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Abstract

T'he general solution to low-cnergy string theory representing static spherically symmetric
solution of the Einstein-Maxwell gravity with a massless scalar field has been found. For
cach value of tile coupling constant a, this solution iS char acterizes by Set of two parameters,
the physical mass#o and electric charge @. The preserice of the inter action between the
matter fields is found to have important consequences. In particular, the interaction puts
a strict limitations on the scalar field parameter kK, setting it to be k-4 1/2. In partial
cases, obtained solution appears to coincide with corresponding well-known solutions and
to describe black holes and naked singularities. One of the partial cases corresponds to
gravity and electromagnetic fields coupled to ascalar field with anegative kinetic term, This
particular solution has two regular horizons. We speculate the behavior of the general solution
in the extreme regime. ‘] "hestructure of the scalar curvature singularitiesin ageneral case
has also been examined. ‘I’ he final results are presented in a parametric form.
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I. INTROD1TCTION

The tensor-scalar theories of gravity where the tensor field which is usua for general relativity
is coexisting together with one or several long-range scalar fields are the most natural extension of
the theoretical basement of the gravitational theory. The superstring, 1 nany-dimensional Kaluza-
Klein, and inflationary cosmology theories are responsible for reviving the interest to so-called
“ dilaton fields’, i.e. neutral scalar fields whose background values determine the strength of the
coupling constants in the effective four-dimensional theory. Althoughthe scalar field naturally
arises in theory, its existence from the point of view of the general relativity is quite problematic.
It is well-known that the including, of the scalar field in the theory will lead to violation of
the strong equivalence principle and modification of large-scale gravitational phenomena [1], [2].
The presence of the scalar fields will also affect the equations of motion of the other matter
fields. “1'bus, for example, solutions which correspond to a pure electromagnetic field appear
to be drastically modified by the scalar field. Such solutions were studied in [3]- [1 2], where
it was shown that the scalar field generally destroys the horizons leading to the singularities
in a scalar curvature on a finite radii. Specia attent ion lias been paid to the extreme case of
the charged dilaton black hole solution obtained in [3], [5]. This solution has been used in [7]
for the studies of the problems of black hole thermodynamics, causal structure and quantum
phenomena in a strong ficlds. In particular, analysis of the perturbations around the extreme
holes demonstrated the analogy of the behavior of the black holes and elementary particles in
the sense that there exists an energy gap in the excitation spectrum of the black hole. The
analysis of this analogy and the general description of the quantum-i1nechanical behavior of the
black holes has been continued for extreme supersymmetsic dilatonic black hole solutions with
respect to cosmic censorship conjecture in [4]. It was shown, that supersymmetry plays the role
of a cosmic censor in that it keeps the singularities hiddei: from an observer except one faling
into a black hole. The exterme rotating charged black holes coupled to dilaton have been studied
in [6]. As a result, it was shown there that an arbitrarily small amount of angular momentum
can significantly change the properties of the solution.

In this paper we will focus our attention on the simplest extension of the standard matter
i.e. gravity coupled to electromagnetic and scalar fields. The density of the Lagrangian function
L s for the massless scalar and electromagnetic fields is suggested by the low-energy limit of the
string theory in the following form:
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where F),, is the tensor of the electromagnetic field which is given as usua: Fyn = VinAn —
VandAm = OnAn — 0 Ap. The geometrical units ¢ =y = 1 arc used throughout the paper and
metric convention is accepted to be (+ — —).

One might note that the symmetries of this Lagrangian arc the general covariance and the
gauge symmetry. Besides this, the expression (1) is invariant under the global scale transfor-
mations, namely: ¢'(z)= ¢(x)+ v and A),(z)=c"A,(z). This freedom can be eliminated by
specifying the value of the scalar field at the infinity ¢,. The constant, ain (1) is a dimensionless,
arbitrary parameter. To study the dependence of the solutions on the strength of interaction
between the scalar and electromagnetic fields, an arbitrary coupling constant @ was introduced
in [5]. For a = O, Eq. (1) becomes the standard 13instein-Maxwell Lagrangian with the scalar field.
In the case @ = 1, it corresponds to the contribution in total action fromn the low-energy limit of
the superstring theory, treated to the lowest order in work-sheet and string loop expansion. The
arbitrariness of this constant makes it possible to have both weak (a << 1) and strong (a >> 1)
coupling regimes.




