Learning in neural networks:
VLSI implementation strategies

Tuan A. Duong, Silvio P. Eberhardt*, Taher Daud, and Anil Thakoor
Center for Space Microelectronics Technology
Jet Propulsion Laboratory, Cdifornia Institute of Technology
Pasadena, CA 91109
*Department of Engineering, Swarthmore College
Swarthmore, PA 19081

ABSTRACT:

Fully-parallel hardware neural network implementations may be applied to high-speed
recognition, classification, and mapping tasks in areas such as vision, or can be used as |low-cost
self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning
isrequired not only to satisfy application requirements, but also to overcome hardware-imposed
l[imitations such as reduced dynamic range of connections. A learning algorithm may be
implemented in hardware, in which case the application merely needs to provide training data (for
supervised learning), or the hardware implements only a feedforward operation, in which case
learning is under the control of a host computer that applies input patterns and updates connections
according to the error of the measured outputs (i.e. hard ware-in-the-Joop learning). The latter
method is useful if the network only needs to be trained once for an application, since it greatly
simplifies the hardware, but at the cost of greater learning time and the requirement for a host
computer.

Following areview of the emerging hardware implementation strategies for neural network
lcarning reported in the literature, this chapter details a new architecture and supervised learning
algorithm, cascade backpropagation (CBP). It combines powerful features from other agorithms
such as cascade correlation (CC) and error backpropagation (EBP), and is particularly suited to
problems of image/data classification and object discrimination. CBP is a constructive architecture
In which aneuron (processing unit) is sequentially added to the net, and gradient descent is used to
permanently fix the weights connected to that neuron, both input and output. Each ncw neuron has
connections to the inputs and each preceding neuron’s output; thus each added neuron implements
a hidden layer. The addition of each successive neuron provides the system with an opportunity to
further reduce mean-squared error. Because the average number of connections to a neuron is
small, learning is quite fast.

Currently, the system isimplemented using analog CMOS VLSI and hardware-in-the- loop
learning. To adapt the architecture for hardware with limited synaptic dynamic range, the maximum
Synaptic conductivity associated with later neurons is reduced, thus effectively reducing the
Synaptic quantized step size. Simulations and tests with analog CMOS VL.SI hardware suggest that
the system is capable of learning difficult problems (such as 6-input panty and image classification)
with synaptic quantizations as low as 5 bits, as opposed to the 8-16 bits required for EBP and CC
learning algorithms.

1. PROD TION
Modern genera-purpose computers alow simulation of almost any neural network

architecture and learning algorithm, and there is little doubt that such simulations in many cases
afford the easiest and most cost-effective approach for neural network applications. However,

there are major application areas that require or benefit f1 om custom neural hardware. Custom
hardware is necessary in cases where required throughput is greater than can be sustained on
available computers, due either to very large network size or the need for short (realtime) learning
or response intervals. At the other extreme, a ssmple network used in a mass-produced commodity
such as an automobile may only be cost-effective as a single-chip standalone neural system. In
between, one might envision many applications where inexpensive, self-contained “black box”
neural hardware perform tasks such as fault detection, actuator control, and adaptive home
environmental regulation, to name just a few.

The field of neura network hardware is still in its infancy. Perhaps the only well-
established neural hardware is the computer plug-in “accelerator board" that is capable of rapidly
calculating such common neura primitives as multiply-accumulate, while other computational tasks
are performed by the main processor. Despite the fact that dedicated neural chipsets have been on
the market for close to a decade[1,2], few custom neural systems have found their way into
commercial products[3,4]. In this chapter we review the most common technologies and
techniques for implementing custom neural systems, and give an example from our own work of
an analog neural system capable of learning. We also stress the point that many of the learning
algorithms that have been developed for computer-based simulations arc not directly compatible
with hardware, and so any hardware development effort must have as it's centerpiece the
development of a compatible learning algorithm.

The basic task of a neura network hardware (or hardware simulator) is independent of the
implementation technology, and can be divided into the following modes. 1) MAPPING a
specified neural architecture onto the hardware taking stock of the number of inputs and outputs,
etc.; 2) LEARNING: Calculation and programming of synaptic connections (and possible network
architecture) so that the network will perform desired mappings from input to output; and 3)

OPERATION: Upon application of a complete set of inputs, the hardware must provide the results
for the required input to output mapping.

