Mobile Robot Sclf-Localization by Matching Range Maps

Jsing a

Hausdor{l Mcasure

Clarkl®. o1s011”
Jet Propulsion Labora tor y, California Institute of ‘Technology
4800 Oak Grove Drive, MS 107- 102, Pasadena, CA 91109
http://1o0botics. jpl.nasa.gov/people/olson/home page. hind

A bstract

This papcer examianes lechnigues for a mobile 1obot
Lo perform sclf-localization in natwral Lerrain by com-
paring a densc range map compuled from sterco in-
agery Lo a range map in a known frame of reference.
The range 1 ap is first processed to ger werate a three-
dimensional occupancy map of the lerrain. This oc-
cupancy map is then compwred to ¢ similar mep from
a  previous robol position or a global occupancy map
ot the environment that has been previously generated.
The best relative position between the maps according
to a Hausdorfl measure is delermined using cfficient
scarch techuiques. These technigues allow lo calizalion
of mobile vobols in naturel Ler1 ain that is robust Lo
noise, (277117, sceneclutler, and missing dala.

1 Introduction

I 11 this paper, we consider the problem of deter-
mining, the position of a mohile robot with respect to
a known frame of reference by comparing the range
map computed from asterco pair of hmages taken at
the robot’s current location to a range map from a
previous loca tion 01 to a composite range map of the
environment that has been previously gen erated.

Our motivation for studying this problem is to in-
crease theautonomy of the Rocky 7 Mars rover (19].
Sce Figure 1. While the position of the rover is con-
thmously updated using, dead-reckoning, from wheel
¢ nco ders and an angular-rate sensor, wheel slippage
and scnsor drift cause an acca mulation of error in this
estiimated position [10]. 1t is thus desirable to have
addit ional mica ns for period ically localizing the rover
to correct this accum ylated error. Previous techuiques
that have 1)(wl used to localize Rocky 7 have concen-
trated on Imaging, the rover from the lander that will
carry the rover to the Mars surface [20], which limits
the opera ble range of the rover to a smallarea around

Figure 1: T'he Rocky 7 Mars roves protot Ype

the landor. Toenable operation of the rover at dis-
tances far fromthe lande y autonomous localization”
procedur es a1 ¢ nCeessary andl e consider the use of
stereo vision for this problemhere.

A mast system has recently been integrated into
Rocky 7 that allows (amnong other operations) sterco
pairs to be taken from a height of approximately 1.5
HI['t 1 s above the ground, in addition to the sierco
pairs that ar e taken from the navigation ¢ amier as a
few centimeters above the g round. Sec Figure 2. Such
stereo pairs allow the generation of a raugemap of the
iimmediate snrroundings of therobot. The premise
of this work is that we can robustly deterinine the
position of the robot in natural ter rain by comparing,
the range ma p computed at the robot’s local position
with a range map encompassing, the same tern ain for
which we know the frame of refererice.

While previous work has also explored matching,
maps to performlocalization(e. g, [3, 4, G, 17]), pre-
vious work hlas considered either man-made environ-
ments and /o1 used sea reh techniques that required an




Figure 2: Rocky 7 with the mast deployed

initial estimate of the robot’s position and could reach
a locally optimal position estimate that was not glob
ally optimal. A review of position estimation tech
nigues for mobile robots can be found in {18]. The
techmiques that we deseribe here can operate in nat-
ural enviromments using, a three-dimensional map and
arce guaranteed to find the globally optimal solution
with respeet to the matching measure that is used.

T'he balance of this paper explores these technique
in greater detail, Section 2 discusses the process by
which the range maps of the robot’s surroundings are
computed and methods to transform these range maps
into a voxel representation that allows robust and of:
ficient matching. Section 3 discusses our use of Haus
dorfl inatehing techniques [7, 8] to find the relative
position between the maps such that the maxihnum
nuinher of voxels match up to a given crror bound.
Section 4 gives an example where these techniques
have been used to simulate determining, the relative
position of the Rocky 7 Mars rover in Mars-like ter-
rain. Finally, Scction b summarizes this work.