We would like to find the static, spherically symmetric, harmonic solution to the equations of
the gencral theory of relativity corresponding to the density of the Lagrangian function given by
(1. In [8] the harmonic solution was obtained in the special case when the interaction between
the matter fields is absent (a == O). However, it is interesting to investigate how small changes in
the matter fields in the theory will affect the gencralsolut ion in the case of an arbitrary value
of parameter a. ‘1'bus, the analysis of the solution in the Schwarzschild coordinates obtained in
[5] shows, that in the case of a = O it reduces t0 Reisner-Nordstrém solution of the Einstein-
Maxwell gravity. However, for a# O it represents qualitatively different physics. In particular,
this solution has a regular outer event horizon, but fen- any non-zero value a, the inner horizon
is singular. These results make it interesting to explore the possibility of the existance of the
spherically symmetric harmonic solution for interacting scalar and electromagnetic fields which
would be regular on both horizons.

The structure of the paper is as follows: In Section 1 | wc will derive the main system of
equations for the gravitational, scalar and electromagnetic fields. The possibility of the additional
parametrization of the metric functions due to covariant de Donder’s harmonic gauge will be
discussed in Section Il1. In Section IV, we will construct the solution for the radial coordinate.
The solution for the scalar field will be obtained in Section V. The general static spherically
symmetric solution for interacting scalar and electromagnetic ficlds in genera relativity will
be presented in Section VI. Section VII will be devoted to analysis of the general solution in
some specia cases and will show its correspondence to well-known results. ‘I’he structure of the
singularities in scalar curvature and horizons will be examined in Section VIII. And at last, the
final results in parametric form will be presented in Scction 1X. In Section X we will summarize
and suggest future directions for studies of the behavior of the static spherically symmetric
solution for scalar and clectromagnetic fields in general relativity.

I1. THE EQUATIONS OF MOTION.

The gravitational field equ ations for the general theory of relativity in the presence of fields
of matter with a Lagrangian function Zum given by Eq. (1) takes the formn:

1
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where the symmetric energy-momentum tensor of the matt er fields 7,51 nay be easily calculated
to be:
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We will be looking for solutions of these equations, which will admit the covariant de Donder’s
harmonica gauge condition [13] -[15], namely:

D1rl\/:§g17t1l =0, (2.3)
where I, 1s the covariant derivative with respect to Minkovsky metric ~s:
Ymn = diag(1, —1,--r2,--r2sin20).

The equations of motion of the scalar and clectromagnetic ficlds corresponding to Las (1)
might be written as follows:




gmnvmvndl) - % e_20¢anF“m =0, (2.4)

Von ( \% —ggmngkllnnl) =0, ViFmn + VuFym + Vo I =0. (25)

To avoid a confusion, let us note, that words “static spherically symmetrical” here imply, that

not only the clectromagnetic ficld Fiun, but also the clectromagnetic potential A, is spherically
symmetrical and doesn’t depend on  time:

B, 0,0) = 6(r),  AlL7,0,0) = (Ao(r), Ax(r),0,0).

Imposing the same conditions on the scalar and gravitational fields, one might write the general
form of the effective metric for the static spherical symmet ric case as follows:

gmn = diag( u(r), —v(r), --w(r), - w(r) sin’g). (2.6)

Then, having taken into account the dcfinitions above, the system of the gravitational field
equations (2. 1) might be written as follows:
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The equation for the component R33 coincides with the one for 222, and the other equations

become exact equalities. And finaly, the equations of the scalar and electromagnetic ficlds from
Egs. (2.4), (2.5) take the form:
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(\/“a’% 1e=2a%) = Q. (2.9)

111. PARAMETERIZATION OF THE METRIC FIIJNCTIONS
AND THE GENERAL SYSTEM OF THE EQUATIONS.

In order to solve the system of the equations ¥Egs. (2.7)-(2.9) wc will make a linear combina-
tion of the first and third equations from the system (2.7) with the coefficients 1/u and — l/w
respectively. The right hand side of the obtained relatior: becomes equal to zero, becausc the
matter ficlds fall out:
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From the gauge condition Xq. (2.3) onc might get another pure gravitational equation, namely:
U —

(\/%m) = 2ry/uv. (3.2
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Let us define new functions a(r) and B(r) as. a = \/uv, 8 = wy/u/v. Thenone might get
from the Egs. (3. 1) and (3,2) the following system of equat ions:

B = 2ra, (&'B%/a) - o. (3.3

The general solution of that system might be written in a parametric form. Indeed, let us present
the functions a(p)and B(p)in a following way:

_ dr
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where A, p and s arc constants (arbitrary for the moment). This substitution will enable us to
eliminate the functions « and 8 from both equations (3.3) and, as a result, onc will obtain two

equations for the same function r(p), namely:

(0 1) rpp + 201y - 2r = 0, (3.5a)
2 20\2 .. 1 B =0 3.5b
(P - 1) 1rpp -1 5 = O, (3.5b)

where B is another arbitrary integrating constant. Equations (3.5) are easy to integrate and the
gencral solutions for both of thcm may correspondingly be presented as follows:
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with arbitrary integrating constants g, h, Z. By choosing h = 2p and I3 = 4;:2¢ZA? and with
the help of expression (3.4), one might write the general solution for t] 1c system of Eqgs. (3.3) in
the following parametric form:

a(p) A{ll—l—k Fmbo s 2 (3.7a)
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Note that although we have solved the problem for the partial case with Z = O, it is easy
to expand the obtained results on more general case with Z # O. Because of this wc will take
Z = O from now on and will reconstruct a non-m-o value of the constant Z in the final results
only. The constants A and q are the multipliers which define the scale of measurements of the
coordinate. Without losing generality, wc may sct these constants to be equal to unity.