Let us consider the computational load required by learning, evaluation, and operation. For
serial smulations, the following agorithm applies to many learning methodologies:
1. while (network hasn’'t reached desired performance level)

{

2. for (each training vector)

{
apply input vector

3. for(each layer)
{

4. for(each neuron in layer)

{

5. for(each synapse connecting to neuron)

{
multiply activation by synapse weight
accumulate result into neuron’s input

}

calculate neuron’s activation

}
read outputs

calculate error at output
perform weight updates

Note that the weight update sequence may require many more computations than the operation
pass(loops 3-5), depending on learning algorithm. Due to the nested nature of the loops,
computational load can increase dramatically with increased problem complexity (giving more
Loop 1 passes), increased network size (increasing Loop 3,4, and 5 passes), or complex learning
algorithm (increased computation in the inner loops). For example, a 2-2-1 network requiring, say,
100 passes to learn the exclusive-OR problem (2-bit parity) would require on the order of

(100 training passes) x(4 training patterns) x(2 passes) X(3 layers) x(2 neurons/layer)

X (2 synapses/neuron) = 9600 operations
where it is assumed that weight-update and operation passes have equivalent complexity (2
passes). Applying this simplistic model to 3-, 5- and 8-bit parity, assuming that the number of
hidden units is the same as the number of input layer units and the required number of training
passes increases to 500, 2000 and 10,000, we sce that the required number of operations are,
respectively, 216K, 9.6M, and 983M. It is obvious that larger applications would benefit
tremendous)] y if calculations could be carried out in a parallel fashion.

Nevertheless, the general-purpose computer simulation that carries out these calculations
one at a time is near-ideal in al respects save response time and, in some cases, cost. The
computer can be programmed to implement almost any architecture and any learning agorithm, and

signals are represented with high’ precision and dynamic range by floating-point variables. The
same is not true of custom hardware: networks are often limited in size, support only certain
classes of architecture, represent signals and weights with limited precision and (possibly) with
large noise components. Thus, the success of a hardware implementation depends critically upon a
judicious balance of the many tradeoffs, involved in selecting a hardware technology, designing
the circuits, fixing classes and sizes of architectures that will be supported, and crafting a
compatible learning algorithm.

While we focus in this chapter on the most popular implementation technologies, namely,
complementary metal oxide semiconductor (CMOS) analog and digital, with signals that are
continuous-valued (or quantized to many levels), we should mention several other technologies
that have been reported in literature for neural hardware implementations. Optical[5], thin film[6-
9], and charge-coupled device [10, 11] technologies have all been used to implement neural
networks, but require rather elaborate or specialized fabrication processes. A technology that uses
standard CMOS, and that more closely models biological neural "wetware" functions, is pulse-
mode circuits. Pulse-mode networks represent signals by the duty cycle or firing rate of pulse
trains [12- 15]. Weights, however, are generally stored using analog or digital memories. A
primary advantage of pulse-mode circuits lies in their space-efficient processing circuits, which
combine analog circuit characteristics such as few transistors per processing element and fully-
parallel implementations with small-sized transistors. A possible advantage- and the primary
disadvantage- of this approach is that dynamic range is traded off with time. Otherwise, pulse-
mode circuits tend to exhibit the same difficulties as analog networks [16]. Several smaller-scale
pulse-mode networks have been built and furnished with alearning algorithm [13,15].

In the following sections, we hope to give the reader an appreciation of the characteristics
of the more dominant technologies employed for neural implementations, including strengths and
weaknesses that dictate the form of the implementations. Since our discussion of learning requires
addressing details of hardware implementations, hardware is treated first. 1ssues having to do with
learning, and in particular the incompatibility of many learning algorithms with limited-precision
hardware, arc then discussed. We present in detail a new learning agorithm, CBP, that is
compatible with hardware implementations, and give results from learning experiments conducted
with CBP. In addition, wc describe a further refinement in the learning algorithm and give
simulation results to show that the method is particularly useful for reduced weight resolution, and
therefore, suitable for analog hardware implementations. ‘

2. HARDWARE OVERVIEW

One key characteristic that distinguishes different implementations is the level of
parallelism. A neural net program running on a personal computer or workstation has no
parallelism beyond engaging integer and floating-point processor units simultancously. At any
point in time, the general-purpose processor is calculating one synaptic weighting, the activation
function of one neuron, or one connection-update. Many custom digital implementations (and also
software implementations executing on a parallel computer system) follow this model in a semi-
parallel way: each processing element calculates a subset of the network’s connections and neuron
activations. Throughput is increased by sharing the task over multiple processors. Further gains
may be achieved by designing specialized custom processors optimized for the neural tasks
required. However, there is often a tradeoff between speed of execution, network size, and
generality, so that the more specialized processors are usually faster, but support only a limited
number of architectures and learning agorithms.