2 Computing range map

We compute range maps from stereo pairs using
passive sterco vision [9]. 1t is assumed that the robot
cameras have been calibrated ofl-line. Rocky 7 uses
a camera model that allows arbitrary afline transfor-
mations of the image planes [21] and that has been
extended to iuclude radial lens distortion [5]. The
hinages are first warped to remove the lens distortion
and the hmages are rectified so that the correspond-
ing scan-lines yield corresponding epipolar lines in
the fimage. Disparitics are measured between the in-
ages for cach pixel by minimizing the sum-of-squared-
difference (SSD) measure of a window around the pixel
over a finite disparity range. Sub pixel disparities are
computed by fitting a parabola to the SSD values at
the triple of disparities centered at the diserete pixel
minimuin. The parabola minimum is taken to be the
sub pixel disparity estimate. Smoothing is performed
over a 3 x 3 window to reduce noise. Incorrect matches
arc filtered out in this process using, both a left-right-
line-of-sight consistency chieck and a process to remove
small patches where the disparities do not agree with
surrounding values. Given the disparities, the coor-
dinates of cach pixel are computed by triangulation.
Details of these techniques can be found in [9, 11].

Once a range map has been computed from the
sterco himagery, we convert it into a voxel-based map
representation. We first rotate the data such that it
has the same relative orientation as the map we e
comparing it to. Here we operate under the assuinmp
tion that the orientation of the robot is known through

sensors other than vision (for example {CHSOT,
accelerometer, and gyrocompass have been incorpo-
rated into Rocky 7). For testing, and in case the ac-

curacy of is lower than desired, we have

a sun
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the sensor
used a siimple teclinique for determining the orienta-
tion of the ground plane, assuming that ground is rel-

atively flat. This techmique simply determines the two
principal components of the range points that are de-
tected in the image and rotates them such that they
ave parallel to the oy planc.

The next step i
dimensional grid covering, the zy-plane at some spec-
ificd scale. We approximate the te

to bin the range points in a two-

Tain as a single-
valued function of the position in the wy-plane (i.c.
z - f(a,y)). We thus take the average of the heights
of the range points that fall into cach of the bins as
the height of the surface at this location. Now, we can
climinate the need to scarch over the possible transla-
tions of the robot in the 2-direction by subtracting a
local average of the terrain height from each cell (i.e.
a high-pass filter),

This step is not strictly necessary,
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Figure 3: Range maps are computed using sterco vision. (a) Left inage of a sterco paiv. (b) Right finage of a stereo pair
(¢) Left image after warping to remove radial lens distortion. (d) Height of pixels detennined using sterco triangulation
(¢) Heights after binning in the oy plane. (f) Surface extracted from the pixel heights,

and it cduces our ability to determine height ch angos
in the position of the robot, but it alsoreduces the
computation time that is required to per form local-
zation. Finally, we perforn smmoothing, on this two
dimensional grid in suclta way that bins that were not
nit by any range pixcl (e.g. ducto sparseness of the
range pixels) a1 e given values, but otherwise (lo not
conti ibute to the simoothing,.

To facilitate: matching using a Hausdorfl ihecasure,
we tr ansform this two-diinensional map into a thn ec-
dimensional occupancy grid, where the z-axis is dis-
ar et ized at the same scale as the x-andy- axes. For
cach colummn in the z-divection, the cell corresponding,
to the height of the surface at this location is said to
be occupied, and the others are unoceupied.

Figure 3 shows several of the intennediate steps in
this process.

3 Matching range maps

Onece  theoccupancymap has beencomputed for
the current position of the robot, we need to find the
best relative position between this mapy and amap
that was computed for a previous position of the robot,
o1 a compositemap that has been made of the robot’s
operating environment {possibly throu ph combining,
maps taken from the robot’s previous locations). We
use an image matching techinique based onthe Haus
dorfl distance [7].