The relations (3.7) enable us to express the variables v and v in such a way that:

u(r) = —— = (3.8)

After this substitution, the system of equations Egs. (2.7) and Eq. (2.8) might be writien as:
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where the electric charge Q is the integral of the Maxwell equations (2.9). This alow Gauss law
to be generalized for curved space-time in the following way:
E = QCQ‘“”, (3.10)
w

where F = Aj is the intensity of the clectromagnetic field.
In order to find the solution for the function w(r),let us define a new function f(r) as follows:

w(r) = f(r)e?*?) (3.11)

One might note that in the limit (a— O), the function f(») and solution for w(r) obtained due
to substitution (3.11) will correspond to the unperturbed function w(r)o obtained in [4]. ‘Ihen,
in terms of the function f(r), the system of the cquations (3.9) might be rewrit ten as:

[ - if'—(rz-- p) + 21 = 21 +a)QY, (3.12a)
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Our future strategy will be the following: first, wc will solve the equation (3.12a) for the
function f. Second, the obtained function f will then be used in the equation (3.12b) which
is considered here as determining of the scalar field ¢. Solutions forthe functions f and ¢,
obtained this way, should satisfy the equation of motion of the scalar field, which is presented
by the equation (3.12 c).

IV. THE CONSTRUCTION OF THE SOLUTION FOR THE FUNCTION f(r).

“1'0 find the solution for the function f(r) from Egs. (3.12a), wc will be using the following
form:

F)= 21+ a®)QP. (r2 ~ P (r), (41)

where wc have introduce a new function v(r). ‘J hen, the equation ¥4q. (3.12a) might be rewritten
in terms of the function v:

[~ - D2 - i =1 (42)

To integrate this equation wc first introduce a new radial coordinate p 1y the relation:
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where s is an arbitrary parameter. Then the equation (4.2) may be rewritten as:

1 1
VWpp — 1/,2, + —buu,) t—s55-45 =0. (4.4)

BLu2 p?
After some algebra, one might obtain two solutions for this equation, namely:
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where h, I3,barc again arbitrary constants. It is easy to scc that the result (4.5b) is the limiting
case of the solution (4.5a) with parameter h = O. So, the expression for vy (p) from Iq. (4 .5a) is
the general solution for the equation (4.4) where parameters b, B and h might arbitrarily take
both real and imaginary values as well.

The function f;(r) which corresponds to the general solution of »; (4.5a) might then be
presented in the following form:
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Substituting that expression into Eq. (3.12a), onc can sec t hat function f;becomes the solution
of this equation if the following condition is satisfied: s%h? = (s + h)’=k?, where k is some
ncw arbitrary parameter. After this, the genera solution for the function f(r) might finaly be
presented as follows:
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This result in the limiting case of k= O, might be written as:
2
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In the following sections, we will find the solution for the function ¢(r) from the equation
(3.12b) with the gencral solution for the function f(r)given by the expression (4.7a).

V. SOLUTION FOR THE SCALAR FIELD ¢(r).

To find the solution for the function ¢’ from the equation (3.1213) we will use the following
substitution:

¢'(r) = ;55-(:7%5, (5.1)

where £(r) is a ncw function to be determined. Then, with the help of the expressions (4.5a)
and (4.7a), the equation Eq. (3.12b) becomes:
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Lt us define a new radial coordinate z as follows:

B?p?-1 r- p*
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Using this new coordinate z, the equation (5.2) might be1cwritten as:
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The general solution of this differential equation is easy to find ant] it may be presented as a
function of coordinate pin the following form:
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where Co is arbitrary integrating constant and § is defined as the expression:

5= i%{; N (5.6)

This finally gives the following general solution for the function ¢(p):
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where ¢o is an arbitrary integrating constant. Note that the obtained result for the function
¢(p) omits the homogeneous non-trivial limit a — 0.