The highest level of parallelism is achieved by implementing each synapse and each neuron
as a distinct circuit. While fully-parallel digital networks are rare in digital implementations, due to
the silicon-hogging nature of digital weighting, aggregation, and activation-function lookup
circuits, full-parallelism is the rule in analog and other non-digital implementations, in part because
multiplexing is more expensive, noise-prone, and difficult in the analog domain. Also, custom
circuits that store weights, perform weighting, and implement neurons tend to be significantly
smaller when implemented as analog rather than digital circuits, because the physics of
semiconductor circuits can be exploited to obtain neura functionalities in a highly space- and
power-efficient manner [17, 18].

Because both analog and digital technologies have their own particular inherent advantages,
neither has yet come to dominate. The state-of-the-art of hardware implementations can be
abstracted from Table 1, which presents an overview of many of the hardware implementations
that have been prototype to date. For each design, the table includes, if available in the literature,
specifications such as architecture size, speed, and learning algorithm supported. Most of the
features listed in the table will be discussed in the following sections[19].

Table 1. A comprehensive survey and compilation of the hardware implementations of
neural networks reported in literature[1 9].

3. DIGITAL IMPLEMENTATIONS

Digital circuits, because of their high noise immunity and the resulting capacity to transfer
information perfectly intact, are well-suited to time-multiplexing. Partially-parallel systems, with a
handful of custom synapse and neuron circuits can be constructed, allowing a flexibility that is
difficult to achieve in analog technology: a given neuron circuit or synapsc multiplier can calculate
one, ten or even thousands of neurons or connections within one pass with parallel processing.
Thus, as long as sufficient memory for weight storage is available, amost any size neural
architecture may be mapped onto a fixed nhumber of processors. Bandwidth, often measured in
millions of connections per second (MCPS) for data p1ocessing operation, and millions of
connection updates per second (MCUS) for learning, remains relatively constant for such acircuit.
Thus, the operation throughput, the reciprocal of the time lag between application of an input and
availability of the output, is also inversely related to the complexity of the architecture that is
mapped onto such a time-multiplexed system.

Most digital designs are indeed multiplexed, for the simple reason that a fully-parallel
digital system isimpractical for all but small architectures, since each connection in the network
generally requires silicon-hogging multiplier and adder circuits. Also, it would be wasteful to
incorporate into each neuron circuit an activation-function lookup table, when the speed of the
system is limited not by the lookup time, but by the multiply-accumulate synaptic weighting and
aggregation calculations. However, a moderately-large fully-paralel digital system, described
below, has been constructed using eight 5-inch silicon wafers[20].

Another advantage isthat digital circuits arc scalable --- as fabrication technologies (which
are often geared towards digital requirements) improve, circuits can be made ever smaller, alowing
more processors on a chip, while simultaneously decreasing execution time. Analog circuitry may
not scale down to the same degree, because noise may increase as feature size is reduced. For
example, transistor edge effects may become more pronounced as transistors are made smaller,
resulting in larger voltage offsets. Also, electromagnetic pickup from adjacent wires may increase
as wires are deposited closer to each other, and larger temperature variations may occur as current
densities and fluctuations increase. As noise levels increase, it can be expected that noise-intolerant
learning algorithms will fail, and that noise-tolerant algorithms will take longer to learn. However,
the analog vs digital trade-off will still be decided based on type of application, requirement of
precision, power consumption, processing time, and silicon real estate.

Recent innovations in digital design and fabrication technologies have already been applied
to neural networks, making possible several of the larger-scale designs in Table 1. Wafer-scale
integration (WSI) has been used to implement a single integrated circuit on a 5-inch diameter
wafer, implementing 576 time-multiplexed neuron circuits with associated synapses, using 40
million transistors [21]. The wafer was mapped with a fully-connected network implementing,
without learning, the 16-city traveling salesman problem. A solution was obtained after only 0.1
S., giving a throughput of 1.2 GCPS (gigs connections per second). An even more ambitious
implementation involved a battery of eight 5-inch wafers as a WSI neural network with 1000
neurons [20]. EBP learning was incorporated into the hardware, giving a maximum weight-update
rate (with al neurons used) of 2 GCUPS. The system was initially used for signature verification
and stock price prediction, and it was found that the har dware learned 1-3 times as fast as a
simulation running on a Hitachi S-820 supercomputer. While these two designs illustrate how
rapidly new digital technologies can be adapted to neural networks, note that WSI systems would
be quite expensive, even if mass produced .

