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Abstract:  The problem of coordination and control of nultiple micro-
spacecraft (MS) nmoving in formation is considered. Here, each M5 is nodel |ed
by a rigid body with fixed center of mamss. First, various schenmes for
gencratling the desired formation patterns are discussed. Then, explicit
control laws for formation keeping and relative attitude alignnment based on
near - est nei ghbor-tracking are derived. The necessary data which nust be
conmuni cated between themsto achi eve cffective control are examined. The
time-domain behavior of the feedback-controlled M5 formaticon for typical |ow
carth orbits is studied both analytically and via conputer simulation. The
paper concludes with a discussion of the inplement.ation of the derived
control laws, and the integration of the M5 formation coordination and

control system with a proposed inter--spacecraft communicate on/conputing
net wor k.

1. | NTRODUCTI ON

Recently, the use of multiple microspacecraft for future space exploration
and commercial space-based comunicate on systens has been proposed. In
particular, the usc of nultiple spacecraft for a structural link-free
interferometer in a | ow earth orbit (LEO) was first suggested by Stachnik
and his coworkers in 1984 [1], [2]. |Its feasibility was further studied by
Johnson and Neck [31, and DeCou[4l.1n these works, enphasis was placed on
seeking low earth orbits without thrusting or with a mini num anpunt of
control effort. Mdreover, only a small number of spacecraft was considered.
The use of a large nunber of spacecraft for a space-based ¢l obal

communi cation systemin LEO such as the Iridi um’ ™

L.LEO Mobil e Communication
System has been proposed reccently [5]. These proposals call for a fleect of

spacecrafl nmoving in formation in which the relative position and attitude




petween the spacecraft are closely controlled. There are nmany possi bl e ways

for generating and maintaining @ given formation. To ensure the robustness
of formation wth respect to external perturbations and spacecraft

mal functions, it is essential to maintain communication link and to nonitor
the relative position and velocity between the spacecraft. Along a different
vein, the interaction dynam cs of autononous free-flying mobile robots
[61, [71, and also various simple navigation strategies for such robots
moving in formation [81, [91 have been studied recently. The simplicity of
the navigation strategies was notivated from those used by pilots in
precision formation flying of aircraft, arid also by marching bands in an
open field. They are extremely sinple and surprisingly effective. In
precision flying of aircraft in formation, one or nore nenbers of the fleet
are designated as |eaders, the renaining nenbers track their nearest
nei ghbors according to given rules. |In a marching band, there arc also
designated | eaders for the band who provide the basic reference paths. The
remai ni ng nmenbers of the band navigate by tracking certain nenbers of the
band in their neighborhood (eg. the nearest and the farthest menbers).

Here, we consider sonme of the basic problens associated with the
coordination and control of multiple microspacecraft moving in formation,
Attention is focused on the derivation of sinple, robust, inplenentable
control laws for formation keeping and relative attitude alignment. Sone of
t he abovenentioned concepts and approaches in deriving navigation strategies
for multiple nobile robots will be utilized in the derivation of control
laws for multiple microspacecraft noving in formation. Various problenms
associated with initial formation acquisition involving sequential |aunching
of spacecraft into appropriate orbits will not be considered here.

This paper begins with the devel opment of suitable nmathematical nodels for
both rotational and translational notions of nicro-spacecraft. Various
schemes for generating the desired formation patterns are discussed. This is
followed by the derivation of control laws for- formation keeping and
relative attitude alignnment. The necessary data which nmust be communi cat ed
between the M5 to achi eve effective control arc exam ned. The tine-donain
behavior of the feedback-controlled MS formation for typical LEO's is
studi ed both analytically and via conmputer sinulation. The paper concl udes
wi th a discussion of the inplenmentation of the derived control |aws, and the
integration of the MS formation coordination and control systemwth a

proposed i nter-spacecraft communication/computi ng network.



2. MATHEMATICAL MODEL

A microspacecraft (abbreviated by “MS hereafter) is characterized by its
smal | nmass and volume (less than 10 kg and 0.1 nmirespectively). It is
essentially rigid. Hence it can be modelled by a rigid body with fixed
center of mass over a sufficiently short control tine interval. In what
follows, we shall consider mathenatical nodel s for the rotational and
relative translational nmotions separately.

10 describe the motion of a M5 fleet in formation, we regard each M5 as a
point mass noving in free space wunder the influence of a gravitational
field. W assune that the fleet consists of N microspacecraft. W shall use
the following coordinate systens for deriving the equations of notion for
the M5 in the three-dinensional Euclidean space R: (i) an inertial
coordi nate system ?0 Wi th orthonormal basis 750 = {ex, ey,ez); and (ii) a set
of noving coordi nate systens 9i, i =1,..., N. The origin o, and the axes of
S}i are at the center of mass and al ong the principal axes of inertia of the
i-th MS respectively.

2.1 Rotational Mdtion: Let 1&1 = {eix,e‘y
associated W th the noving coordinate system (abbreviated by "MCS"

e } denote an orthonormal basis
ré

hereafter) f?i, and [w]1 denote the representation of the vector wwth

respect to basis B Then the basis vectors in flﬁ and fBi are related by a

!
lincar transformation C, defined by

e =Ce, ¢ = Ce, € = Ce

1x 17X iy 1Y 1z 12 e L (1)

whose representation w, th respect to basis 250 is given by the direction
cosine matrix:

2 ATn A0T "
C(qa) 59y, qlqa)l ! Z‘qiqf quQ(qx)‘
R A 0 -q13 q:z <A q”
Q(qi) = 93 0 hqn P9 9, | (2)
‘qxz qn 0 95

wher e q = [c}f,qM]T denotes the un t quaternion with qU bei ng the Eul er
symetric parameters [10] defined by

q”= gusin(gbi/z), i = 1,2,3; q, cos(¢:l/2). (3)

wher e ¢>1 is the principal angle anl the C J‘s are the conponents of the
i
principal vector- of rotation £1 defined by

(4)

L =g e +Cc e + e e =¢ e+ e +¢€,¢€
! 11X 12y 132 111X 12 1y 13717




The Euler synmmetric paraneter-s qU sat sfy the constraint:

q :11 i:' ln"'rNr (5)
J=1

implying t hat q, [ies on the unit sphere in R.

The time derivative of q, is related to the angular velocity W W e

woe .t L of the MCS & relative to the inertial coordinate system ¥
1y 1y 12712 1

by

0

dg/dt = (@ w - x q.)/2,
1 14 1 } (6)

dq,,/dt = ~(o - &1)/2,

where w x v and wv denotes respect.ively the cross and scal ar products of
vectors w and v in R Equation (6) has the following matrix representation:

dql/dt = Q([wi]l)q‘, i=1,...,N, (6" )
— T -
where [will = [wlx,wlv,wiz] and 7
Qllw 1) lw,]
allo)) o
' '[wl 1]1 0

where Q is defined in (2). It follows from (5) and the skewsymetry of
Q([wx]x) that system (6 ) is Euclidean-norm invariant and llql(t)ll2 =
qi(t)qu(t) =1 for all t.

