Abstract

S. A. Nishan
60th Anniversary Institute of Technology, Hanoi, V.O. 6, Hanoi, Vietnam
Center for Spatial Information Technology
The Propulsion Laboratory, NIST 800-22
Center for Space Weather Forecasting, Technology

Abstract

Simulating the flow of terrestrial water with the help of a macroscopic model is a challenging task. The flow of water is governed by a set of partial differential equations that describe the conservation of mass and momentum. The flow is influenced by various factors such as topography, soil properties, and external forces like gravity. The equations are solved numerically using finite difference or finite element methods. The accuracy of the simulation depends on the choice of numerical scheme and the spatial and temporal discretization. In recent years, there has been a growing interest in developing more realistic and computationally efficient models that can simulate the flow of water in complex environments.

More details on the simulation of C-Hiend Backscatter Flow

Saline Ice Covered With Frost Flow