4. ANALOG IMPLEMENTATIONS

Given the “messy” analog electronic circuit milieu of time-invariant offset voltages and
currents, induced and generated noise, drift, and temperature dependence, it is rather remarkable
that analog networks can be made to function at all! However, biological “wetware” is at least as
noisy a medium, and certainly nature has found a way to overcome the noise effects sufficiently
that neural systems can exhibit highly discriminatory behavior. Carver Mead has argued that the
physical characteristics of (subthreshold) analog circuits model closely those of biological neural
tissue [18]. This suggests that once we know the learning algorithms employed by biological
neural systems, wc may be able to directly apply these to analog hardware. Moreover, even with
current analog hardware it appears that collection of noisy and imprecise neurons and synapses can
behave with much higher accuracy than can the individual components[22]. Thus, the challengeis
to find the architectures and algorithms that best learn a task, while reducing the effects of the
underlying circuit nonidealities. However, investigators arc also attempting to “clean up” analog
circuits by reducing noise components, in one case by automatically canceling offset voltages [23].

Most analog neural implementations developed so far show marked similarities (Fig. 1).
Inputs, coded as voltages to take advantage of a wire's ability to distribute voltage, are routed to
one multiplier circuit for each synaptic connection. Each multiplier derives the other input from a
memory cell in which is stored that synapse’s weight. Multiplier output signals, representing the
weight inputs for the next layer of neurons, are coded as currents to take advantage of a wire's

ability to aggregate currents. Finally, neuron circuits apply a nonlinear activation function to the
aggregated weighted inputs, and supply a voltage. output that can be routed to the next layer of
multipliers, or used as system output.

From this description, it can be inferred that a primary advantage of analog implementations
is that the aggregation operation is essentially performed by the interconnect wiring, whereas in
digital implementations, each synapse output must be aggregated to the appropriate neuron input
net using one adder time-slot. Another advantage of many analog implementations is that the
dynamic range of analog circuitry is limited by the noise characteristics, not the number of bits, as
in digital circuits. Thus, whereas a semicustom digital network may be limited to fixed 8-bit weight
resolution by the designers, analog networks may reach 10 bits of resolution, with stochastic
(noise) effects that may additionally serve to mitigate some of the problems associated with hard-
quantized networks and learning. For example, in cases where a neuron is clipped during learning,
adigital weight-update signal to the synapses feeding that neuron may always be zero, whereas an
analog update signal with noise may succeed in dislodging the neuron, thus bringing the network
out of alocal minimum.

Several primary differences beyond mere circuit detail serve to distinguish
implementations, and have maor effects on system performance and capabilities. First and
foremost is network architecture. The architecture can either be fixed, in which case only subsets
of that particular hardwired architecture may be mapped onto the chip, or programming circuitry
can be added to allow some flexibility in routing synapses to neurons and perhaps controlling the
number of layersin the net. Because such programming circuitry can take up a significant part of a
chip’ssilicon real estate, the total number of usable synapses and neurons pcr unit silicon area will
be correspondingly lower. The most general architecture is the fully-connected recurrent network,
in which each neuron’s output is routed through synapses to each neuron’s input. By setting all
feedback synapses to zero, any feedforward network can be mapped onto this architecture. While
the network is very general, at least half the synapses are unused in a feedforward network, and
likely many more, since it appears that many sSynapses are unnecessary even in feedforward
networks [24].

A paradigm that has proven popular is the building-block approach [25] , where several
chips can be interconnected in different ways to obtain a good measure of architectural flexibility.
For example, synapse arrays can be implemented on independent chips, or each chip could
implement onc layer of a feedforward network. Large networks could be constructed by tying

many chips together. Disadvantages of this approach are the added chip and interchip wiring costs,
and the throughput penalties resulting from the capacitances associated with chip pins.

A second difference lies in the method used to store connection weights. Currently, three
mechanisms are being exploited: digital memory with analog converter, capacitive charge retention,
and floating gate. While digital weight storage does not have the drift problems of the other
methods and allows fast downloading from compuiter, it is space-intensive. since a digital-to-analog
converter (DAC) must be furnished on-chip for each weight, and resolution is limited to about 6
bits [24,26]. Storing weights as charge on capacitors [27] is relatively space-efficient, but requires
that leaked-off charge be periodically replaced, either by interspersing learning cycles with
feedforward passes [28,29], or by storing weights digitally and sequential y refreshing the charge
using one or more off-chip DACS [30]. Finally, floating-gate memories [1,31] store charge with
non-volatility using electrically erasable programmable read only memory (EEPROM) technolog y.
The charge can be non-destructively and continuously monitored by special transistor structures.
Charges are added or removed by quantum-mechanical tunneling, a process that is slow and may
reguire voltages that over time damage the storage device. Nevertheless, floating-gate memories
hold much promise for single-chip standalone neural networks with on-chip learning, particularly
where fast lcarning is not required.