VI. THE GENERAL SOLUTION.

Now wc arc in the position to write down the general solution forthe function w(r). By
substituting the expression (4.7a) into Eq. (3.11) and expressing ¢?¢¢(") with the help of the
relation (5. 7) one might write the result for w(r) as follows:

2
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where the constants j, Q, k, 13, Co and ¢o arc arbitrary for the moment. In order to limit the

number of arbitrary constants in this solution, wc will inipose two asymptotical conditions on
functions ¢(r) and w(r), namely:

$(r —+00) = doo = 0, w(r + 00) == 77, 62)
Then from the relation (5.7) wc will have:
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Making of usc the seccond condition from Eq.(6.2) and taking into account the expression for

¢?2¢%0 above, onc might write another constraint as:

_2 2
(B z. %) =(1-}- ag)]»(iisz. (6.4)

Eliminating parameter B with the help of relation (6.4), we can rewrite the expression for
the function w(r) given by Eq.(6. 1) as follows:
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where constant I3 defined by Eq. (6.4) becomes:
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Making of usc the results for the constants ¢o and B obtainied above, one might present the final
solution for the function ¢(r) given by the expression (5.7) as follows:
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‘1’bus, wc have obtained a general solution for the systeni of equations kqs. (3.9). For arbitrary

values of the coupling constant a, this solution is labeled by four arbitrary parameters g, Q, k
and Cp.

VIl. THE SPECIAL CASES OF THE GENERAL SOLUTION.

In this section we analyze the various special cases of the general solution by setting some of
the parameters equal to zcro, while the others remain uncl 1anged.

(i). a= O. in this case the solution represents non-interacting scalar and electromagnetic
fields. The similar solution in harmonica coordinates was previously obtained in [8]. Note that
the dependence on the constant Co in (6.5)-(6.7) drops out and the solution in this case may be
labeled by the set of threw parameters (i, k and Q):
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where the constant, A. is given by the expression for A (6.6) with a = O. One might notice that
the scalar field is real for |k|< 1/2, but becomes complex when |k|>1/2. For the k=:1/2
expressions (7.1) corresponds to the Reisner-Nordstrom solution with pure electromagnetic field




in harmonic coordinates of the Minkovsky space-time. To get the actual form of the interval ds?
corresponding to obtained solution, onc should usc the relations for t] ¢ met ric functions w(r)
and v(r) presented by (3.8) and substitute thcm into (2.6). For example, for k& = — 1/2 onc might
get the following interval:

2 / 2 -1
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s (,. + fo (1 4 ji0)? dt \T *‘l?t) (r -1- po)? dr? - (v + 1t0) (d0 + sin‘Ody ),
(7.29)

where parameters ;: and Q arc connected to the ph ysical mass o0 and the electromagnetic charge

Q. as
= i\/ﬂ;%»:bga Q = QO, (72b)

(ii). An interesting case is arises in the strong interaction regime when a >> 1. Examins

Egs. (6.5)-(6.6) in the extreme regime of a — oo and k:=41/2 onc might get the following
expressions for ¢(r) and w(r):

¢(r)==0, (7.33)
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This solution corresponds to that of the Reisner-Nordstrom type with the “induced charge”
J generated by the constant c.. Taking, for example, the 1ninus sign in t he powers of expression

in (7.3b),onc might get:

, R -1
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where parameters j« and Co are connected to physical mass i and “cl arge” J as follows:

N C2+1 211Co
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This result is quite surmising. Indecd, taking the limit @ + 00 iS equivalent to cutting off the
clectromagnetic term in the Lagrangian density L,,(1). Fr om the additional condition k=+1/2
onc might notice that the scalar field also tends to be zero. Then, because of no matter fields arc
present, this solution should be onc for a pure static spherically symmetric gravity. Instead, as
a result, onc obtains the solution (7.4) of the Reisner-Nordstrom type with the effective metric
similar to that in (7.28). And since the scalar field is responsible for appscarance of the constant
CO, then the “induced charge” Jis caused by the scalar field, which is absent! In order to resolve
this apparent paradox, onc should require Co = O. Implement ation of this condition simply
corresponds to the renormalization of the constant ¢oin Eq. (6.1). Then, the expression (7.4)
becomes the usual Fock solution in harmonic coordinates of the Minkovsky space-time.

(iii). Q = O. When the electric charge vanishes, the solution reduces to the one of the pure
scalar gravity with interval ds?® written as:

. q q . q
ds? = (7 ”) di? — <f—+—'l-t—) dr? — (r%-- 4?) (-7 M) (dO2 4 sin? 0d<p2>, (7.5a)
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where the constant g given by the rclation

1 (o ECEYY)
=11 (26 aV/14 - 42). (7.5b)

With the scalar field ¢(r) for this case presented by:

(i"(7')=:tV1+a’2”4k2 In (7‘~/L) a In [1 j:l(r~u)k+ lw?i.](T—F/L)k], .

2(1 + a?) r4 /) 14 a? 2 \r+p 2 \r—up

The paramcter 2> 0 defines the locations of two horizons (pg) which, inthe case (7.5), related
to the physical mass #o as jui4 = fto/q. For any q # 1 these horizons arc singular.

