
USING PROGRAM VISUALIZATION
TO ENHANCE MAINTAINABILITY A N D

P R O M O T E R E U S E

Chuck Ames
Jet Propulsion Laboratory

Pasadena, Ca 91109

Lizz Howard
Department of Computer Engineering

University of Cincinnati
Cincinnati, Oh

James D. Kiper, PhD
Department of Systems Analysis

Miami University
Oxford, Oh 45056

Abstract

Our intuition is that comprehension of
visual representations is often quicker than of
equivalent text. In the work described in this
paper, we explore the application of this
intuition to programming languages. The goal
of this project is to create visual representation
of segments of computer programs that
improve the maintenance and reusability of
this code.

We describe a software tool, a program
browser, that provides a visual representation
of the function call graph of any C program.
This tool is the first in a series of tools that aids
program comprehension, making reuse of
existing programs more likely.

The development of the program
browser is itself an example of code reuse as
described in the section on implementation.

Although our intuition is that some
visual display of programs aid
understandability, we are looking for
experimental verification. Several human
factors experiments in this area have
contradicted this intuition. We describe
reasons for these contradictions, and potential
solutions to overcome them.

1. Introduction

This paper describes a project which is
exploring the use of program visualization as a

“Copyright 01995 by the American Institute of
Aeronautics and Astronautics, Inc. All rights
reserved.

means of enhancing program
comprehensibility. Our goal is to create a set
of visual mechanisms that will ultimately help
reduce maintenance cost, make code reviews
more effective, and promote re-use. Our
general approach has been to create a visual
representation for C prc)grams. More
specifically, we are developing a graphical
syntax that is semantically equivalent to the C
language, and building a tool to display C
language code in the new graphical syntax.

Program comprehension is perhaps
the most important factor affecting the
efficiency of maintenance programmers 2,3.
The entire software engineering philosophy is
built on the premise that high level language
code is created for human consumption rather
than driven by machine requirements. The
first step in repairing or modifying existing
code is to understand what that code does.

Comprehension is also a necessary
pre-requisite to re-using code. The object-
oriented paradigm achieves its reuse potential
by designing that potential into a system
through intelligent use of encapsulation and
inheritance hierarchies. Legacy code that was
not designed for reuse must be re-engineered
if its reuse potential is to be exploited. Again,
the first step in this re-engineering process is
understanding the meaning and purpose of
existing code.

Thus, mechanisms for improving
program comprehensibility can reduce
maintenance cost and maximize return on
investments in legacy code by promoting
reuse.

1

American Institute of Aeronautics and Astronautics

2. Enablina Tool Reuse
~lementation Examp&

The first phase of this project has
focused primarily on the development of a
high level graphical C program browser. The
browser shows gross program structure in the
form of a call graph generated directly from the
program code. Each node in the call graph
represents a user defined function, and each
arc represents a “calls” relationship. (See
figure 1.) Clicking on a function node brings
up the corresponding C code in a window.

The program browser is based on a
modified copy of the GNU C compiler. The
modified compiler outputs a text
representation of the call graph which is then
displayed by a rendering tool. Direct
recursion, indirect recursion, and functions
called through pointers are supporled.
Control constructs (e.g. ‘if’ and ‘while’) will be
added to enhance the call graph in the future.
Ultimately, this approach will be used to create
an abstract representation of the
implementation of each function that can then
be displayed graphically as well, thus providing

a completely visual representation of C
programs.

The program browser development is
itself an interesting case study in re-using tools
for rapid prototyping. The initial prototype
used the Pic language ~ to lay out the call
graphs. Pic code was then converted to
Postscript using the GNU groff package, and
displayed using the GNU Postscript
interpreter, Ghostscript. The current
prototype is an interactive X-Window
application built in Tcl/Tk to take advantage of
the interactive point-and-click capabilities
offered by Tk 1 i.

Currently the program browser obtains
line numbers of textual program code from the
compiler and uses this information to display a
function in a window when the user clicks on
that function in the call graph. In subsequent
versions, this text representation will be
replaced by a graphical representation. This
graphical representation will serve as the basis
for a study to determine if program visualization
is effective for increasing program
comprehensibility. If this hypothesis proves
correct, program visualization may be useful for
reducing maintenance cost and promoting
software re-use.