Finally, the last major factor distinguishing analog learning implementations is support for
learning. On-chip learning support ranges from none, as is the case with feedforward hardware
networks where learning is executed solely by computer, to sophisticated stand-alone systems
where the learning portions of the chip may far exceed in size the feedforward execution portions.
This topic will be pursued extensively in a later section.

Let us consider in greater depth a typical analog implementation. The majority of analog
designs to date have used the charge-storage mechanism for weight memories, with a sample-and-
hold gate controlled by select logic, as shown in Figure 2. External address lines are decoded to
allow random access of a synapse. This closes the sample-and-hold for that synapse, and allows
the voltage from external computer-controlled digital-to-analog converters (DAC) to be applied to a
capacitor that stores the weight. (Thus, strictly speaking, the weights are actually stored in the
computer’s memory in high-resolution binary form, and the capacitors just serve as a temporary
store.) The alternate capacitive memory meehanism, which is employed by networks that must
periodically learn in order to refresh weights, employs circuits that add or extract a quantum of
charge from the capacitor [32]. In either case, the weights are applied to a multiplier circuit that
continually performs the weighting function. Unfortunately, multiplier circuits require a number of

sizable transistors if linearity, uniformity between circuits, and a large dynamic range are desired,
limiting synaptic circuit density to the order of 103-104 synapses per cm2. Since number of
synapses is the limiting factor determining the size of most fully-parallel networks, the usc of
simpler nonlinear multipliers has been proposed, along with a learning scheme tolerant of the
nonlinearities [33]. Fairly linear response has also been obtained using simpler weighting circuits
[34]. Synaptic outputs, coded as currents, are simply and highly efficiently aggregated by the
wires that connect them to their corresponding neuron input. Analog semiconductor physics can
also bestow an advantage in the neuron circuit --- asigmoidal activation function can be efficiently
implemented by little more than a differentia transistor pair.

Let us highlight just two of the significant number of analog implementations that have
been developed. (Additional citations are given in the section on learning, below). One AT&T
neural system is particularly interesting because it is an analog-digital hybrid that is being used for
character recognition [35]. With a recognition rate of onc hand written character every millisecond,
the system was faster by two orders of magnitude than a (serial) digital signal processor (DSP)
optimized for neural calculations. A 20x20 pixel image was applied to 4 network layers mapped
onto an analog chip that implements 130,000 connections, and a final 5th layer was implemented
serially on a DSP using an additional 3000 connections. 1.earning was performed off-line by a
workstation, and weights were downloaded to the system’s memories. The analog network used
the capacitor-charge method for buffering weights. Weights were quantized to 6 bits, and neuron
activations were represented with only 3 bits, including sign, The relatively few quantization levels
necessitated a final learning step where the weights in the final layer were retrained on-line. The
recognition error rate was 5.3%, as compared to rates of 4.9% and 2.5% for full dynamic-range
simulations and human subjects, respectively.

Onc of the earlier commercialy-available products was the Intel’s electrically trainable
analog neural network (ETANN) chip, released in 1990 [36). Each ETANN 80170W chip
comprises 64 neurons and 10240 floating-gate synapses onto which can be mapped recurrent or
multi-layer fecdforward networks. The chip must be plugged into a socket on a development
system for learning, using onc of the many supported learning algorithms. While learning is slow
duc to the floating-gate technology, ETANN has nevertheless heralded the age of program-rarely,
moderately-sized, standalone analog neural network chips.

10

4.1 JPL Hardware Approach

At the Jet Propulsion Laboratory, we have developed a variety of “building-block” chips,
some of which use digital weight storage, and some of which use capacitor storage [26,30].
Learning has been demonstrated with both these designs [24,37]. In this chapter, we highlight one
of the chipsets, which incorporate hybrid multiplying digital-analog convertor (MDAC) synapses,
on which we have implemented learning. Each synapse (Fig. 3) consists of a 7-bit digital memory
that can be randomly accessed by a host computer, a 6-bit digital-to-analog converter using scaled
current mirrors, a circuit to convert the input voltage to a current in order to drive the converter’s
current mirror network, and a programmabl e current-steering network such that the synapse can be
programmed to be cxcitatofy or inhibitory. Each synapse circuit is 200x200pum in a2pum CMOS
fabrication process.