Note that taking Q = O is eguivalent to dropping thc electromagrictic term from the La-
grangian density Lpas (1). However, onc might find it quit ¢ unexpecting that even after taking
Q + O, our results still depend on the arbitrary parametcer a which characterizes the intensity
of the interaction betweenthe matter fields. This contradiction might 1»¢ resolved by choosing
the parameter kto bek = +1/2 and the signs in (7.5) in such a way that these expressions will
not depends oz @. This fact suggests that not just the scalar field affects the solutions for the
gravitational and clectromagnetic fields, but also the interaction between the matter fields puts
the constraints on the scalar field itself. The usual Fock solution in harmonic coordinates [13],
[14] might be obtained from the expressions (7.5) by setting q= 1 (or k=+1/2) and choosing
the same signs for both termsin (7.5b).

(iv). One might expect that all the expressions for the genera] solution should omit the
homogeneous non-trivial limit in case where constant a becomes imaginary:a — +4. Indeed,
onc might obtain the following result in that limit;

(14K vt Q? T - Ji\2k
P o-ti = q'l( e k] Ul CRet) )) (7.63)
: 2oy (TR Q% (T
W)y = (7 — )(r = N) exXp I (1 ('r% ,u> ) . (7.6b)

Thesc expressions are, in genera], singular. However, if we will choose the parameter k as
k= +1/2, wc will obtain an interesting result. For example, for kK = 1/2 the expressions (7.6)
become:

2

. T i
¢(r) = Fi 1, (1 T d g ), (7.73)
w(r) = (r +/¢)2cxp[g§b—2 (L - ;:LZ )], (7.7b)
1 v Q* r—p
u(r)= vh(T) = (;—_F—H) Cxp [§;L2 (r T - l)] . (7.7¢)

"This is an interesting modification of the Fock solution (scc case (iii) and expression (7.5)) in the
presence of the complex scalar and clectromagnetic fields. Solution (7.7) is labeled by the means
of two parameters ¢ and Q. ‘I’his solution has two regular events horizous 74 , which correspond
to the physical mass o and the charge Q. of the black hole as follows.

R T %(/LO + \//18 - QQg), Q == Q. (7.8)
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The expression (7.8) limits the possible value of the physical mass to be #0>+/2Qq. in the next
Section wc will show that the scalar curvature corresponding to the solution (7.7) is aso regular
on surfaces (7.8).

The presence of the ¢ in the expression for ¢ in (7.78) might be interpreted as changing the
sign in front of the scalar ficld term in the Lagrangian density Las (1) to be:

] - — 7 nl v
Ly = —Tég\/:‘g(R + zgnmv7n‘;0vn§0 +c 2‘pg"mgkl]'mk](ﬂl), (7.9)

where we denote ¢ = —@. The l.agrangians of that type correspond to the theory with a
complex scalar ficld [1]-[4]. Thereal part of this ficld is dilaton and its inaginary part is axion.
In the case (7.7), the obtained solution depends only on the dilaton field with the axion having
been taken to be a constant. Unfortunately, the negative kinetic terin - ¢""*V5,,oVye in (7.9)
generally leads to a theory without stable states. This result is allows infinitely many negative
cnergy states when the system is quantized [2], [8]. However, this statement should be separately
discussed in the case of the solution (7.7).
(v). In the case of k= O the gencral solution of Eqgs.(6.5)-(6.7) becomes:

1 1 T+ a - Q T
(Mo = :EE ) In ( ) In [1 +v1+ a2—2-—ﬁ In (—»W)J, (7.10a)

r—pu/  1+a? T+

2 48
Voo = (02— 12 |12 VIF a2 m (T2 (zi_l!;)‘ VisaE 10b
W) oo = (r° — 1%) [] tv1li+a o In (7‘+ N)] m— . (7.10b)

With Q = O and an arbitrary a, this result is the usual solution for the scalar field given by
(7.5). For an arbitrary value of both parameters a and Q, t he expressions (7.10) arc representing

the solution with the naked singularity at r = s. ‘I’'he physical mass and electric charge for this
casc arc related as:

oV1+ a= Q. + ap. (7.10C)

If we set the parameter ;.= O, the result (7.10) will take the form:

$1) g = = 553 n [lq:\/] +32Ql, (7.11a)
w(r) 1!-:‘3 0 :[ rl F -\-/Tii—()fzﬁg (7.11b)

It easy to sec from (7. 10c), that the physical mass tto is, in this case, generated just by the
electric charge. This result is also represents the naked sinigularit ies. Depending on the sign in
front of the square root in the expressions (7.11), they occur at r,=: O for the positive sign and
at r_= [0; V1+a*Q] for the negative.