3.1  The Hausdorfl distance

For two sets of points, A and B, the directed Haus
dorftdistance from A to I3 is:

WA, 3) - ax mi -1
(A B) = manin Jla - b




w hise s anynorm. Fhis yvields the maximumn dis
tance of a point in set A from its 1C4a yest point in set
13, For iinage matching, we wish to allow at least a
sl fraction of outliers that do not match well. We
may thus use:

hie (A, D) - !l(((/}\' 1'}1(11’1‘1 [la - U]

This determines the partial Hausdou T distanceamong,
the IC points in A that best. 1 aateh points in 13 (we
thus allow 4] K outliers in the set A). This micasure
is asymmetric, as it does not consider how well eact
of the points in 13 is fit by 4. This allows matching,
10 be performed against a ke ngemap, where the map
generatedat the loc al vobot position is contained as a
subset of this map.

A variation on this mcasttve is to determine the
maximuin number of points in the local map such that
the easure is below a given error threshold:

hx (A, BB) <é

This formulation is often caster to work with, since to
compute thisnumber, w'( mustonlycountthenumhber
of poiutsin Athatmatclhisomepoint Bup to the error,
4. Wethus us(: this formulationin this wink.

3.2 Searching fOr the best match

While previous Hausdor {F matching methods [7, 8,
12, 16] have been applicd to matching two dimensional
imape edpe nmaps, we can apply cssent ially the same
techniques to matching, three-dimensional image sur -
face mnaps.

11 this method, the space of the possible relative
positions between the maps is discretized. Fach oc-
cupicd cell in the maps is 1 epresented by the single
point at the center of the cel 1 Since we searcl ) over
only translation in the @ and y-directions, an obvious
discr eti zation exists such that eachi discerete position
aligns the centers of various g id cells between the two
maps.  This discretizat ion is guaranteed to find the
optimal solution if we use the 1o Le, norm in our
matching micasu re with an erroy, 6, that is anintegral
number of pixels.

We could now examine cach possible relative po
sition hetween the whaps in this diseretization to de-
termine which is optimal, Hut this nicthod would be
computationally expensive. We instead use a multi-
resolution sca reh technique that has proven useful in
object recognition and extraction Of geometric primi-
tives [2, 8,12, 13, 16]. The basic idea is to consider the
space of possible relative positions as a sct of rectilin-
car cells, cach of which covers many positions. Fach

cellis testedtodeger mine whether it co11 1@ contain a
position that satisfies some matehing, eriterion, If it is
deter mined that the cell caumot contain sucl 1 a posi-
tion, then it is pruned. Otherwise, the cell is divided
into subeells and the process is repeated recursively.
Whenacell is reactied that contains only asingle po

sition in the diser etization, this position is tested ex-
plicitly. Note that, since we are secking, the single best
relative position between the maps, om matching ¢ -
terion is adaptive. The criterion becomes stricter as
we find positions of increasing, quality in the scarch,

The key to this method of scan chiug the par ameter
spaceis a quickmethod to conser vati vely test whether
a cell can contain a position satisfying, the matching,
criter ion. The te st can fail to rule out a cell that does
not contain such a position, but it should never rule
out a cell that does cont ain one. To accomplish this,
we examine the distance transfor i [1, 14, 15] of the
oc cupa ney map forthe i own it ame of reference.

First, the occu paucy map is dilated by a boxcen-
teredat t he originwith 28 -1 1 pixels (11 cach edge.
This operation ensm es that each cell within é in cach
direction of arioccupied cell in the origiv 1almap is
also occupied. Next, adistance  transform of  this miap
is computed. Thisdistance t, 1 ansform measures the
distance from cacti cell in the map to the closest ocen-
pied cell that lies in the same horizontal plane (3in ce
we scarch only in o and y). N ow, a probe into this
dista nce transform will yield O if thiecellis withind of
an occupicd cell inthe undilated map, and other wise
vields the distance to the closest occupiced cell in the
dilated map.

Consider  the set of distances that are obtained by
probing the distance transform atthe position of cach
of the occupied cells inourlocal waap at the current
10bot position according to some relative position be-
t ween the maa ps. If this set has K zaero values,  then
at least A cells in the local map are within § of oc-
cupied cells in the previous map. Other wise, the K th
larpest value yields a bound on the closest distance to
a position thatcould yield K zero values [7].