The neuron circuit is slightly more complex (Fig. 4). To avoid a speed penalty resulting
from having to charge and discharge large summing-node capacitances (especially if the.se nodes
are routed between chips), the potential of each current-summing “net” node is held constant by the
corresponding neuron circuit. Thisis achieved by the neuron’s input stage: a differential transistor
pair Q19-Q20 amplifies the deviation of the summing node from ground (i.e. half the 10V power
supply potential), and causes the generation of a current that opposes the sum current, forcing the
potential of the sum node to remain at ground. This compensating current is mirrored, inverted,
and applied to an output transimpedance node. The transimpedance, and thus the neuron’s
sigmoidal slope (i.e. gain), can be controlled over a wide range by a programmable current mirror
circuit (Q 14). Programmable neuron gain is useful for normalizing the neuron’s response for the
number of input synapse connections [30,38]. This design resulted in a wide range, variable gain
neuron.

These circuits were combined on two chips with two types of architectures. One type
implements a 32x32 crossbar network of 1024 synapses; the other is similar except that the main
diagonal consists of neuron circuits. These two types of chips can be cascaded and programmed to
form larger, fully -connected, partialy-connected, or feedforward layered networks. A variety of
network architectures (with standard synapse and neuron characteristics) can be constructed with
this chipset. To map a feedforward network onto a chipset that is wired to be fully-connected, all
synapses leading to a previous layer are simply nulled. Respective synapses on two chips can even
be paralleled together to increase the number of synaptic quantization steps[38]; the outputs of the
two synapses are wired in parallel, and the synapses on the chip with the most-significant bits are
provided with 64 times the transconductance of the respective synapses with less significant bits.

11

4.1 JPL Hardware Approach

At the Jet Propulsion Laboratory, we have developed a variety of “building-block” chips,
some of which use digital weight storage, and some of which use capacitor storage [26,30].
Learning has been demonstrated with both these designs [24,37]. In this chapter, we highlight one
of the chipsets, which incorporate hybrid multiplying digital-analog convertor (MDAC) synapses,
on which we have implemented learning . Each synapse (Fig. 3) consists of a 7-bit digital memory
that can be randomly accessed by a host computer, a 6-bit digital-to-analog converter using scaled
current mirrors, a circuit to convert the input voltage to a current in order to drive the converter’s
current mirror network, and a programmable cur-rent-stem-kg network such that the synapse can be

programmed to be excitatofy or inhibitory. Each synapse circuit is 200x200um in a2um CMOS
fabrication process.

The neuron circuit is slightly more complex (Fig. 4). To avoid a speed penalty resulting
from having to charge and discharge large summing-node capacitances (especialy if these nodes
are routed between chips), the potential of each current-summing “net” node is held constant by the
corresponding neuron circuit. Thisis achieved by the neuron’s input stage: a differential transistor
pair Q19-Q20 amplifies the deviation of the summing node from ground (i.e. half the 10V power
supply potential), and causes the generation of a current that opposes the sum current, forcing the
potential of the sum node to remain at ground. This compensating current is mirrored, inverted,
and applied to an output transimpedance node, The transimpedance, and thus the neuron’s
sigmoidal slope (i.e. gain), can be controlled over a wide range by a programmable current mirror
circuit (Q) 4). Programmable neuron gain is useful for normalizing the neuron’s response for the
number of input synapse connections [30,38]. This design resulted in a wide range, variable gain
neuron.

These circuits were combined on two chips with two types of architectures. One type
implements a 32x32 crossbar network of 1024 synapses, the other is similar except that the main
diagonal consists of neuron circuits. These two types of chips can be cascaded and programmed to
form larger, fully-connected, partially-connected, or feedforward layered networks. A variety of
network architectures (with standard synapse and neuron characteristics) can be constructed with
this chipset. To map a feedforward network onto a chipset that is wired to be fully-connected, all
synapses leading to a previous layer are simply nulled. Respective synapses on two chips can even
be paralleled together to increase the number of synaptic quantization steps{38]; the outputs of the
two synapses are wired in parallel, and the synapses on the chip with the most-significant bits are
provided with 64 times the transconductance of the respective synapses with less significant bits.

11

Sign bits are programmed together. While the response of such stacked synapses may not increase
monotonically with binary weight count, it is advantageous with some learning schemes to have
the additional levels of weight quantization,

4.2 ATechnology Of The Future: 3-D Die Sggggﬁmg

JPL is currently evaluating an approach that may allow the construction of very large
analog or analog/digital neural systems. Noting that size of the VLS| networks is often limited by
available silicon area (where area, in turn, is constrained by increasing cost and decreasing
reliability as die size increases), the possibility exists that functioning silicon dies can be
interconnected by stacking to form compact, three-dimensional structures. A cube, constructed
from scores of thinned dies, occupies approximately the. same footprint as a standard die. In
addition to the tremendous processing power afforded by such a dense integrated circuit (IC) cube,
hybridization of a 3-D IC stack to an image sensor array would enable spatialy parallel signal
processing to be performed on image data at extremely high data rates. As shown in Figure 5, an
architecture has been conceptualized which combines the spatially parallel 3-D imager cube with
neural network processing for the first time, promising tremendous speed and network size
enhancements over conventional 2-D VLS techniques[39]. While the feasibility such stacking
technologies has been demonstrated [40], many challenges must be faced in developing such a
cube, including heat control, the development of software tools that can follow connections in the
third dimension, and, of course, the development of an appropriate neural-based architecture.