.—— —
I –~z;,j-—––— - ----- ‘“ ‘“ i+!————...

lEI@c’-- +Z!!’WTI

EEZ!!!!!3’I’I ““ +nsEEEl

Figure 1: Program Browser Output.

2

American Institute of Aeronautics and Astronautics

3. Enabling Tool Reuse throuah
Visual Programming

In this section we address the more
general issue of visual programming as an aid
to code reuse. We first describe the
importance of program comprehension and
the relationship of the functionality of the
program browser to comprehension. Next we
present some of the most important research
efforts in the area of visual programming that
are related to this project. Finally, we describe
the results of some human factors
experiments in this area, and describe how
these results are affecting our language
design.

3.1 Program Browser and Program
Comprehension

Reading and understanding a program
is prerequisite to any review or maintenance
task. It is generally agreed that errors found in
reviews are much less costly to fix than the
same errors not found until after delivery. It is
also generally agreed that the majority of
programming activity can be classified as
maintenance programming. Therefore,
improving the efficiency with which
programmers read and understand code could
have a significant impact on development and
maintenance cost and schedule.

We believe that representing
programs visually will make them accessible to
a wider audience, specifically technics/ norr-
progranvners. Using visual code printouts to
augment textual listing allows domain experts
who are not necessarily programmers to
contribute to program reviews, This additional
perspective could help reveal errors that would
other wise go unnoticed.

Secondly, we expect the program
browser to be helpful to maintenance
programmers. As shown in figure 1, the
browser provides a simple view of gross

program structure in terms of the way various
functions are related. We already have
anecdotal evidence to demonstrate that this
alone is a tremendous time saver. Users can
click on a call-graph node to display the code
of the function associated with that node in
another window. FUhh2 versions of the
browser will allow the user to view the
implementation of a function either as textual
or visual code.

3.2 Visual Programmln~Background—.-—

Singh and Chignell 14 provide a
taxonomy of the area that divides visual
computing into three main areas:
programming computers, end-user interaction
with computers, and visualization. (See
Figure 2). The first branch of the taxonomy,
the area of programming computers (visual
programming and program visualization), is the
main concern of a program designer. End user
are most concerned with the user interface,
the second branch of the taxonomy. Users
who must interpret and process large amounts
of data, especially scientists and data analysts,
are most interested in the last branch of the
taxonomy, scientific visualization. The main
focus of the work described in this paper is in
the first branch of the taxonomy, specifically
visual programming.

Singh and Chignell have divided the
first branch, programming computers, into two
key areas: visual programming a n d
visualization. (See F’igure 3). The generally
accepted definition of visualization is the use
o f va r ious techn iques to a id in the
understanding and debugging of computer
programs 1813,14, Visual programming, on
the other hand, “refers to any system that
allows the user to specify a program in a two (or
more) dimensional fashion. Conventional
textual languages are not considered two
dimensional since the compiler or interpreter
processes it as a long, one-dimensional
stream. ” 8.

3

American Institute of Aeronautics and Astronautics

Visual Computing

Visual Aids for Programming End User Interaction

/\ /l\

Scientific Visualization

/ \
Visual Visualization WIMP Virtual Natural Surface-based Volume-based

Programming Reality Artifacts Visualization Visualization

Figure 2. Singh and Chignell’s14 Classification of visual computing

Singh and Chignel114 have further
divided visualization into three main branches:
program visualization, algorithm visualization,
and data visualization. In program visualization,
graphics are used to illustrate some aspect of
the program after it is written and can be either
static or dynamic program visualization. Static
program visualization techniques include flow
charting and pretty-printing (insertion of blanks
and blank lines, indentation, and comments to
enhance the readability of a program).
Execution of the program is illustrated either
by animation or by highlighting the program
code when dynamic program visualization is
implemented.

Algorithm visualization systems
produce animations of algorithms in order to
show the “program fundamental operations
that embody both transformations and
accesses to data and flow-of -control.” 14.

Data visualization can also be
subdivided into either static or dynamic data
visualization. Static data visualization
generates static pictorial displays for data
structures. This method makes “debugging
easier by presenting data structures to
programmers in the way that they would draw
them by hand on paper. ”a. As the name
implies, dynamic data visualization graphically
displays the state of variables, arrays, lists,
trees, and other data structures as the program
is executed.

