~L = p+ == po/2 and, as a result, th(! scalar  curvature h in the cxtrcnnc
rcginlc for the result (14a) can be given by:

2z 4r2

(
2/LI)

‘h(r)  = 8JLo~$i  ‘x})  - )2r + pi “
(14b)

‘1’hc scalar curvature (14b) tends to bc zero at a large distance (Iti)(r) --->0, r ~ co). For any
non-zero value of tllc physical nlass po, the curvat  urc ~ 1 )ehavcs  ] lcar the horizon as:
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Onc nlight  easily scc that the solutions (7) and (9) coincide in the post-Newtonian Iinlit
(p/r ~ O). Ily  expressing these results in tern~s of the l)hysical  n~ass  p. and electromagnetic
charge Q, wc will obtain the same result for the linear  clenlalt  ds2 in the weak field approxinlation:

(ds2 =- ] – 2!’? + M Q 2 2
~2- +  -p)d –  (1 +  ‘.2$)dr2 - -  (r+ pO)2(d02 -1 sin2fldp2). (15)

‘r
It is quite i]ltercstiug  that, up to the post-Newtonian lCVC1 of accuracy, t 1 lcsc rcsu]ts,  which were
obtained with and without the scalar field, produce the sanlc contrilmtion  of the electrostatic
energy in the cffcctivc nlctric. ‘1’his nlcans  that they can X1O( be distinguished by any cxl)crim~cnts
in the solar systcnl  perfornmd  to date [10]. Moreover, this contribution ill t,hc cffcctivc nlctric  is
unlikcl y to be dctcctcd  even in the next ,gcncratioll  of CXI )crinlcnts  [2]. lndccd,  the constraints
in~poscd on ncw weak forces fronl  the behavior of the astrophysical ol)jccts  [12] .givcs as the
n~axinmnl  possible electric charge Qnla~  carried by cclcstial bodies t hc following cstinlation:

Qmm < 103GC. Using this, the paranleterizcd  post-Newtonian parameter /3 in the case of the
cclcstial body with the physical nlass  iLo = 71Acfo lnight  bc obtained as:

where A4C) is the nlass of the Sun. However, cwcn with ?L = ], this I’csult  gives a practically
unulcasurablc  value for the contribution of the elCCtrOStliltiC  energy in the gravitational field
gcncratcd  by tllc charged astrophysical body.

‘1’bus, wc have obtained the static spherically synlnlci ric solution of the Einstein-hJaxwcll
gravity coupled to the dilaton field with the ncgat  ive kinetic tcmn. It has has two regular
horizons which coincide for tllc extrenm  black hole. ‘1’he (listinctivc  l)rolmty  of this solution is
that the ldlysical nmss p. is always bouudcd  by the eleclric  charge a.s p. z WQ (unlike the
llcisl]cr-Norclstrolll  solution (7) for which the cxtrcnlc  val~lc of for the I IItISS dcfiucd as //0 == Q).
For Q = O the obtained result  coincides with the Fock (9) or Schwarzschild  (13) solutions of
Einstein’s equations. Another interesting feature of that, type of solutiol}  is that it satisfies
the no-hair thcorcnl,  wl]ich st atcs  [13] that no pararnetcxs  other  tha] ) mass, electric charge and
angular nlonlcntunl  nlay bc msociatcd  with a black hole. Ii is cassy to scc tlmt  the dilaton  charge
l) in this case is not an indcpcndcnt  variable. By analyzi] Lg the lxhavior  of the dilaton  field at
a large dist ancc, onc nli.ght,  get the following value of clilaton  cl) argc l) = Q2/2p. l’his  result
states that the solution is characterized by the set of two i] Idcpcndcnt,  lmran~eters only (physical
n~ass  I/. and electric charge Q).

Unfortunately, the negative kinetic tam --g’’’” V,rL@V,,@ in (1) generally leads to a theory
without any stable states, ‘1’his nleaus  that whc]i tllc systenl  is quantized, any flat wave will
have negative energy and the nlorc negative the energy, the bigger the alnlditudc  or the frecpency
of the waves. ‘1’hc authors of [2] note the need for scalar fields with the ~lcgativc kinetic tcrnls  in
nlulti-scalar-tensor field theories, and point out tllc potcILial  of such fklds  for approaching the
problems with the stellar and quantutn  stability. However, it was shown in [7] that for the theory
with the negative kinetic tcrl-ns,  the cosnlological solutions which arc suitable for cxperinlcntal
tests in the solar systcnl  arc unstable. Because  of these results, wc bclicvc that although the
obtained solution (9) is uulikcly to be stable, it nlight  provide an illtcrcsting  possibility for
invcstigatiug  the behavior of the fields of n~at ter in the tel lsor-rnulti-scalar  theories.
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