A particularly challenging application that requires the tremendous processing capability
afforded by such a 3D neural image processing cube is missile defense, which specifies spatial-
temporal recognition of both point and resolved targets at extremely high speed (milliseconds). A
reconfigurable neural network architecture, properly trained, may discriminate targets from clutter
or classify targets once resolved. By mating a 64 x 64 image sensor to a stack of 64 neural net ICS
so that each row in the imager array is attached to one IC, each with a different set of weights, a
variety of image processing tasks could be performed in parallel at extremely high speeds and in an
extremely small package. Neural network inputs could be controlled by a sequencer circuit that
controls signal flow along 64 common bus lines. A novel sequencer circuit comprises a switching
matrix that allows a small window (e.g. 8 x 8) from the imager to be input to any IC in the stack.

In order to limit power dissipation to about 2 watts for the entire 1C stack, the synapse and

neuron circuits described above were redesigned to support lower operating currents and power
supply rails, and a concomitant four-fold speed increase. 1* he expected computation rate for a 64-

12

die stack incorporating these synapses and neurons would be 10!2 connections per second, and
could be increased to 1018 CPS when a 1024x1024 focal-plane array imager becomes available and
as the 3-D stacking technology matures further. The synapse circuit is similar to the earlier version,
except that it utilizes single transistor current mirrors rather than the cascode current mirrors of the
previous design. The neuron circuit, shown in Fig. 6, consists of a very simple variable gain
transconductance operational amplifier without compensation capacitor. Neuron gain is varied by
adjusting the amplifier bias current. Figure 7 shows the two-quadrant synapse output
characteristics of the hardware as a function of stored weights with the voltage V;, as a parameter.
The combined synapse-neuron characteristics are shown in Figure 8 as a family of sigmoidal
curves with different slopes obtained by variation of the gain voltage. These circuits were modeled
with aPSPICE circuit simulation tool and experimental results correlate closely with simulation.
Simulation results indicate an average power consumption of less than 30 milliwatts/chip (or less
than 2W for a 64-chip stack) at the 4 MHz operation rate.

5. LEARNING IN HARDWARE SYSTEMS

A general-purpose computer can be programmed to execute any reasonably-sized
architecture and any conceivable learning algorithm. The dynamic range of weights and signals
traversing the ssimulated network, coded with floating-point variables, is sufficiently large that
quantization effects very rarely affect learning or operation. Unfortunately, the opposite is true of
most analog or digital hardware implementations. signals and/or weights must be implemented with
limited quantized levels of resolution and dynamic range. Studies suggest that for most learning
algorithms a reduced dynamic range will adversely affect (or even inhibit) learning. For operation,
however, reducing the dynamic range of weights and signals to a few bits often does not greatly
affect theresult [17,41]. A direct implementation of the ever-popular EBP algorithm, for example,
requires 12-16 bits of weight quantization [42]. However, maor modifications of EBP may
function reliably for at least some problems with as few as & bits of weight precision [43].

Learning with analog hardware poses a second challenge: how to structure a learning
algorithm to be less sensitive to the noise sources inherent in analog circuits Such sources can be
dynamic, with wide-ranging frequency components (including low-frequency drifts), or time-
invariant, as in the fixed offset signals generated within every analog circuit. Furthermore, noise
sources are not necessarily uncorrelated: noise in power busses may affect circuit outputs in
diverse ways. As mentioned above, noise can in some cases assist learning by introducing a
stochastic component to weight updates. However, offsets can be a mgor problem, as can
correlated noise sources.