Let dvdt and dsdt, denote the tine derivative operators with respect to
?O and the MCS S‘i respectively; and fl)l the tine derivative operator d/dt0 in

the MCS ?i defined by
Dw b dwsdt + W X W weR”, (8)

The angul ar velocities of the M5 or the MCS ?i relative to ¥ are given by
o

the following Euler’'s equations relating the time derivative of the angular’

m)mentumliw1 with respect to S‘O to tile control torque T,

1)1(11w1) = d(Ilwi)/dtl + w X (I‘wi)
= I dw/dt + w x (I w ) =1 , i=1,...,N, (9)
i i i i i cl
wher e Il is the tensor of inertia associated with the i-th M The time

derivative of © may al so be taken with respect. to 90. Fquation (9) has the

foll owi ng representation W th respect to basis 7.4!:

w ] w w kA /1
d ix 11 iy iz cix ix
- w = - ] w w 4 v /1 , i=1,...,N, (9')
dt iy 12 ix 1z cly iy
w 1 w w T /1
iz i3 ix ty ciz iz




Ly “(0 -1, /1 T = -1 /1 1= =1 WL, (10)

where | | x’ |ly and | ., are the princi pal moments of inertia of the i-th M.
Thus the equations for the rotational motion of the i-th MS are given by
(6), (7), (9), and (10).

2.2 Translational Mtion: In formation keeping, We are interested in the
relative notion between any pair of M5. The equation of notion for the
center of mass for the i-th M5 relative to any MCS & is given by

dp,/dl’ 4w x p = f 4+ f (11)

wher e P, is the linear nonentum of the i-th M5 defined by

A
p =

- + + ' )
. Mf }{ w X P, dpi/dt i (12)

wher e M1 is the mass of the M5, w and v, are the angul ar vel ocity of
rotation and the velocity of the origin of %' relative to the inertial
coordinate system §_ respectively; the vector P, is the position of the M5
relative to ¥’; fc1 and 1‘gl are the control and gravitational forces
respectively; and d/tit’ is taken with respect to ¥’ .

Now, consider a pair of Ms |label |led by subscripts i and j. lLet the noving
coordi nate systcm %’ be ¥ as defined earlier (See Fig.1). lLet the vector
Py denote the position of the j-th M5 relative to ?‘. Applying (11) and
(1?.) to the i-th and j-th I\/vaithip:O, w=w and v = v and

| 0 1
i dentifying s)with pjl, we obtain
Ao .
fD’(pl)'—-de/dtl +wl><p1 u (fci+ fgl), (13a)
Pi 8 M(v, + v, x Pi +dpi/dti) =Mv; (13b)
Q. i -
Di(pj) = dpj/dti + 0 X P, = (fcj+ fq}, (14a)
P, = MJ(v1 *owgoxopY dp“/dt!). (14b)
Equations (13a) and (13b) inply
Div)Lavsdt v X Vi = (f +f M. (15)
i i i i i cl gl i
Conbi ni ng (14a) and (14b) gives
@ - £ /M,
fDx(pJ 1) K :Dl(vi) (fcj1 QJ) MJ (16)

whi ch, in view of (15), reduces to




2 1)
Di(p”) = (fcj+ fg) )/MJ- (r_+ fgl)/Ml‘ (16' )

wher e i)f denotes the time derivative operator dz/dtj in the MCS SL1 given by

2 A 2 2 . .
T)i(p“) = d p”/dti + (dwl/dtl) X Py + 2w X dp”/dt1 iox (wlx pjl)

(17)
The vectors Py, can be expressed in terns of the basis vectors (ex,ey,c,z)

or (e‘ ,eiy,elz} associated with the inertial coordinate system ¥ or the
X

the MCS S‘l respectively, i.e.

¢ + = ¢ + R
pji PJlXclx leyciy K pjlzeiz lech PJiYeY pjlzez (18)

The vector conponents corresponding to coordinate systens ?0 and S‘1 are

related by
leX pjlx
Piy | © Clq,) Py | (19)
pjiz psz

wher e C(qi) is the direction cosine matrix given by (2).

3. FORVATI ON KEEPING

The novenent of a fleet of M5 in formation can be achieved in many ways.
Here, we shall consider the sinplest approach based on nearest neighbor
t racking [8]. In  what foll ows, vari ous schenes for generating
the desired formation patterns will be discussed first. Then, control |aws
for- formation keeping for particular types of desired formation patterns
will be devel oped.

3.1 Formation Patterns: Here, given a fleet of N mcrospacecraft with N =
2, we assign a proper subset of the fleet as group leaders or guardi ans
whose notions will serve as reference motions f or the remaining Ms. W
consi der a few possible schemes for generating a formation.

(1) The M5 fleet is partitioned into groups 15;’ : = 1. .M. Each group
has a | eader whose motion serves as a reference motion for the remaining M5
in that group. Let the first nember in group §’m be the group |eader whose
motion is denoted by R = (r':(t) € R: t €1}, where IT=lO,T]isagiven
time interval. Let the desired motion for the second M5 in ¥ be specified
by

(1) = rl(L) + ni), teal, (20

wher e h';(t) ¢ R is a specified nonzero deviation vector defined for all t «

IT. The second M5 tries to track the notion of its |eader such that the norm



T Ayt e

of the tracking error

m 4\ m m
E (L)= d (1) - r (1) (21)

is within a specified bound for allt EE'T. Simlarly, the desired notion
for the i-th MSin that group is given by

d"(1) = r7_ (1) + BT, (22)

The i-th M5 tries to track the (i-1 )-th M5 such that the norm of the
tracking error

E"(t) 8 d"(e) - Pt (23)

is within a specified bound. Assuming zero tracking error for all M, then

i
m,,y A m m _oom ~o.m
af(t) = a7 (1) + nT(t) = ri() +kzlhk(t). (24)
Thus, for any fixed time t e TT, the point set
K
P (1) =Ari(),rl(t) + hO(), .. L) +k_zzh:(t)} (25)

defines a desired formation pattern at time t for the group ¥_ wher e K., is
the nunber of Msin § " Figure 2a shows a group of MS noving al ong the sane
circular orbit led by a group leader-. Note that the desired formation

patternat any time t iS completely defined by the motion Of the | eader and
the set. of all deviation vectors (hT(t), io=2, . . .,Km). In more conpl ex

situations, the deviation vector h':(t) for the i-th M5 nay depend on the
positions and/or velocities of its neighbors. This |eads to nore conplex M
fleet dynamics. |t may be of interest to determine the asynptotic behavior
of the formation pattern as t-» w.

(ii) In addition to partitioning the fleet into groups as described in
(i), the fleet may al so assign one or nore fleetleaderswhose NOtions serve
as reference notions for the groupleaders in a simlar way as for a group.
A fleet |leader may be a group | eader or a member of the fleet who does not
belong to any group. Figure 2b shows a fleet of MS consisting of threc
groups. The middl e group leader serves also as the fleet |eader. The notions
of the fleet Ileaders and group |eaders define a formation pattern
t hensel ves.

(iii) In general situations, more than one MS in the fleet may be chosen
as |leaders or guardians for the M5 flect. Their notions serve as a “skel eton
pattern” for the fleet. The desired notion for the remaining M5 nay be
determined by all the M5 in their specified neighborhood. For example, for



the i-th MS, its neighbors may be either specified, or taken as the set of
all the MS which are within c-distance fromthe i-th M5. In the latter case,
the nei ghbors corresponding to any MS are not specified apriori,and they
may vary with tine.