(vi). And finally, in the case k = £1/2,the general solution becomes a Garfinke-Horowitz-
Strominger [5] type solution in harmonic coordinates.

A). Thus with k = — 1 /2 and a positive sign in front of the v/1+ A?inthe experssion (6.6)
onc might get:

14 1+ Ai'.) (7.12a)

a
“(r) = — In{1-p—
¢ () + a? n( /l'r‘-{fu 1+ A2
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B ~ =2 1 14 y1+4L%
w” (r) = ('I‘ 3 i 1+A%) (1 /7 n /L\/ﬁAg (7.12b)
2
_ 2 + VAR ]':%z
w (?) = PR VA A% 1+ VE A >” ‘ (7.12¢)
v” (7) ( 'I-|—-/L\/'+A§)( 'r‘+,u\/=-} A:§
where function A2 is defined from (6.6) as
2
A= (1 +a )-Qﬂ. (7.13)

The horizons I?; and IR arc related to the mass /0 and charge Q. of the hole according to:

1-a? RiR ,
210 = Ry + (l +“ Ve Q3= : jra% = 2, (7.143)
Ry = /L(\/] T A2-1), Rp=p(y14 AZ41). (7.14b)

Note that horizons I8 2 correspond to (r4) which are located at 7y = juy

1 S
Wt =y (;LOa,? + \/;1% - (1-a?)Q? ) (7.14c)

B). In case of k = 1/2 and a negative sign in front of the V14 A%in (6.6), one will obtain
the following result:

V14 A2 )
Tr) = e I (1 e = 7.15.
¢ (r) = . n( HLT*/L\1+ 5 ( )
2
— 1- T+ A2 \7ie
(p) = / 2 2T e ,
w (r)-(r+/1, 1+A) (1+l7'+li r—1+A§> ; (7.15b)
1 NSRRI - /14 A7>Ha
T(r) = = A-pn ST ) (1 - S —x 715¢
“ ) vt(r) ( IT”*HL\/l'-% A§>( lr + /142 )A2 (7:15¢)

The horizons IR} and RS arc connected to physical mass /o and charge Qo by the relations
(7.1 44). Expressions for these horizons may be obtained from (7.14b) by the swiching the signs
(+ -) , namely:

—u( 1+ A42410),  Ry=pu(/1+42- 1) (7.16a)
which correspond to :

fra T—l-—(—uoa + \f m) (7.16D)

One might see that by taking the limit (a — =) in the expressions (7.16b),one will immediately
arrive to the result (7.7) presented above.

The solutions in both partia cases (7.12) and (7.15) will have coinciding horizon j.* when the
constant a =1 (i.e. string case). “I'his horizon might bcprcscntcd as follows:

(7.17)




Assuming that parameters p* and /o are both positive, for the physical mass /o and the electric
charge @ onc will get the following relation in the string case: jo>Q/v/2.

It is easy to sce that the partial cases demonstrates a different beliavior when the electric
charge is taken to be zero. ‘Jbus, in the limit (Q — 0), the expressions (7.12) corresponds to pure
scalar gravity with the lincar element ds? given by (7.5a) and paramcter = (1 — a2)/(1 + a?).
However, in the same limit, result (7.15) corresponds to the Fock solution for an arbitrary value
for the constant a. Note that taking (Q = O) is equivalent to extracting of the electromagnetic
term from the action (1). Moreover, by choosing; the parameter & in addition to that as £ = 41/2,
onc will elliminate the scalar field term also. ‘1'hen, the solution in this limit should describe a
static spherically symmetric distribution of matter. Because of this reason, on] y the result in the
partial case (7.15) is likely corresponds to a charged black lole solution in harmonic coordinates.

VIIl. THE SINGULARITIES IN THE SCALAR CURVATURE.

In order to study the structure of the singularities of the general solution, let us clarify the
meaning of the parameter ;. As onc might have noticed in a previous section, the parameter
jtdescribes the locations of the horizons. To specify its meaning, wc shall connect it to the
physical mass o and clectrical charge Q.. Onc may identify the physical mass to by examining
1/r behavior of g, far away from the source, namely by using the expression for g, in a weak-
field approximation: g, = 1 — 2uo/r + O(1/r?), while (» + cm). ‘1 hen, making of usc the
relations for the general solution given by Eq. (6.5) — (6.7) with parameter Co = O, one might
obtain the required connection between the parameters from (3.8):

{ S e

Jt= m—zéz poav' 1+ a —4k? & \/li/kz - Q3(4k? - - a?) ), (8.1a)
where the signs should be chosen in order to satisfy the condition ;:>0. In partial cases this
result corresponds to solutions wc have obt ained in the previous Section. The relation (8.1) sets
the condition on the values of the parameters k and a, connecting them to relations between
physical mass and electrical charge:

13 7 4k? —a?’
The result (8.1 b) puts also the limitation on the parameters k and a as. 4k’— a’> 0. Note, in
the case 4k? - a’= O, the obtained relations (8.1 a) correspond to extreme black hole solution
with 10=Q..

