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ABSTRACT

This paper documents the application of genetic algorithins (GAs) to the problem of robust flight path
determination for Mars precision landing. The robust flight path problem is defined here as the determination of
the fight path which delivers alow-lift open-]oop controlled vehicle to its desired final landing location while
minimizing the cffcct of perturbations duc to uncertainty in the atmospheric model and entry conditions. The
genctic algorithin was capable of finding solutions which reduced the landing ersor from 111k RMS radial

(open-]oop optimal) to 43 km RMS radial (optimized with respeet to perturbations) using 200 hours of computation

011 an Ultra-SPARC workstation. Further reduction inthe landing ¢rror iS possible by going, to closed-loop control

which canutilize the GA optimized paths as nominal trajector ics for line.ari~ation.

1. INTRODUCTION

In this study, GAs arc applicd to optimizing anonlincat sinulation of descent dynamics of a low-lift vehicle during
planctary (i.€., Mars) cntry. The basic idea is to find aflight path which comes closcsi te a desired landing,
position, yet is robust to expected perturbations in the trajectory. Such arobust flight path is found by minimizing
aquad atic cosi function represent ing the landing miss distance, over several realistically perturbed trajectorics.
The most important perturbations are the error in the initial entry conditions, and uncertaintics in the atmospheric
density. Inorder 10 vary the flight path, the initial flight path angle is chosen as a free parameter, and the vehicle
angle-of-allack iS controlled as a function Of time. The comtrol Of the angle-of-attack is accomplished using the
center-of-mass (COM) relocation concept put forth by 1). Boussalis of JP1.]1). The COM relocation concept is
important becausc it allows considerable control authority during the almo.spheric entry phase to minimize landing
criors, yet itis applicable to low-lift Mars Pathfinder type acroshells (i, C., with lifi-to-drag ratio 1/ = ().3). This
avoids the need for designing higher 1ift (and much more expensive) vehicles. For simplicity the entry dynamics
have been restricted to planar motion, and the landing crror is defined at 10 km dtitude where the parachute opens
rather than at ground level. This paper is an abridged version of alonger report[11].

2, CONTRO1, ACTUATION

The control actuation scheme Will be based 011 center-of-inass (COM) relocation, as outlined in Boussalis [1]. 1

this approach, apioof-mass iS moved inside the vehicle SO that the COM iSielocated asa known function of time.

The COM relocation acts to shift the dynamic equilibrium of the vehicle such that the angle-of-a(tack is changed,

In particular, the cquilibrium angle-of-atiack value varies as an explicit known function of the COM relocation.

Hence, even though onc iSmoving a proof-mass, the control can be thought of as commanding adesired angle-of-
attack. Since the angle-of-altack acts to change the amount of lift or drag on the vehicle, it provides ameans to
- == propagation of == #=== path.
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Figure 2 Center-of-nuiss relocation scheme to control lift vector

3. ROBUST FLIGHT PATH PLANNING MODEI ,

For the purpose.s of this study, the “landing error “ is clef’incd as the RMS erior in the desired terminal ground track
location over a collection of 5 simulated paths, i.c.,

N Y 2
J= \ﬁl (Sxd‘Sxi)z*(Syd“ S_yi) (1)

ABCDE
where § y7 .S yq (specified later) arc the desired ground track at the terminal time, and ,$,; , Sy; arc the

actual ground track at the terminal time.

For the purpose of evaluating the RMS error J, the 5 simulations (A, B, C, D, and E) arc performed pcr control
profile to determing the effect of perturbations 011 the flight path. Paramcter perturbations associated with A, B, C,
D and ¥ arc shown in T’ able 1 and Figure 3. These perturbations reflect the major sources of error in the descent
phase which ar¢ duc to uncertainty in the at mospheric parameter beta, and uncertainty in delivery to the specified
initial flight path angle gamma(0) (i.e., the entry corridor).

Three scenarios are addressed for optimization of the flight path:

Scenario 1: Two Point Boundary Value Problem, Constant Control

¥ind the cont1ol (i .c., the ent ry condition gamma0, and fixed COM ofiset d-) that under perfect knowledge and no
disturbances, places the vehicle at the desired final position (in terms of its desired ground track) at the terminal
time (i.c., the time instant at which the atitude is 10 km, and the parachute deploys). Apply this control to the 5
perturbed trajectories to calculate RMSS landing crror J

-Scenario 2: Robust Flight Path Determ ination, Constant Control
Find the control (i.€., the entry condition gamma0, and fixed COM offset dv) that optimizes the RMS landing error
J at the terminal time over the 5 perturbed trajectorics.
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‘1’able 1 Perturbed Parameters for Simulation

Scenario 3: Robust Flight Pat h Determination, 5th Order Control

Find the contiol i.e., the cm-y condition gamma0. and the COM offset dz as a Sth order Chebehev polynomial
function of time dz=u(t): Trunfa0+ al *cl ()4 . ..a5*c5(1)]), that optimizes the RMS landing error J at the terminal
time over the 5 perturbed trajectorics. Acontrol contraint on dz. to + /-.08 m is enforced by the operator Truncf],
which truncates the Chebychev polynomial when it exceeds these thresholds.