Let ffl(t) c {I,..., N}/{i} denote the index set consisting of the |abels of
all the neighbors of the i-th M5 whose position at time t is rx(t)’
Let Nl(t) denote the point set {rJ(t): | « Sl(t)) specifying the
positions of all the neighbors of i-th MS. Let p (1) L PO - (),
Suppose that {p, (t),jefli(t), k #j} is linearly independent, where Kk is
any elenent in 51(t). Then the convex hull of /Vl(t) (denoted by Co(JVi (O
is a sinplex. W nmay set the desired motion di(t) for the i-th M5 as the
barycenter of Co{/Vl(t)}, i.e.

1
N rj(t), (26)
1 J € .9l (L)
wher e Ni is the nunber of elenents in 3‘(t).

d (t) = -

Figure 2c shows a fleet of ten M5 noving in formation. Here, the first M5
is the fleet |eader, and the necighboring M5 corresponding to any M are
specified apriori. In particular, the M5 labelled 3,5,7, and 9 are taken as
neighbors for the sixth M5 whose desired position at time t is taken to be
t he barycenter of the sinplex formed by these four neighbors. I-"or the fifth
M5, we assign the second, sixth, and eighth M5 as its neighbors. Here, it is
desirable to use the barycenter associ ated with only the second and ei ghth
M5 as the desired position for the fifth M.

The choice of the barycenter of Co{h'i (t)} as all(t) is suitable for M
fleets noving in formation along straightline spatial pat hs. It is
unsuitable for M5 fleets nmoving in formation along curved spatial paths,
since the barycenter of any pair of M5 lies along the chord joining the
centers of mass of the M5. In this case, wc make use of (22) for specifying
dl(t).

32Control Laws: In what follows, we shall derive control laws for the
cases where di(t) is given by (26) or (22).

Case 1: Let the desired notion for the i-th MS correspond to the
barycenter of the sinplex Co(Nl(t)) defined by (26). The tracking err-or for
the i-th M5 is defined by E (t) = d‘(t) - rl(t) which, in view of (26), can
be witten as

E (L) = Tir ) r (L) - (0

1§ € Hi(t)




- ,;_ Z (r (L) - ri(t)) = ';j F

: Py, (1) (2:)
1y €9 ()’ RN

Maki ng use of (16'), we obtain the following differential equation for E

2., A . .. .
D,(Ll) = E1 + oL X E1 4 2‘.wi x h’ o X (Lo1 % hl)
1
= L (£ M~1T /M +u ) -u , (28)
1
Ni J;‘?i(t) 9) J gt ! c) c
. . A2 2
wherenw =1 /M, wédw/dtzdw/dt, EédE/dt, and E = d°E /dt .
c) ¢y Yy i 1 1 1 o 1 i i f 1 1

To derive a control law for the i-th M5, we consider the follow ng
.. .. . J . 6
positive definite function of (E:’En) defined on R:

= . E - E)/2, K > 0.
v11 (KllEl Li ! I‘l I‘l) < 11 (29)

The time rate-of-change of V“ along any trajectory of (28) is given by

" 1 _ _ "
av  /dt = E ¢ { z (£ M- T M 4 ) - 20 xE

Na ) E 51(t) 9)
-1 . .
~Il (—w’ X (Ilwl) 4 ’Lc‘) X E‘—- w X (wlx Ri) 4 K“L1 ucx}
=F{;I ) (f M- /M +u )
’ tg‘y ) o 0 ettt e
- I - (v E “)E - . 30
—I! (-—wlx (Ilwl) + 'ccl) X El (wi E.l)wi + (K“+ llwill )E1 ucl} (30)
In the derivation of (30), we have used (9) to elininate the term dv 7dt jn
(28). Now, if we set

-1 .
= = - + -1 ~w x (Tw)+71 ) xE
u A (t)(f‘-’j/M fgi/M‘ ucj) | ( . CH o

2 N *
- + E . X 31
©, El)w,.+ (K“+ Ilwlll )Pl 4 K21PI’ (31)
wher e K21 is a posit ve constant > 0, then
av _sdt = -K_ 1k 1% = Q (3)
11 21 i

In physical inplenentation, it isS desirable to express the control law in
terns of the variables referenced with respect to the body coordinate system
of the M5. For control law (31), 1its representation with respect to basis iBl
= {elx'ely'clz} of the MCS S?l has the form

[u ) = B [w‘]’) + (K, llwillz)[I] - [mlll[wi]:‘)[rz‘]‘+ Q([El]‘)n:hd]

cl 1 1




1) ¢ 3 () gj 1 ! 21 10t
Ix 0 0 0 - i3wlx iy i2w1xwiz
nplz 0 11y 0 ' Bl([wx]i) = 13wlxwly T iy iz
0 1 - W ow W W 0
iz i2 1x 1=z 11 1y iz
(34)
and Au’ £ £ M- £ M =080 e +A e +0u e ; [11 denotes the 3 X
9) gJ ] gt gx) 1ix gyJ 1y gz iz

3 identity matrix. For this control law, the equation for [El]1 of the
correspondi ng feedback-controlled systemis given by

(B + (K (1) +20(lo ) ()BT + K [E] =0 (35)

Since Q([wl]l) is skewsymetric, all solutions- [Ex,i‘.lll(t)»f» (0,0) € R® as

t-=o for any X. , X > 0.
11 21

In the special case where the MS are identical and nove in a gravitational
field which is essentially uniformover the spatial region containing the MS
fleet, the term Au‘gj in (33) can be neglected.

Case 2: W assune that each Ms noves in a LLEQ, and the desired motion for
the i-th M5 is given by

d(t)=r (L) + h (1), (36)
i i-1 i

where hi(t) is a specified deviation vector. Here, the tracking error is
defined by E!(t) édi(t) - ri(t). Thus,
Ex(t) = r1—1(t) 4 hx(t) - rl(t,) =Pt hi (t). (37)

Using (17), we obtain the following differential equation for Eii

2 ALY . .
. A . : E
Y)l(lz.l) }.l o P.i 4 ?,wi x I~’ Toox (wix l)

2
= il)l(hl) + f /M fgi/M1 +

-u |, (38)
g(i-1) 1-1

u
c(1-1) ci

wher e

By b xh 420 xh +w x (wxh). (39)
i i i i i i i

2
Di(hl) \

Assunming a central Newtonian gravitational force field, the gravitational
force acting on the k-th M5 has the form

. TR 40
fgk M r Zlie 1 (40)

where p is the geocentric gravitational constant (the product of the
gravitational constant and the mass of the Farth); r is the vector

10




speci fying the position of the mass center of the k-th MS relative to the
inertial frane; and Ilr'kll t he Euclidean norm of rk“ Let e, = r‘l/llrlll. W& can

write
= » = . . H = +
r e lle llrlll{ (erl elx)elx4 (e | eiy)ely+ (C“' giz)cl Z)r =T p”,
(41)
For a fleet of LEO M5 noving in formation at approxinmately the sane
altitude, we have llrill/llrl_lll ~ 1. 1"bus, the conponents of (fq“_“/Ml_l_,.

fql/Ml) in (38) with respect to basis B can be appr oxi mated by

(fg(l-—I)/Ml-l ) fgi/Ml)lk
- 2 . 1 - . 3 .
= wio(llr‘lll(eM ei k) (Ilrlll/llr‘_lll) (p“-“lk* llrill(cH elk)))
2
o~ - = 7 42
wtop(x—l)ik’ k= %y,z, (42)

wher e wfo(t) u/llrl(t)ll3 is the orbital angular speed of the i-th MS about

the origin of the inertial coordinate system & at tine t. Substituting (42)
; ; . . v _ - ) 2,
into (38) and making usc of the identity W, X (wl_x Ex) = (w‘ Li)wl o I7E
lead to

E +0 xE +20 xE + (0 E o, + (o
g 1 ) ) \ i

2
10 IIwill )E,_

!