In essence, visualization provides a
means to better understand how a program
works after it has been coded. This is in direct
contrast with visua/ programming, where a

program is actually designed by manipulating
graphical representaticms (icons) or by a
combination of icons and textual information,

Singh and Chignel114 divide visual
programming into two key branches: graphica/
interaction systems and visual language
systems. (See Figure 3). This division is
based upon how the graphics are used to
build the program. Systems where the user
guides cjr instructs the system in order to
create the program are classified as graphical
interaction systems. Visual language systems
consist of systems in which icons, symbols,
charts, c)r forms are used to specify the
program.

In graphical interaction systems, the
sequence of user acticms is of vital importance
since the system “learns” from the user input.
This category is more commonly called
progran)ming by example.

In the majority of systems, a user is
required to specify everything about the
program and the system is able to remember
the examples for later use. This type of system
could be described as “Do Whaf / Did” 8.

Conversely, some systems attempt to infer the
general program structure after the user has
provideci a number of examples which work
through the algorithm. These systems could
be characterized by “Do What/ Mean” 8 and
are often referred to as automatic
programming, which has generally been an
area of Artificial Intelligence research.

4

American Institute of Aeronautics and Astronautics

I Visual Aids for Programming

I Visual Programming

I / \
Graphical Visual Language
Interaction Systems
syqe.S / / \ \

Flow Dia rams icons Tables/ Others

/\ Forms
Control Data

Visualization

/ l - - -
Program Algorithm Data

Visualization Visualization Visualization

/ \ / \

Static Dynamic Static Dynamic

Flow Flow

Figure 3. Singh and Chignell’se Taxonomy of visual programming systems
.——

rather than textual expressions of traditional
The second branch of visual languages, In Figure 3, Singh and Chignelli4

programming is visua/ /anguage systems. suggest a division of visual languages into
Within this classification are systems using three main categories based upon the
icons, symbok, charfs, and forms to specify graphical abstraction used for creating the
the program. The spatial arrangement of the program: f l o w (iiagrams, icons, a n d
symbols specifies the program. This forms/tab/es.
differentiates visual languages from graphical
interaction systems (programming by The category, flow diagrams, includes
example), since, in graphical interaction visual languages which provide various types
systems, the user interaction with the system charts, graphs, and diagrams to construct
is important, and in visual languages, the programs. Flow diagrams are primarily
arrangement of symbols on the screen is c o m p o s e d o f corrtro/ f/ow or d a t a f/ow
impotiant. - diagrams.

Visual /anguages are composed of a
set of graphical symbols which are constructed
into “visual sentences with a given syntax and
semantics. ”4. Visual sentences must then be
spatially parsed to determine the underlying
syntactic structure. A semantic analysis must
then be performed to determine the meaning
of the visual sentences (spatial interpretation).
The syntactic and semantic analyses of a visual
language differs little from a traditional
language approach. Both types of languages
must be analyzed to determine syntax and
meaning, the significant difference being that
visual languages employ graphical symbols

-—— . I

Figure 4. LabVIEW icons for add
and subtract functions

5

American Institute of Aeronautics and Astronautics

L2BEGIN

BEGIN
Sl;
IF NOT II THEN

BEGIN
S2;
S3;

END
ELSE

WHILE L1 DO
BEGIN

IF 12 THE:N S4 ELSE S5; S6;
END;

WHILE L2 DO S7;
S8;

END;

Figure 5. Proc-Bl_OX Representation and Pascal Program Equivalent

definition of an icon. 1 he main criterion for
The most common example of control designing an icon is that it clearly represents

flow diagrams (and probably the earliest visual the abstraction. For example, in LabVIEWIO,
representation for a program) is the flow chart. the traditional symbol for an operational
Typically, the flow chart was used for amplifier is used to represent the functions
documenta t ion purposes , bu t v i sua l add and subtract. (See Figure 4). Another
languages employing flow charts create use of icons is in the language Proc-BLOX5.
programs automatically. Another type of Figure 5 illustrates a Proc-BLOX
con~rol flow diagrams used in some” visual implementation of a traditional Pascal program,
languages are Nassi-Shneiderman diagramsg. where the Proc-BLOX symbols resemble a
Data flow diagrams depict the flow of data from three dimensional jigsaw puzzle.
one operation or object to another and the
visual language constructs the program from The final category of visual languages
the flow of data. are those languages which employ tabjes and

forms. The user constructs the program by
The second category of visual using tables or filling in forms. Common uses

programming languages, icons, consists of of this category inclucle developing queries on
visual languages using graphical symbols or relational databases through the use of tables
icons and their interconnections to form visual and the development of office-information
sentences. As was noted earlier, spatial systems using forms.
parsing and interpretation is used to provide
syntactic and semantic analyses, respectively.
There is no accepted standard for the