Note that by minimizing the RMS landing error J , oneis not only dclivering the vehicle to its desired final

position under nominal conditions, but is also minimizing the effect of perturbations on the actua flight path, This
is the essence of the robust Nlight path planning problem.
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Figure 3 Night path angle (gamma0) and atmospheric (beta) perturbations

The kinematics and dynamics of the vehicle during descent arc described by the a system of differential equation
which can bc found in [1]] 11 ].

4. GENETIC Al.GORITHM 1M PLLEM EN TATION

The Genetic Algorithm Toolbox {7] is used to selve the three scenarios posed in the previous section, For this
purpose, the chromosomes arc setup as shown in Table 2 and the initial conditions arc given in ‘1'able 4. The

desired final landing location is specified as, S, ;= 556.1km and Syd = 976.65 km.

B
Table 2 Chromosome Coding

Chromosome Range value Precision
gamma0 (degrec) -9 to-17 1 Shit

dz (m) -0.08 t0 0.08 1Shit
a,i=0,..,5 _ -0.08 t0 0.08 15 bits

‘I'able 3 Summary of Computational Requirements

Scenario # Individuals per # Generations Machine Memory Speed Hours
population __ — RAM

J 10 20 Pentium 16Mcg  ~ 133Mhz 172

1l 20 27 Ultra SPARC 132 Mceg 143 Mhz 90

10 20 60 Ulira SPARC 132Mcg 143 Mhz 200
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. Table 4 initial States (al scenarios)’

Altitude 125.0 kilometer
Longitude theta 0.0 degrec
Latitude phi -10.0 degree
Velocity 7.5 kilometer/scc
Flight path angle, gamma0 Evolved degree
Azimuth (heading) angle, psi 60.0 degree
Pitchrate, 0.0 degree/sec
Pitch gamma0- alpha0 degree
alpha0 —C, 0, * dz(0) 1C, degree

Sx Ground track 0.0 kilometer
Sy Ground track 0.0 kilometer

5. ANA] .YSIS OF THE RESULTS

The results of al three scenarios are tabulated in Table 5.

Table S Summary of Results

Seeraio T
Scenario | 1

Scenario 111

gamma0
(degree)

Evolved -12.54
Evolved -13.58

Evolved -12.5080

d»
cemy

Evolved -
0.037]3
Evolved -
0.0610
Chebychev
a0:0.0145
al = 0.04096
a2: -0.0690
a3 =0.0260
ad=0.0530
a5 =-0.0785

Landing Error - RMS Radial
_(km .

111.68

75.825

43.3855

For comparison purposes, the landing error plots for Scenarios 1,11 and 11 | arc organized from left to right in
Figure 4. Ascxpected the RMS landing errors decreasc from left to right with increasing control authority.
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Figure 4 Summary of landing errors for all scenarios
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The improvement in going from Scenario 1(111km)to Scenario 11 (76 k) isto be expected Since Scenario | was
not optimized with respect to the perturbed trajcctorics while Scenario 11 was. The improvement in going from




Scenario 1 (76 km) to Scenario 111 (43 km) is also expected since Scenario 111is a gencralization of Scenario 11in
terms Of progressing from a zeroth order polynomial to a 5th order polynomial cent rol representat ion.
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Figure 5 Summary of altitude paths for all scenarios

Itisinstructive to compare the altitude plots of the three Scenarios in Figure 5. It is scen in Scenario 11 | how the
GA successfully reduces landing error by making the perturbed flight paths coalcsce.