N 1)1 hi) ? wiohl U oo Yo (43)
When w =~ w for all i (43) can be approximated by
E +0 xE 4+ 2w XE, + (w *E Jw, + (w® -l 1°)E
1 i 1 i ! 1 \ fo { \
= D3(h. ) 4+ woh 4 u T (44)
1 o 1 c(i-1) ct

10 derive a control law for the i-th M5, we consider again the positive
definite function Vi, defined by (29). Here, dv  /dtisgivenby

- . . 2 2 _ = -1 _ + T )XE
av /dt = E «AD (h ) + o h + u  _-u T (e x (T o) ot i

.. . 2 2 .
- 2w1 X hl -- (wi I~,i)wl - (wlo IwaII KH)Li)
. . N 2 2

- . . - W =llw 17) - E
E {20, x h +h + (v E Do + (0 w7 (h-E)

-1 .
- - 4
Uy Uyt ( X (liwi) + 'ccl) x (hE) + K“El}, (45)

wher e }.11 = dh /dt and h, = d?h!/dtj". Now, if we set

-1 . .

== - - - . M i
ucx Ix ( w1 X (Ilwl) + Tci) x (hl Px) 4 (w1 (hi l))w1
2 .- . . Y
- - E M T4 2 + h

4 (wio Ilwlll )(hl Fi) 4 K“Fl K21P1 ?w‘ % hi

x* Y- (46)

11




'S

where sz is a positive constant > 0, then

.2
dv /dt = - 3 = 0.
" t K21HIill 0 (47)

The above control law has the following representation with respect to basis
53i of the MS ?1:

_ 2 _ 2 _ T _ .
[uci]1 = (B1([w1]1) + (w10 leH J(1] (wlli[wl]l)[hl Exll* ?.Q([wlli)[hl]1

-1 . n
- QUh = EJDW 1+ K (B )5 K (B« (h )+ L (48)

c(l»l)]i

As in Case 1, the equation for [lsle corresponding to the feedback-
controll ed systemis given by (35).

Remark 1: Control laws (31) and (46) are nodel dependent in the sense that.
they depend on the paraneters of the nodel. They correspond to
stat e-feedback l|inearization controls which involve partial cancellation of
the terms in (28) and (44). Assuming perfect cancellation, there is no
coupling between the equations for the tracking errors of M given by (35).
In physical situations, perfect cancellation is not achievable due to
inaccurate know edge of the nodel paraneter- values, sensor errors, and
actuator saturation. Therefore it is of inportance to determne the effect
of inperfect cancellation on the behavior of the feedback-controlled system
Here, we nodel this inperfection by introducing a persistent. disturbance N

in (35) as follows:

B+ (K 111+ 200000 (4 DIE) + K (E ]

= N(4, [‘"1(”]:’ Py, (t)) ; [uCJ(t) ]l, [Ellx’ [13:1 ]1), (49)

V& rcqu re that the zero state of (49) to be totallystable,ie given any
€ > 0, here exist two positive wmbers 31(8) and 5?(8) such that if

HCEE ] L (BT D00 < 8 (), (50)
and
IN(L, To, (1)), Lo (D], o, (L), (B DL [E) <8 (e) (51)

for "([Exln’ [E‘:ll1 (t)<e and all t = 0, then the corresponding solutions
to (49) satisfy

I IE,, [l:;lll)(t)ll <efor all t = Q (52)
Si nce B1 is a skewsymetric matrix, the zero state of (35) is uniformy
asynptotically stable for any K“,K?i> 0. 7Then, it follows froma

wel | -known theorem of Malkin [11] that the zero state of (49)is totally

st abl e.



Remark 2: Note that control laws (33) (resp. (46)) for the i-th MS require

the know edge of its own attitude control law T _ and the control | aws u

C
of all its neighbors (resp. (i~1)-th M8). The latter information nust be
transmitted to the i-th M5. Note al so that control |aw (46) can be rewitten
as

u = I—l(—w (Il w)+1 )xE - (0w E o - (0% ~llw 12)E
cl ! y X 1t ci i T lo i 1

+K E +K E
11 i

2 2 )
211 * uc(l—l) ) Dx(h:) * w:ohi' (46" )

The term(‘Df(hi) + wfoha) in (46" ) represents a feed-forward control. When
the normof this termis large, the norm of U, is also large, which is
undesirable. This situation may be alleviated by replacing the termby a
suitable scalar nultiple of (fD?(h‘) 4 w?ohi)' In the inmportant special case
where the M5 nove in a circular LEO and the deviation vector h, [rotates
about the Earth's center with angular velocity v, = w, then D?(hi) + wfohi
@ Oor his close to a solution of the simple harnonic oscillator equation
d’h /dt® + w°h = O

i [ i1

3.3 Formation Pattern Stability: Gven a fleet of N microspacecraft each
having its own desired notion d, = d,(t) defined for all t = O the
formation pattern at time t for the flect is specified by the point set #(i)
= {dl(t),i = 1,... ,N}. W introduce an error neasure A(t) for the M5 fleet
W th respect to #(t) as foll ows:

N ) . i 1r
AL) = [ Z{cr“llF.i(t) I° + o ME (E) 1 }} (53)

f=1
wher e oy and o, are specified positive weighting coefficients. W define
stability of a desired formation pattern as foll ows:

Definition: A given desired formation # = #(t),t =z Q for the M5 fleet is
said to be stable, if given any real number € > 0, there exists a & > 0 such
that aA(t) <& = A(t) <c for all t =2z O If, in addition, A(t)-»0 as t--»ow,
then the desired formation pattern is said to be asymptotically stable.

It is evident from (35) that if each M5 applies control law (33) or (46),
then the desired formation pattern is asynptotically stable. Her e,
asynmptotic stability is only local in the sense that the convergence of A(t)
to Oas t mis attained if the deviation of the initial formation pattern
at t = Ofromthe desired one is sufficiently small. In physical situations,
the possibility of collision between M5 must al so be considered.