13

Thus, a primary challenge that faces the hardware designer is finding a hardware-
compatible learning algorithm. We will focus here on a few leading examples of supervised
learning algorithms that appear to be most promising for hardware learning{44]. For the many
applications that do not require fast learning (including situations where the weights are fixed for
the life of the network), learning may be under the control of a computer. Digital networks of
modest size can often be faithfully simulated using floating point variables, and the resulting
weights can be quantized and mapped onto the hardware. Such an approach may not work for
analog networks unless offsets and other noise sources are measured and incorporated into the
simulation. Instead, a smple but time-intensive gradient-descent method that has been employed is
hardware-in-the-loop learning (HILL) [28,45-47]. HILL systems use a computer to set the analog
input values to the hardware, measure the outputs, and reprogram weights. A training token is
applied to the network, and the output is compared to the target vector. Each neuron output or
weight is in turn perturbed, and the effect of the weight perturbation on the output error is
calculated. The weight is then modified slightly so as to decrease the error. Obvioudly, thisis a
highly inefficient learning method, even if several simultaneous weight updates can be made at
once. Nevertheless, the advantage of this scheme isthat all time-invariant noise and other nonideal
hardware behavior is taken into account, including even altogether malfunctioning circuits.

Other investigators have included circuits for learning on-chip. A computer may still be
necessary to apply training vectors, but learning can usual 1y proceed much more rapid] y due to
higher weight-update parallelism, and faster learning cycles. While many investigators have
designed and even partially implemented anal og networks with on-chip learning, using supervised
learning algorithms such as EBP[29,48-52] and other gradient-descent techniques [53], or
unsupervised learning algorithms such as Oja's rule [54] and Kohonen networks [55-57],
relatively few functional analog on-chip learning systems (beyond limited prototypes) have been
reported. Pioneering experiments with small networks capable of lcarning were pursued starting in
the 50's by Widrow [58], using his madaline learning mechanisms. Alspector has successfully
executed several designs, using (stochastic) Boltzmann Laming [59]. His more recent stochastic
system used controlled noise sources in the form of digital circuits that generated random
bitstreams with low correlation [60,61], rather than the uncontrolled sources inherent in the analog
circuitry. Finally, a more specialized analog implementation used Grossberg self-organized
learning [62]. Digital on-chip learning networks have also been implemented, generally with EBP
learning variants [3,19,63]. Onc noteworthy neural chip with a measured time for a feedforward
pass of only 104 ns used a variant of restricted-Coulomb energy (RCE) learning [64].

14

6. E ARCH ‘

Most learning agorithms operate on a fixed architecture that has been predetermined, often
using little more than guesswork. The problem is that the network size required for a given
problem is dependent on the complexity of the input data set and the structure of the patterns to be
extracted. These factors are generally unknown. If the selected architecture is larger than required
for a particular problem, learning may take longer than necessary, and if the selected architectureis
too small, the network will not adequately learn the task at hand. To avoid the necessity of fixing a
network architecture, and to obtain higher efficiency in learning, a new class of learning
architecture has been proposed in which a network evolves out of a si mplc two-layer precursor
architecture. Hidden units are added as necessary until the network performs adequately.

The first such architecture appears to be Scott Fahlman's CC |learning scheme [65]. The
precursor network has no hidden units, and weights are adjusted using the gradient descent (or one
of its variants). Then, in each subsequent operation, a new single-neuron layer is added, with the
neuron’s inputs connecting to the network inputs as well as all hidden-unit neuron outputs.
Initially, a new neuron’s output is not connected, and the input weights arc set so as to maximize
the covariance between the new neuron’s output and the residual error of the network output.
These input weights arc not altered after this. Finally, all output-layer weights are retrained using
the delta rule. In this way, each new neuron serves as a feature detector that is likely to reduce the
output error, and which can be used by subsequent neurons for more sophisticated features. A
final advantage is that the rate of decrease of error with each new hidden-unit addition can serve to
indicate the utility of adding further units.

Such an architecture has a number of attractive features for usc with hardware
implementations. Besides the advantages deriving, from a1 chitectural efficiency, such as efficient
network size and use of a small network for at least part of the training task, each of the two steps
of the learning algorithm requires updating relatively few synapses. Furthermore, an error signal
does not need to be propagated back across multiple layers - a process that is highly noise-prone in
analog implementations.

A study of the sensitivity of CC learning to reduced dynamic range variables and weights
has shown that while the algorithm is relatively insensitive to representing neuron activation by
even as few as 5 bits of precision, weights must be represented with a much greater dynamic range
[41]. The 6-bit parity was one among various problems studied in simulation, where the limited
weight precision led first to an increase in network size, then catastrophic failure below about 12

15

bits as weight updates were mostly truncated to zero. Modifications of the algorithm that included
probabilistic weight update resulted in successful learning, with as few as 7 bits [41]. However,
these modifications would be expensive to implement in hardware.

6.1 Cascade -Backpropagation (CBP) Learning Architecture

In this section we develop a new self-evolving architecture that is highly efficient with
respect to hardware implementations, and demonst