It is well-known that the simplest way to study the behavior of the scalar curvature R isto
usc the gravitational field equations. Indeed, as far as the electromagnetic part of the cnergy-
momentum tensor Eq. (2.2) is traccless, the only contribution to the curvature R comes from
the scalar field ¢. Thus, by taking the trace of the Hilbert-Einstein equations (2. 1), one might
present the scalar curvature R as follows:

2 4k2
@ o (8.1b)

12
R = 871 =2¢""V,¢Vno = 2¢ﬂ (% - u?). (8.2
w(r)
Substituting the results for ¢(r)and w(r) from the Egs. (5.1), (5.5) and (6.5) in the expression
above, we will obtain the expression for the scalar curvature R corresponding to the general
solution Eqg. (6.5)-(6.7). In terms of the coordinate p given by (5.3), this expression can be
presented as follows:
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K a? § B2+ 1\%/ B2-1 \1is 1k (g
= b T 1 - /Ry (e 2)/19, 8.3
Ti(p) 202 (1+ a?)?(k t B2p? — 1) (132,)2-.1) (=) p (8:3)

where q is given by (7.5 b). Notice that the metric t ensor g, and solutions for both matter fields
¢(r)and E(r)arc al divergent when:

pg/k = 0, ]g2p2 --1 = 0 (84)

where coordinates 7 and p arc connected by Eq. (5 .3). Because of this, there are physical singu-
laritics at these points. The singularity in the scalar curvai ure given by liqgs. (8.3) on the surface
p = 0 might be climinated in some special cases. Thus, choosing paramecter g = 2, one might
make R regular on this horizon for any real positive value of the parameter k. In case of k<0
that condition should be replaced by g = -2. However, expression (8.3) shows that generically
scalar curvature is divergent at both horizons and both singularities caiinot be eliminated at
the same time by any choice of parameters except the situation (a--di). Thus,in this partial
case the solution given by (7.7) has two regular horizons 4t given by the expression (7.8) and in
the case of the Largangian function (7.9) the scalar curvature R might be presented as:

Qe (S

As one might expect, the scalar curvature is regular on the horizon 7 == y1. An interesting case
arises for the extreme black hole, (i.e. 1 = 2Q3), which lcads from (7-8)to # = jt4 = jip/2. As
a result, the scalar curvature might be presented by the following expression
"™ — /f‘ T- W

R(r)= 2% —— exp — & —1). 8.6

(r)=2 (r+ )8 }<r—iu ) (86)

Although this partial case might beinteresting primarily from the pure mathematical point

of view [8], the general solution obt ained in this paper could be useful for the description of the
quantum-mechanical phenomena in a strong gravitational fields and cosmology [2] ,[7].

IX. THE FINA], RESULTS.

Finally, by reconstructing the constant Z with the help of the relation (3.7¢), namely:
/ p—
() = p+4pIn——- 2/L
(P) = p \p P |

onc might obtain the general static spherically-symmetric harmonic solution for the massless
scalar and clectromagnetic fields in general relativity int] e following parametric form:

/pt -1 w(p)

gmn = dia% W (p)—pg,»“?(’f'l(p))z,'w(p), --w(p) sin" 0), (9.1)
Q 2 )
E(p) = (p) — Y e209) 9.2
™ =r'0)5 92
where d 9
' r . p - [ip
, = — =1 + Z In "=
W =g (B PR

The scalar field ¢ and function w arc given by the expressions (6.5) and (6.7) and in parametric
form they may be presented as follows:
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_a(6—k) p+p a B? [ p-— 2k 1
o) =35z (p~ ,1,) a2 |2 l(p—i— /L) B (9:3)

_2
NI B B p— 2 1 14a?
= g e 3b
w(p) = (P* — p )( [l,) [B2 - ]<p~i /1> B?-1 ’ (9:30)
where the constant B is given by the relations (6.6) as:
B 1 — 1 1 — Q2
. A2 L (N 2 - 2
7RV A), = (C VI AR), A =(+e%) o

and paramecters 8 and g arc presented by (5.6) and (7.5b) correspondingly

k+a?6 —e
6_:L \/]—ia2—~4k2 q:2——tﬁ-—: H] (ija\/14a2-4k2)

Note that onIy the results which correspond to g =1 present the black hole-like solutions.
Indeced, one might make sure that this condition gives as a consequence the equation: (1 +
a?)(2k =4 1)2 = O. We have seen, that in both cases (either a =:ti from Eq. (7.7) or k=41/2
in the expressions (7.2), (7.5), (7.7), (7.12), (7.15)), the results correspond to different types of
black hole solutions. This fact suggests that in order to describe physically meaningful situations
the parameter k& must be choosen as k = +1/2.