4. ATTI TUDE CONTRCL

Let the desired attitude and angul ar velocity of the i-th MS at time t

13
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relative to the inertial coordinate system & be specified respectively by
the MCS f%‘:(t) and w‘:(t), whi ch may dependoon the attitude and angul ar
velocity of its neighbors. For exanple, the desired attitude and angul ar
velocity of the 1i-thmscorrespond exactly to ¥, _,t) and 0, (t)
respectively. A nore conplex situation involves M5 noving in LEO where the
desired attitude and angul ar velocity of the i-th M5 are related to the
attitude and angular velocity of the (i-1 )-th M5 by a specified rotation and
angul ar vel ocity increnent Awl respectively. In the foregoing situations, it
is of interest to control the relative attitudes anti angul ar vel ocities
between the MS. In physical situations, the nmeasurenment or estination of
spacecraft attitude and angular velocities with respect to an inertial
coordi nate system can be perforned using star trackers and/or sun sensors.
The neasurenent and estimation of the relative attitude and angular
velocities of spacecraft require nore conplex sensor and estimation systens.
Therefore it is of interest to derive control |aws which are expressed in
terms of the instantaneous attitude and angular velocity of each M5 with
respect to the inertial coordinate system% . |In what follows, we shall
derive control laws for the i-th Mmswhich aroe expressed in terns of the
i nstantaneous attitudes and angular velocities of the Ms relative to the
inertial coordinate system 30 or relative to the MCSF

Let the unit quaternion corresponding to ??(t) relative to the inertial
coordi nate system f%o be denoted by q?(t) = [cid(t).q(:d(t)].T W assune that q(:

i
and w‘: are consistent in the sense that they satisfy

dqzdt = (g% w®- 0® x qV)r2,

{ [¢] 14 1 i i

d d ~d (54)
dqf,/dt = - () ¢*)/2.

and
a1 ohyzdt = 1dw®zdt o+ o® x (1% &9, (55)
| IS o i i 0 i i1 ci
We introduce the deviations
A d ~d ~ d T A
a! - .. - - 2 - . 56
6q1 q: qx [qa ql'q14 qM]’ &')1 wl wl (56)

Evi dently, 6qi satisfies

- _ d d _ _ . d ~d -
daqi/dt0 = (quI q 0, @ % g + WX qi)/Z, (57
= - d‘ ~d -— . N
d5q14/dt (wl q, w, qx)/Z.

10 derive an attitude cent!-ol law, we consider the follow ng positive
definite function V“ defined on R':

14




. Vi = KM VI (58)
wher e qu is a given positive constant and

2 . .
o= + . vz . 59
1y T %4, t 8qpr Sq, VI (Swl 1 8w )/2. (59)

The tinme derivatives of \/11 and \/11 along the solutions of the equations for

(qu'&"a) are given by
- (q(:'la&i B 5({14;{? - E‘T % 6&1) ) 5&)1; (60)
dV'l'i/dt = ((Ildéwi/dto) + d(Ixéwi)/dto)'Swl/Z
= {d(1 8w )/dt + (v x (Tw) - ol x (I6))/2) + 80

= {x - T - (w(: X (li&ui))/?,) . Swl. (61)

cl ci

Thus,

_ a o “d _ ~d -
dV“/dt = (1((11(':1”6q1 cSqul q, x Sql)

+1d -1 -0 % (1w )2Y - sw . (62)
ci ci i i i 1
Now, if we set
_ d .~ “d _ ~d - d _ d .

T, = qu(quaq1 Bqui q, x 6q1) YT tw X (I‘&o,)/z + KmIiSwi,

(63)
where Kws is a positive constant, then
dv. /dt = -K 8w + I Sw = 0. (64)
11 w1 1o

Thus V“(t) = V“(O) for all t = 0 implying uniform boundedness of
llawl(t)u for all t = 0. From (64), we have

d’v_ /dt? = -2k dv" /dt
14 w1 11
- ~d_ d .7 ~d _
= 2}((‘“(}(0“(&1”({1 qméq‘ tq % Sqi) lell&ul}. (65)
Thus,
2 2 ~d d .~ ~d
|d v, /dt | < ?.le(inllaqmq1 q,,89, * q X 8q Wlisw Il 4 Kwiéwi-llﬁwl)
= 2K (K lswll + XK 6w +1 dw ). (66)
Wi ql i [ R T T
Since IléSw‘(t)II I's uniformMy bounded for ai1 t = O, dzv“/dt2 is also
uniformy bounded. Consequently dV”/dt is uniformy continuous for t =z Q

From Barbalat’s Lemma (12], we conclude that (dV“/dL)(t) ~=0 as { -= o, Or

wl(t)-)w‘:(t) as t-»w, But it does not follow that éqm(t) -0 and s&l(t)»

0 as t-»om.
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To proceed further, we nake use of the fact that the quaternion (A&x’AqM)
of the desired attitude or ?‘: relative to?iisrel ated to the quaternions
(&‘l’.q‘:4) for 9?, and (&1’ a,,) for ?1 relative to the inertial coordinate
system ?o by [131
~d d ~d d - -

q = - q - q = . d i’
Aqi = A9 79,9, 79 x 9, Agg, SIVEIPEREL A (67)

When 9*1 coincides with f}‘: (i.e. 5,& = O and 6q14 = 0, we have Ac} = O and

bq , = 1. Now, making use of the identity

d

~d d -~ ~d -~ i d ~ _ ~d _ -~ -~
6qui qmaqx o 8q1 T A, T 9,9 T 9 x 9, (68)

control law (63), in view of (67), can be rewitten as:

T =K Aqg + 10 -0 x (16w)/2+K Idw, (69)
ql i ci i i1 wi 1 i

cl

which, except for the addition of »w‘: X (116“’1)/2 term and I1 in the | ast
term has the same form as that proposed by Wn and Kreutz-Delgado [ 141.
It can be verified that, their result (Thcorem 2 With corrections [15] and
minor nodifications) is applicable to control law (69). Thus, wc conclude
t hat A&l(t) and &oi(t)-r»o as t-—w for any positive in and wa' Mor eover,
if

awl(o)- Ii6wi(0)/2 < 2in(1 + AqM(O)), (*/0)

the rate of convergence is exponential.

Remark 3: @ obal exponential convergence can be achieved by adding a
nonlinear termto control law (69), i.c.
~ -~ d d - -
T =-K Agq+ 1T ~w x (I 8wl}/2 4+ K 8w/2
cl ql i cl i i i Wi i
& 2 - 2 .
AR ) 71
+ Kqui(aq14 + H6q1H )Iiéwl/(éwl Iléwi), (71)

wher e Kl is a given positive constant. For this control law,

dV. /dt = K Sw + I 8w /2 - K K (8¢ + Isq 1°) = -min{E ,K_}V_ . (72)
11 wi i i i { gt 14 i i wi 11

Thus , Vv (t) = V“(O)exp(~min{}zl, K tt) for- all t =0. Here, although the
convergence rate is determ ned only by Kl and Kwi, the effective nonlinear
gai n (63_?' + "‘5&;"2)/(5‘%’115“’1) may be large, which may result i
undesirabl e |arge magnitude control torques.

Now, consider an alternate approach to the derivation of an attitude
control law simlar to that uUsed in [161 and [171. let z = z(q) be a
nonlincar transformation from the unit sphere in Rinto R” defined by
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z(q) = lq,7q,, a/q,, q3/q4lT, (73)

)

' The vectors z = Z(qx) correspond to the G bbs

where q = lq, q, q, q,]
vector or Cayley-Rodrigues paraneter-s [I1]. Again wc consider the quaternion
(A&x'Aqm) of the desired attitude or 9‘: relative to - We define Az1 =

A&l/AqM. It can be readily verified that
dAz’/dt = («Swi - Swlez”(éwi'Azl)Azx)/z. (74)
Consi der the functional
VZX = KziAZi. Azi + V.lll' (75)
wher e Vi is defined in (59), and L is a given positive constant. By
direct conputation using (74), we obtain

- CI
d(X_ Az + bz )/dt = K (1 + bz 1%)8z + du (76)

which, in view of (61), leads to

dv_ /dt = &u s : 2 -ad - o1, (W
4,7t v, {K“(l + iz i Yoz i Cgl1 Ty (wi % (I‘awi))/z). (77)
Now, i f we set
r =TV ek (4 nz 188z - (8« (1 8w )2
cl ci z1 | 1 i 14 '
- 2 N
K, 180 2 K laz | Iléwx/(éwlﬂiawl ), (78 )
t hen
v /dt = -V11 - KV E ~n|1n(Kw’,1)V2‘. (79)

Thus , Vm(t) = V21(O) cxp(»min{Km, 1) for all t = 0, inplying
exponential stability of the equilibriumstate (Azl, 5w1) = (0,0).