We carn use these ideas to formulate an eflicient
test for a cell in the paramcter space in the follow-
ing, mann 1 Let u's say that the best position that
hiag been found so far yields I3 cells in the Jocal map
that match the global map up to the allowed e rror (i.e.
I3 p robes into the distance transform for this position
yield zero). To t est a cell, we fir st determine the dis
crete position ¢ losest t o the conter of the parameter
space coll. We then deter mine the distance between
this position and the fmr thest corner of the cell. De-
note this di sta nce De. We now probe the dist. ance




Figure 4: A test case in the JPL Mars yard for the localization techniques. The relative position between the first and
sceo nd ste reo pain is appr oxinately 2,() wceters forward. The relative position between the seccond and thirdst 010 pair s

appr oximately 2.5 maicters forward. Somerocks have been labeled withletterstoassistthe readerinmaking correspondences.
(a) LefUimage of the first sterco pair. (b) Left image Of the sccond stereo pair {(¢) 1.eft image of the thin d sterco pair.

transform at the locations of the local map with re-
speet to thea elative position at the center of the cell,
If these probes yield less th an 13 values that are not
greater than e, we canprunce this cell of the param-
cter space, since it cannot yield a position at which I3
cellsin the current map matchoccupied calls inthe
previous map up Lo an error of 4.

Yor any cell that cannot be pruned, we divide the
cell in both @ and y, and repeat the process recu sively
on the subceclls. Whien we reaactt a cell that contains
a single position in the dise re tived pose space, we test
this position explicitly. If the position yields more
than 3 matchies, then we store this position as the hest
found so far , increase 13 to the new value, and continue
the sear ¢h. This continues until all of the cells have
been ex hausted, at which point we are guarante ed to
havefoundthe bestrelative position between « he maps
according to variant of the LlausdorTincasure weuse .

4 Resu s

We have tested these techniques with images taken
inthe JPL Mill s yardd! using cameras mou nted on a
tripod at approximately the Rocky 7 mast height. Fig-
ure 4 shows an example test ca se that simulates ap
proximate forwar d motion of the yover. The sccond
ster ¢o pair in this test case was taken approxin nately
2.0 meters forward from the fir st sterco pair. The third
sterco pahr was taken approximately an additional 2.5
nacters forward from the second sterco pair. Note, in

! Scehttp://1obotics . jpl.nasa.gov/tasks/scirover /marsyerd

particular, the difliculty of perforining localization of
the third sterco pair in terins of the second, since few
significant la nd marks are present. in bothimages.

Our localization techniques have yiclded accar ate
results inthese tests, In this examiple, the estimated
position ¢h e nage n the first case is 2.037 meters for-
ward and the estimated position change in the sceond
case 2.017meter s forward, which are close to the mea
sured positions of approximately 2,() meters for ward
and 2.0 micters forward, respectively.

While the cm rent implementation of these tech
niques runs on a workstation, they :11(C presently be-
inp, por ted to the Rocky 7 ha rdware for full testing,.
The workstation implementation requires ouly afe w
s, couas toperformaltof thecomputat o, including
warping, the iimages, computing, the sterco range map,
determining the ground pla ne, building the occupancy
map, comput ing, the distance tyansfor i of the map
in the known fi ame of reference, and performing, the
scarch for the best relat ive position between the maps.

5  Surmnary

This paper has considered self-localization tech-
niques for a mobile robot in natural terrain through
the use of ster co vision. The 1 obot’s position is deter-
mined by comparing a terrain map computed at the
robot’s cur rent location to a terrain nap in a known
fraine of vefererice. We first generate a denser ange
map from ster co hnagery and then process this data
to ereate an occupancy map of the terrain surface. The




best, relative position between this occupancy map and
the oceny vaney ap in the know 1 fi ame of referer iee
is determined with respect to a Hausdorfl mcasure,
which yields robustness to noise, error, scene clutter,
and missing data. The optimal position is found usiug;
a seand 1 strategy that recursively dividos and prunes
the space of possible yelative positions. An iinpor tant
featureof this scarch strategy is that it can determine
the optimal position without requiting, aninitial esti -
mate of the position of the robot.
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