X. DISCUSSION.

We have obtained a general static sphericall y symmet1ic harrnonic solution of the Einstein-
Maxwell gravity coupled to the massless scalar field. The form of the singularity in the general
solution is quite well defined. By the specific choice of the constant 7, this singularity in a partial
cases might be transferred [8] from the components of effective metric 9oo and g;; to that of g,,
and g,,. However, the character of this singularity, in general, remains unchanged.

We have shown that, in the partial cases, the solution presented here corresponds to well-
known solutions, It was noticed that the absence of the interaction between the matter fields,
makes the existence of black holes in the presence of the scalar field problematic. The reason for
this is the appearance of the singularities in the Ricmann tensor invariants because of the scalar
field. The presence of the arbitrary coupling constant a gives an opportunity to explore the
behavior of the obtained results in both weak and strong interaction rcgimes. In case when the
interaction between the matter fields is included, we noticed that not just the scalar field affects
the solutions for both gravitational and electromagnetic fields, but also the interaction between
the scalar and electromagnetic fields puts the constraints on the scalar field itself. We have seen
that interaction between the matter fields drastically aflects the space-time geometry and in
general destroys both horizons of the solution. The only cxception to this is the solution of the
Garfinke-Horowitz-Strominger type for the charged dilatonic black hole, which has one regular
horizon and second which is singular. Alt bough in one of the partial cases the obtained solution
describes the dilatonic black holes with two regular horizons, the question of the possibility of its
physical existence is open for the moment. Wc believe that the general solution presented here
might provide an interesting framework for studying qualltum-mechanical effects in relativistic
gravity.

A final question remains: whether or not this solution is stable. To study this problem might
be interesting in a view of the cosmic censorship conjecture [4]. Note that the stability against
an axial perturbat ions for solution given by expressions (7.1) has been shown in [1 6]. In [7] the
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stability of the solution presented in [5] was inferred for outside the outer horizon. However, for
another related case of Einstein-Klein-Gordon equations with a quadratic self-interaction term,
it was shown that static spherically symmetric solutions arc unstable [11]. ‘I’his problem in the
general case of the solution (9.1)-(9.3) will be investigated in a subsequent paper.

ACKNOWLEDGEMENTS.

The author wishes to thank Ronald Hellings and Kip Thorne for valuable and stimulating
conversations. | am also very grateful to Malik Rakhmanov and Peter Silaev for interesting
discussions and comments on this paper. ‘I’his work was supported by National Research Council,
Resident Research Associateship award at the Jet Propulsion Laboratory, California Institute of
Technology.

REFEREN CES .

[1]‘I". Damour, G. W. Gibbons and G. Gundlach, Phys. Rev. Lett. 64(2), 123 (1990)
‘I'. Damour, K. Nordtvedt, Phys. Rev. D 48, 3436 (1993)
[2] A. L.Berkin and R. W. Hellings, Phys. Rev. D 49,6442 (1994)
‘1’. Damour and J. H. Taylor, Phys. Rev. D 45, 1840 (1 992)
‘I". Damour and G. Esposito-Farese, Class. Quantum Gi av. 9, 2093 (1 992)
[3] G. W. Gibbons, Nucl. Phys. B207, 337 (1982)
G. W. Gibbons, and K. Maeda, Nucl. Phys. B298, 741 (1988)
[4] R. Kallosh, A. Lindc, ‘1. Orti’n, A. Pcct and A. Van Proen, Phys.Rev. D 46,5278 (1992)
[5] D. Garfinke, G. 1. Horowitz and A. Strominger, Phys. Rev.D 43,3140 (1991)
[6] 3. H. Horne and G. ‘1'. Horowitz, Phys. Rev. D 46,1340 (1992)
[7] C.F. E.Holzhey and F. Wilchck, Nucl. Phys. 11380,447 (1992)
[8] P.K. Silaev, Theor. Math. Fiz. 91, 418 (1992)
[9] A.Hardell and H. Delmen, GRG 25,1165 (1993)
[10] M. Rakhmanov, Phys. Rev. D 50,5155 (1994)
[11] Ph. Jetzer and D. Scialom, Phys. Lett. 169A, 12 (1992)
[12] N. Marcus, GRG 22,873 (1990)
[13] V. A. Fock, The theory of Space, Time and Gravitation (Pergarmon, Oxford, 1959)
[14] A. A. Logunov, M. A. Mestvirishvili, Prog. Theor. Phys. 74, 31 (1985)
[15] Y. Duan, S. Zhang and L. Jiang, GRG 24, 1033 (1992)
[16] P. K. Silacv and S. G. Turyshev, To be published (1995)

16