Remark 4: The G bbs vector becomes singular when the rotation angle is an
odd multiple of =n. Thus, control law (78) is useful for small angle
maneuvers. This limtation does not occur in control laws (69) and (71).

Now, we apply the foregoing controls to the special case where q(: =q

* Aq and w‘: = w;q + v, where Aq, and Aw, are specified consistent
increments. For this case,
- . . T
6 = - = . - - —
9 q1-1+ Aq: q [ql-l*Aq\ qi'q(1-1)4+Aq14 qu]’
Bwi = Wi_1+ Aw1 - w‘. (80)

Thus , control law (63) takes on the form

-~

T = XK {-(q Ag g

(g + 7
ct ql ( 1_1)4.‘ 14 *14 ql-q Aqi)) Ic(i—l) K Iid(Awl)/dto

i



+ + A - -
(wi_1 wi) % Ilwa/Z W, X Ix(wi_1 wi)/z + Awl % Ilwl/Z

+ Aw1 X Iic.)l_1 + Kwill(wl_l-r Awi~ wl). (81)

5.1 MPLEMENTATI ON OF CONTROL LAWS
We observe that the inplenmentation of contro. law (33) (resp. (48)) for
formation keeping requires a know edge of [El]l[f:lll, [°f ]1,: [Tcxla and

]1 for je ‘91“) (resp. [u )]1) at any tinme t. The quantities [EJ

[u, . c(1-1
and [Exlx can be determined from [p”]l
of the position and velocity of the j-th neighboring MS relative to the i-th
MS. These quantities can al so be obtained by transnitting the position and
velocity of the j-th neighboring MSto the i-th MS. Also, the control of the
j-th M5 at any time nust also be transmitted to the i-th MS. \Wen one or
nore M5 failure occurs, one nmay adopt the follow ng backup schemes for
control law inplenentation depending on the nature of failure:

(i) I nter-spacecraft Communi cate on  System Failure: One may obtain

and [F.JJl ], which require measurement

esti mates of [p“]l and [E)“]‘ by using on-board optical range sensors, or
by setting the relative position and velocity between the failed and active
Ms at their nominal values tenporarily until the failure is recovered.

(ii) Overall Spacecraft Failure: Here the failure is sufficiently severe
such that the M5 is no |longer useful. In this case, the M should be renmved
fromthe formati on by deorbiting or by manual retrieval. |f the failed
M5 is not replaced, then it is necessary to reconfigure the formation. The
control laws for steering the remaining active M5 fromthe old to the new
formation requires separate consideration. This aspect w | be discussed
el sewhere.

W note also that in the derivation of foregoing control |aws, no
constraints have been inposed on the magnitude of the control variables. In
the presence of bounded controls, onec expect that the rate of decay of
Il([Ei]’, [I::x]l)(t)ll and "(6“’1’ 6q1)(t)ll to zero would be reduced when one or
more of the control variables takes on its extrenme val ues.

Finally, in physical situations, it is necessary to consider discrete-tine
versions of the proposed control laws. |In view of the linmited fuel on--board,
it is generally undesirable to have continuously acting controls. Therefore
the system response corresponding to the control |aws derived here serves as
a basis for conparison between the idealized and the actual responses.
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6, FLEET COORDI NATI ON

For a fleet of MS, one may require complete autonomy in each M5 in the
sense that all the decisions for deternmining its future behavior are nade
on-board W thout the assistance of external agents. Al though this approach
Provi des enhanced operational reliability, it may not be cost. effective
since each M5 nust contain all the essential hardware and software for
coordination and control. An alternative approach is to require each Ms to
have only the basic hardware and software for attitude control and orbital
maneuvering. The nore conpl ex tasks in fleet coordination and control are
shared by all the MSin the fleet. Mreover, some of the M5 may be equi pped
with special hardware and software to perform particular tasks for the
entire fleet. In what follows, we shall describe a particular schene for
fleet coordination with the aid of a sinple exanple.

Consider a fleet of ten M5 moving in a fornmation pattern shown in Fig.2c.
Here, only the fleet |eader-, the eighth and tenth M5 arc equipped with
inertial guidance hardware and software for determining their position with
respect to a specified inertial frame. The remaining MS are equipped only
with sensors for determning the displacements and attitudes relative to the
fleet |eader or their neighbors.

The fleet coordination is achieved with the aid of an inter-spacecraft,
communi cation network (eg. radio or optical links). This network has the
following basic functions:

(i) Communicating the necessary data for fleet formation-keeping and
relative attitude control;

(ii) Linking the conputers in the M5 to forma distributed conputing
network thereby increasing the conputational capability of the MS fleet for
more conputational intensive tasks such as on-board image processing.

In the realization of the first function, each fleet |eader broadcasts its
position and attitude with respect to a specified inertial frame, and the
remai ning M5 broadcast their positions and velocities relative to their
1 eaders to achieve formation alignment. Mor eover, when certain M
mal f uncti ons, the fleet leaders wmay transmt the instructions for
reconfiguring the formation to the remainingms. In the case where a fleet
of M5 is used for planetary exploration, certain tasks such as concerted
mappi ng using nmultiple caneras in the Ms require the comunication of
attitude alignnent information between the M5. The second function pernits
the performance of conplex tasks which cannot be performed by a single M5
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7, sIMULATION STUDY

The main objective of this simulation study is to deternmine the
performance of the proposed control laws for formation keeping and attitude
regulation in the presence of actuator saturation, variations in spacecraft
paranmeters, and |oss of communication between M5

First, we consider a sinple case involving a fleet of four mcrospacecraft
whose desired notions are along an inclined circular orbit O1 about the
Earth as sketched in Fig.3. For convenience, wc introduce a geocentric fixed
cartesian coordinate franme ¥ wth origin Oat the Earth's center along with
a spherical coordinate systém (r,0,¢) with orthonormal basis {e ,eU_e t} Let
the first M5 be the fleet |eader moving in orbit 0 with inclirnatior{ angle
(n/2 - ¢ .c) and ascendi ng node along the Y-axis. Its motion in spherical

in
coordinates is given by

rl(t) =T Gx(t) = c:OS'l(cos(goi nC)cos(oo— wot)},

¢, (t) - tan_l(»tan(00~ w t)/sinlp )}, (82)

nc

wher e r, is a given orbital radius, and W \/;1/r3. “I1"he i-th follower MS
tries to track the (i-1)-th M5 along the same orbit with a fixed angle Ao in
the orbital plane, i.e.

r(:(t) =7 Oc:(t) = cos {cos (q)jnc:)cos(()l-l(t )-40)},

01
¢ (L) = tan”'{~tan(o, (t)-80)/sinlp )}, i =2,3,4. (83)