The flight path determined by GA for the 43 km (Scenario 111) result is very interesting and suggests a ncw
“bounce and plop” strategy for precision landing. in order to study this strategy in more detail, the atitude and
control signal dz= u(t) for Scenario 111 are plotted on the same x-axis (i.c., versus time) in Figure 6. The scale for
the control signal has been converted to mm to allow sharing of the same y-axis. It is seen that the “bounce” is
induced by lowering the COM (i.c., dz= u(1)) to its maximum negative location of v=- 08 m (i. €, maximum
positive lift), at approximately 10 seconds. Note that the bounce dots not take effect until the atmosphere is
sufficiently dense at an atitude of 40 km (occurring at approximatcly 75 seconds), to create asignificant lift effect.
The “plop” isinduced by raising the COM locationto its maximum positive location Of U= +.08 M (i.€., maximum
negative lift), at approximately 135 seconds. Again, the negative lift is seen to take efiect when the atmosphere
becomes sufliciently dense at an altitude of 40 km (occurring at approximately 200 seconds). This overall approach
forces the perturbed trajectorics to coalesce, which effectively reduces landing error.
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Figure 6 Superposition of vehicle altitude and control signal dz= u(t)
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6. CONCL 1ISIONS

A genetic algorithm was applied to the problem of robust flight path determination for Mars precision landing The
notion of a robust flight path appears to bc new, although it is a natural statement of what is desired in many opecn-
loop control scenarios. In this study, the objective of the robust flight path problem was to determine the flight path
which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the
effect of certain redlistic perturbations.

The results of the study can be summarized as follows. When the control (i.c., the COM location) is chosen
constant with time and the flight path is optimized with respect to the nominal trajectory, the resulting landing
error is 111 km RMS radial. When the control is chosen constant with time and the flight path is optimized over
perturbed trajectorics, the landing error is reduced to 76 km RMS radial. When the control is allowed to vary as a
fifth order polynomial and the flight path is optimized over perturbed trajectorics, the landing error is 43km. The
trajectory dctermined by GA for the 43 km result is very interesting and suggests a ncw “bounce and plop” strategy
for landing.

The major computational bottleneck for thisstudy was in evaluating the objective function (or equivalently, the
“fitness”) for each individual in the population, since it required integrating the kinematics and dynamics of
motion, For implementation purposes, it was nccessary to trim down the GA implementation t0 a reduced
population of 20 individuals and no more than 60 generations, requiring approximately, 20%10*60/60- 200 hours
of computat ion on an Ultra SPARC computer. Methods to reduce the computation t imc would be greatly beneficial.

Results indicate that even though genetic algorithms may require long processing times, they arc fairly easy to
program, and can provided useful solutions to complex optimization problems, such as those associated with
problems of robust flight path planning, and spacecraft autonomy.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. D. Boussalis of JPl ,'s Automation and Control scction for technical advice and
support, The research described in this document was carried out by the Jet Propulsion 1.aboratory, California
Institute Of Technology under a contract with the National Acronautics and Space Administration, The research
was performed for the Microspacecraft Systems Technology Office of the JP1. Technology and Applications
Programs Directorate by personnel from the JP1. Engineering and Science Directorate, and” it was sponsored by the
Spacecraft Systems Division of the NASA Office of Space Access and Technology.

REFERENCES

131 D. Boussalis, Investigalion of the Longitudinal Motion of Low-Lifi Vehicles, JPL Internal Document,
Enginccring Memorandum EM 3456-96-002, May 7, 1996

{2} J. Korza, D.E. Goldberg, D.B. Fogel and R.1.. Riolo (Kds.), Genetic Programming 1996, Procecdings of the First
Annua Conference, Stanford University, July 28-31, 1996

{31 J, Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, 1975.
[4] D. Farless, “Mars Precision 1anding Study Team Summary Report for ¥Y95,” JPL. Internal Document,
Interoffice Memorandum I0M 312/96.6-002, January 23, 1996.

[5] M. Srinivas and 1,.M. Patnaik, Genetic Algorithms: A Survey, 1HEE Computer Magazine, Vol. 27, No. 6, pp.
17-27, Junc1994.

[6]J. | .R Filho, P.C. Trcleaven and C. Alippi, Genetic-Algorithm Programming Environments, IEEE Computer
Magazine, Vol. 27, No. 6, pp. 28-45, June 1994

[7] A, Chipperfield, P. Fleming, H. Pohlhcim, C. Fonseca, Genetic A lgorithm Toolbox, User s Guide, \Version 1.2,
Dept. Automatic Control and Systems Engineering, University of Shefficld.

[8] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley
Publishing Company, January 1989.

[9] J. E. Baker, Reducing bias and inefficiency in the selection algorithm, Proc. ICGA 2, pp. 14-21, 1987.

| 10] 7. Michalewicz, Genetic Algorithms+ Data Structures= Evolution Programs. Al Series. Springer-Vcrlag,
Ncw York, 1994.

[11] D.S. Bayard and H. Kohen, Genetic Algorithms for Spacecraft Au tonomy: Flight Path Optimization for Mars
Precision Landing. JP1. Interna Document JPI, D-13900, Volume 6, October 11, 1996.