6

American Institute of Aeronautics and Astronautics

3.3 Results of Experiments

Over the past few years several human
factors experiments have been conducted to
determine whether visual representations of
program segments increase the
comprehensibility of that program by users.7! 12

The conclusions of these experiments
seem to run counter to our intuition that visual
representations should aid comprehension.
However, a deeper look at these experiments
reveals that their purpose was to disprove the
superlative statement that all visual
representations are better than textual
formulations. We have taken the hypothesis
that there probably exists some visual
representation that is generally better for
comprehension for a specific task than text.

In task one, subjects were presented
both “forward” and “backward” questions. For
forward questions, subjects were given a set
of input conditions along with a decision tree,
and were asked for the result of the tree.
Backward questions gave subjects a
conclusion of the given decision tree and
asked for the truth or falsehood of input
conditions that would lead to this conclusion.

Table 1: Task 1 Results

mode form average stdev
time

text 1 forward 74.09 47.72
text 2 forward 74.55 29.32
gates forward 285.44 358.83
boxes forward 142.48 226.91
text 1 backward 76.06 44.78
text 2 backward 44.97 16.37
gates backward 217.53 114.78
boxes backward 171.27 116.06

Table 1 gives results of this
experiment. It is clear that subjects
performance on both graphical forms was
significantly worse than on textual form. This
conclusion is the same as that of prior
experiments.

A closer look at the form of textual and
graphical representations reveals that the
textual forms were much better adapted to the
questions than were the graphical forms. For
example, input conditions corresponding to a
given output, i.e. a backward type question,
can be simply read off from the second textual

form. To answer the same question using the
gates graphical form requires a user to follow
lines through a complex maze of crisscrossing
“wires.” The boxes graphical form is somewhat
easier, kwt still requires a user to examine
several nested box cc)mbinations before
arriving at the appropriate conclusion. We
believe that subjects performance on graphical
forms would be “much better if graphical
representations were used that correspond
more closely to the question asked. We plan
further experiments in this area to explore this
hypothesis.

if high :
if long : laugh
not long :

if thick : whistle
not thick : cry

end thick
end long

not high :
if wide : cry
not wide : shout

end high

Figure 6: Text Type 1 Example

We have verified the results of these
ex~eriments bv a replication using our own
subjects. The-expe~irnent involv{s two tasks:
the first requires each subject to determine the
result of a decision tree represented
graphically or textually; the second requires
each subject to compare a graphical and a
textual form of a decision tree to determine is
these are the same or different. For each task,
two different textual format, and two different
visual representations were used. Examples
of each of these forms are given in figures 6
though 9.

grill : if red & orange
fry : if -, red & 7 blue
boil : if (--, red & blue) I

(red & -, orange ~ green)
roast : if red & –, orange & green

Figure 7: Text Type 2 Example

f

American Institute of Aeronautics and Astronautics

lahi
T~

P!l1 fin
Tr wUtllstle

.

•I?Jl

‘“-””-”-”-””-” EEl

•Ilau h
“-””-”-”-””- m

Figure 8: Boxes Graphical Form Example

Ii31red
l-r . . ----------------------

! ;:D Elrill
A -- 12EEl

D’::’::u-a-l E

Elm “-””-”-”l”-””-”: ”-””-”-:
D. -1 B~...B-"""-""""-"-"""""""-"-""-"-"-""-"-"-""-"-""""-"""-""-"-"-"-""-"-"""~.

!!
!!
;;

!!
!!

E,,blu \ \ !“-”-””-”-”*”-””-i”-””-”:

m ""-"~ "-"" f"-" -"";" -"-"" -"-" -"-"" -"-" -""-" :::::::::::: m-"-" -""-"-'-""-"-"-'"-"-"-""-"-""""-"""-j

;.-.-..-.””””””-”;””-”-”;
1.-.. -.-. -.. -.-. -..-. -.-.. -.-. -.-,.-.