Here, for sinplicity, we have set the desired orbital radius for all M5 to
r. Since the desired orbit 0, is circular, we adopt control |aw (48) for
formation keeping, where the deviation vectors hx(t) are given by

hz(t) = (~2rosin(<pmc)sin(AO/2)sin(Oo- ot - h0/2)e,
-- 2r sin(A6/2)cos(0 - w t - AO/2)e
o 0 0 Y
+ 2r cosly Isin(A0/2)sin(o - w t -- AO/2)e ; (84)
[} inc o o Z
hi(t) = (-2r sin(¢ )sin(a0/2)sin(o - w t - 180/2)e
o inc o o X
-- 2r sin(A6/2)cos(0 - w t - 1A0/2)e
o 0 ] Y
+ 2r cos(p.  )sin(A0/2)sin(6 - w t - iA0/2)e., | = 3,4 (85)
[ inc [ o 4
Evidently, hi(t) satisfies
d’h (t)zat? + oh (L) = O (86)
i [} o 1

for all t and i = 2,3, 4,5.
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To specify the desired attitude of the i-th M5, we introduce the (I-2-3)
Euler angles (@i,\lfl,cbi) corresponding to a rotation of CH about the X-axis
followed by a rotation of \I/iabout the rotated Y-axis, and a rotation of )
about the rotated Z-axis. Evidently, the desired Euler angles for the i-th
MS are:

el (1)
,(t

1t

d d _
e - wot - AD; Wz(t) =90 dz(t) = 0.

(]

¢'(t) =0, 1 = 34 (87)

tnc’ i

i

d — An. d -
oj(t) =8, (1) - 80 (1) "y

The corresponding direction cosine matrix has the form
ce] (1), ¥ (t), ¢9(1))

cos(winc) sin(go1nc )sin(@? (L)) -sin(gnl nc)cos(@(:(t))
=| o cos (@] (1)) 5in (@5 (t)) . (88)
sin{¢ ) ~cos(¢ )sin (0% (t)) cos(p  Jcos(@(t))
inc i nc i inc {

Thus , the desired attitude of the i-th M5 can be expressed in terns of the

foll owi ng quaternions:

d _ . d d - d .
q‘l(t) = 51n(@i(t)/2)cos(w“w/2), qiz(t) s cos(@i(t)/2)31n(whw/2).

d d d
= ) t = - (¢ A
q13(t) sin(@l(t)/z)sin(wlnc/&), q.  (t) COS(Ol(t)/Z)?OS(winc/2)'
i =2,3,4 (89)
Assuming that we require every MS to spin about its z-axis wth
constant angular speed w the desired angular velocity for the i~th M5 is

given by

d d

d d
w = = .e. + W e 90
) wocos(w,nc)ex+wosin(<pim)eZ + we, 0%ix iy (90)

wher e {(I:“X,e‘:y,e(:z) corresponds to the basis of the body coordinate system
fi‘: associated with the i-th MS with the desired attitude.

Figure 4 shows a typical tine-domain response of the M5 fleet wth
formation-keeping control |law (48) and attitude control law (69). The MS
paraneter values used in the sinmulation study are given in Table 1. Figure 5
shows the corresponding tinme-domain response when actuator saturation is
introduced. It can be seen that the error decay is prolonged in the presence
of actuator saturation as expected. The corresponding time-domain response
of the M5 fleet with the [uc(l-l)]l termin (48) set to zero (to sinulate
the loss of communication between the M5) was al so deternmined. The results
do not differ significantly fromthose shown in Fig.4. Next, the effect of
inertia perturbations on the tinme-donain response of the MS fleet was

studied. It was found that the qualitative behavior of the response is
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essentially jdentical to that of the unperturbed case. Figure 6 shows

, , and | ..
Xl Iyi Zi

are 2/ 3 of those used in attitude control |aw conputation. The observed

typical results for the case where the actual values of |

robust ness of quat, ernion-feedback attitude cent.l-ol laws with respect to

inertia perturbations was discussed earlier in (14), [171-[191. Finally, the
ti me-domai n response of the M5 fleet was conputed for the case with attitude
control law (69) but with proportional-plus-rate fornmation-keeping control
law given by

u =K E +K E +D%°Mh )+ 0 h +u : (91)
ci 11 1 21 1 i i fo 1 c(i-1)

where the val ues of Ky and K21 are identical to those used in Fig.4. |t was
found that the response does not differ significantly from those shown in
Fig. 4, although there are noticeable perturbations in the control forces
(see Fig.7).

Next, we consider a nore conplex formation consisting of five M5 moving in
formation. As in the previous case, the first MSis the fleet |eader whose
motion is specified by orbit o1 given by (82.). 7The second and third Ms try
to move along the same orbit 0, as in the previous case. The desired notions
for the fourth and fifth MS correspond to two circular orbits with the same
inclination angle (n/2 - Vl’nc)' but with ascending nodes at (r,0,¢) =
(ro,n/?,,Aqb) and (ro,n/2,—A¢) respectively, where A¢ is a given positive
angle < n/2. The desired notions of the centers of nass of the second and
third M5 in the spherical coordinates are given by (83). But the desired
nmotions for the fourth and fifth M5 in spherical coordinates are given by

d

r(t) = rZ(t) =1, oj(t) = 0. (L) = cos_l(cos(tpim):cos(oz(t)) ,

sin(o (t))cos(ag) + cos(Oz( t) )sin([\q‘))sin((p1 nc)

d — - 2 e, 6.t ne
¢4(t) = tanl . sin(Oz(t;)sin(M») - cos(Oz( t) )cos(A¢)sin(qplnC) K (92)
~5in(0_(t ))cos(Ag)+ cos(0_( L) )sin(Ag)sin(p )
¢d(t) = tan— _T e 2'__' TRy - 2 *'"""‘(’"""’):T’*(‘—-i_'*l‘\*'c—y‘ “
5 { sm(OZ(t ))sin(A¢) + cos (Oz(t) Jcos(A¢)sin P el

The desired (1-2-3) Euler angles for the M5 are given by

d d _ d d = o
O (t) = O (t) = 0%t), ¥ (L) = ¥ (L) =9 .,

(93)
Q)Z(t) = Ap, (L) = -ng.

Figure 7 shows an exaggerated sketch of the desired orbits of the M fleet
under the assunption that the tracking errors of all follower M5 are zero.
Note that in (93) only the desired azimuih angles depend on the those of the
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neighboring MBS, while the desired el evations angles are absolute. The

desired attitude of the fourth MS can be expressed in terms of the follow ng

quaternions:

q:4(t) = {1 + cos(Agb)cos(ionc) - sin(A</>)sin({pnc)sin(02(t))

+ cos(@,_(t))(cos(ng) + cos(qvmc)))l/z/Z; (94a)
qjl(t) = (sin(A¢)sin(w‘nc)cos(ea(t)) + sin(ez(t))(cos(Ags)

+ coslp, 1))/(aq), (1)); (94b)
q::z(t) = {sin(q)lnc)(l + cos(AQS)cos(oz(t))) - sin(Agb)sin(Oz(t)))/(4q:4 (t));
d - (94¢c)
qm(t) {cos(Agb)sin(q)mc)sm(oz(t) )

+ sin(A¢)(cos(02(t)) + cos(wlnc))}/(llqj&(t)). (94d)

The quaternions corresponding to the desired attitude of the fifth MS have
the sane formas (92) except with A¢ replaced by -A¢.

As in the previous case, we require each M5 spins about its z-axis with
constant angul ar speed ©_. Thus, wf(t). i =2,3,4,5, are also given by (90).
The devi ation vectors hl(t) for the second and third M5 are given by (84)
and (85) as in the previous case, Here, both the fourth and fifth M5 try to
align with the position of the second Ms. |’bus, the deviation vector'h4(t)

is given by
ha(t) =r {((1- cos(8¢))sin(p Jcos(o - w t - 240)
o inc o] [
+sin(A¢)sin(e o tO - - ZAO))eX
+ (sin(A¢)sin(<p1nc)oos(00~ wot' 2A0)
+ (cos(AD) - 1)sin(0°~ wot - ZAO))cy}. (95)

The deviation vector hs(t) has the sane form as (94) except with aA¢ replaced
by -a¢. Evidently, hi(t) satisfies (86) for i= 2,3,4)5.
Figure 8 shows a typical tinme--donmain response of the M5 fleet with

formation keeping control 1aw [48) and attitude control law (69) in
the presence of actuator saturation. The qualitative behavior of the

response is sinmilar to that in the sinple case involving four M.

8. CONCLUDI NG REMARKS
In this paper, control laws for a fleet of MS moving in fornation have
been derived based on nearest-nei ghbor tracking using a sinplified nodel for

a rigid M5. These control |aws require the know edge of the relative
di spl acenents and attitudes of the M5 and its ncighbors. Sinulation results
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based on a generic M5 nodel showed that the derived control |aws are
effective in formation and relative attitude alignnent provided that the
magni tude of the initial deviation fromthe desired state is sufficiently
small so that collisions between the M5 do not occur. In the case where the
M5 nove in formation along LFO, sinulation results showed that a sinple
proportional -plus-rate formation-keeping control law wth properly chosen
val ues for the feedback gains provides good time-domain behavior.

Finally, in this work, inportant factors such as data processing
time-delay and tinme discretization arising in physical inplenmentation have
not been taken into consideration. Nevertheless the results reveal the basic
structure of the control laws and the required inter-spacecraft data
required for their inplenentation. Finally, the problens associated with the
physi cal inplenentation of the control laws in terns of the state-of-the-art
hardware and fuel consunption for control are not considered here, and they
require further study.
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Ml (mass of MS) -- 10 kg.

le (noment of inertia about x-axis) -- 0.3646 kg ni.

liy (nonent of inertia about y-axis) -- 0,2734 kg n®.

|, (moment of inertia about z-axis)-- 0.3125 kg n.

r, (desired orbital radius of MS) -- ‘/.13814 x 10°m.

W, = \/;1/r3 (orbital angular speed of fleet leader) -- 0.001 rad/see,

[¢]

W (desired spin speed about. z-axis) --- 0.01 rad./secc

¢, = n/2 - inclination angle of reference orbits -- 8.2r/180 rad.
A¢ (azinmuthal angle associated with the ascending node of reference

orbits) -- 0.2 rad.
a0 (M5 separation angle) -- u/120 rad.

Table 1 Val ues of microspacecraft and orbital paraneters for simulation
st udy.
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Figure Captions

Fig. 1
Fig.2
Fig. 3
Fig.4

Fig. 5

Fig. 6

Fig.v7

Fig. 8

Fig. 9

Sketch of inertial and noving coordinate systemns.
Exanpl es of formation patterns.
Four microspacecraft moving along an inclined orbit about the Earth.

i me-domain response of the M5 fleet with formati on keepi ng contro

law (48) and attitude control law (69) with K,= 0.5, K21= 2..0, Kw=

1.5, quz 0.4, 1 =2,3,4, M5 1 (solid curves); M5 2 (dash-dot curves)

M5 3 (dashed curves). Initial states for M

[EI(O),ﬁl(O)ll =[10.5-°0.5 0001; [v(0)] =[0.010.01 0.011;
q,(0) © [0.2 0.2 0."2 0.9380831;

[E,(0),E,(0)1 J[-1 1 -1, 0001; [w,(0)], =[-0.01 0.01 -0.011;
q2(0) = [-0.2 0.15 -0.1 0.963068];

[E,(0),E_(0)], =[0.5-10.5 0001 [0/(0)]y=7[0 01 0-0.011;
q(0) = [-0.1 0.1 0.1 0.984885-/];

Fig. 4a: Positional tracking errors (m of MS vs. tine.
Fig.4b: Angul ar velocities (msee) of M5 vs. tine.
Fig.4c: Quaternions of M5 vs. time.

Fig.4d: Control forces (N) of MS vs. tine.

Fig.4e: Control torques (N.m) of M5 vs. tine.

Ti me- domai n response of the MS fleet with formation keeping control
law (48) and attitude control law (69) in the presence of actuator
saturation,” and with gains and initial states given in Fig.4; M5 1
(solid curves); MS 2 (dash--dot curves); Ms 3 (dashed curves).
Saturation |evels: Ifcul =1 N lTCUIS 0.05 Nom., i =2,3,4;, J ="

X, Y, Z.

Ti me-domai n response of the Ms fleet with formation keeping control
law (48) and attitude control law (69) in the presence of inertia per-
turbations, and with gains and initial states given in Fig.4. Actual

val ues for lxl’ 1 iy and I71 arc 2/3 of those used in control | aw
y

conmputation; M5 1 (solid curves); Ms 2 (dash-dot curves); M5 3 (dashed
curves).

Plot of control forces for- the case with proportional-plus-rate
formation-keeping control law (91) and attitude control law (69) in
the presence of actuator saturation, and with gains, initial states,
and saturation levels given in Figs.4 and 5. M5 1 (solid curves);

M5 2 (dash-dot curves); Ms 3 (dashed curves).

Exaggerated sketch of the reference orbits of five microspacecraft
moving in formation about the Earth.

Time-domain response of the M5 fleet with formation keeping control
law (48) and attitude control law (69) wth K“: 0.5, K?i: 2.0, Kw:
1.5, Kc“: 0.4, i =2,3,4; M5 1 (solid curves); M5 2 (dash-dot curves);

MS 3 (dashed curves); M 4 (long-dashed curves).
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Fig.9 (Continued)

[r:l(om':l(on1 = [52-5,0001; (v (0)) 7[0.02 0.020,02);
q,(0) = [0.3 0.1 0.2 0,9273618];

[E,(0),E (0)), "[-5 -*33, 0001; [w,(0)] ~[-0.01 0.015 -0.01);
q,(0)°[-0."2 0.2 0.3 0.91104331;

(E,(0),E_(0)]_ =[0.5-10.5 00 0L [0,(0)1,7[0.01 0 -0.015);
q,(0) “[0.1 0.2 0.2 0(953939?1;

(E,(0),E (0)], "[1.55-3, 0001; (w,(0)} ~[0.015 ~0.01-0.01);
q,(0) = [-0.1 -0.2 0.15 0.963068L;

i

Fig.9a: Positional tracking errors (m of M vs. time.
Fig. 9b: Angular velocities (msee) of M5 vs. time,

Fig. 9¢c: Quaternions of MS vs. tine.

Fig. 9d: Control forces (N of M5 vs. tine.

Fig. 9¢: Control torques (N.m) of M5 vs. tine.
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