D

:::::~~l

. -1 -.-. -. .-[

H

Qre= ~ +
. 1 ‘“-”-””-’-”D-”-J. .

TF u-H.: ~

,.-..-.-.-..-.-.-..-.-.-.-~::::::::m-""-"-"-""-"-":
~.

E l:.-.-..-.-.-..-.-.-.-..-.-.-..-.-.-..-.-.-..-.-.-..-.-.-.-..-.-.-..::::::::::m-"""-"-"""-"-""-"-"-""-"-"-""-"- =

Figure 9: Gates Graphical Form Example

8

American Institute of Aeronautics and Astronautics

,’,

4. Conclusion

This paper described the design and
implementation of a program visualization tool
that will be useful in re-engineering and re-use
of legacy code. The potential of visual
programming for increasing program
comprehension is being quantified through
experimentation with human subjects. The
project itself has given us experience in reuse
as we adapt existing tools to accomplish our
goals. Subsequent phases of the project will
include enhancing the program browser to
produce complete visual representations of C
programs, and using the program browser to
conduct experiments to quantify the effect of
program visualization on program
comprehensibility.

Acknowledgments

The work described in this paper was
performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a
contract with the National Aeronautics and
Space Administration.

References

1. Baecker, Ronald M. and Marcus, Aaron.
Human Factors and Typography for More
Readab/e Programs. Reading: Addison-
Wesley Publishing Company, 1990.

2. Basili, Victor R., “Viewing Maintenance as
Reuse-Oriented Software Development”,
IEEE Software, 7(1), January 1990

3. Banker, Rajiv D. and Srikant M. Datar and
Chris F. Kemerer and Dani Zweig, “Software
Complexity and Maintenance Costs”,
Communications of the ACM, 36(1 1),
November 1993

4. Chang, Shi-Kuo, “Visual Languages: A
Tutorial and Survey,” /EEE Software, Volume
4, Number 1, January 1987, pp. 29-39.

5. Chang, Shi-Kuo, ed. Visua/ Languages
and Visua/ Programming. New York: Plenum
Press, 1990.

6. Kernighan, Brian, “PIC - A Graphical
Language for Typesetting: User Manual,”
Computing Science Technical Report No.

116, AT&T Bell Laboratories, Murray Hill, New
Jersey, May, 1991.

7. Moher, Thomas, David C. Mak, Brad
Blumethal and Laura M. Leventhal”,
“Comparing the Comprehensibility of Textual
and Graphical Programs: the Case of Petri
Nets”, in Empirical Stlidjes of prO~rammerS:
Fifth Workshop, C. R. Cook, J. C. Schotz and
J. C. Spohner, editors, 1993”, pp. 137-161.

8. Myers, B. A. “Visual Programming,
Programming by Example and Program
Visualization: A Taxonomy. ” In Conference
Proceedings, CHI’86: Human Factors in
Computing Systems, Boston, Mass. New
York: ACM Press, April 13-17, 1986, pages
59-66.

9. Nassi, 1, ancl Ben Shneiderman”,
“Flowchart Techniques for Structured
Programming”, SIGPLAN Notices 8(8),
August, 1973

10. National Instruments Corporation.
Lab VIE W 2 Analysis VI Libraty Reference
Manua/. Austin: National Instruments
Corporation, 1990.

11. Ousterhout, John K., “TcI and the Tk
Toolkit”, Addison-Wesley, 1994

12. Petre, M. and T. R. G. Green, “Learning to
Read Graphics: Some Evidence that ‘Seeing’
an Information Display is an Acquired Skill”,
Journal of Visual Languages and Computing,
vol. 4, 1993, pp. 55-70.

13. Price, Blaine A.; Elaecker, Ronald M.;
Small, Ian S., “A Principled Taxonomy of
Software Visualization,” Journa/ of Visua/
Languages, Volume 4, Number 3, September
1993, pp. 211-266.

14. Singh, Gurrninder and Chignell, Mark H..
“Compcments of the Visual Computer,” The
Visua/ Computer, Volume 9, Number 3,
September 1992, pp. 115-142.

9

American Institute of Aeronautics and Astronautics

