### JPL

### FOR ROBOTIC SPACE EXPLORATION PIEZOCERAMIC MICRGAC+UATIO™

### JPL

Sarita Thak⇔r, ' Yavrouian, '.M Morookian, and ⊐ecember 2, 7996 J. A. Cuss

CALIFORNIA INSTITUTE OF TECHNOLOGY JET PROPULSION LABORATORY PASADENA, CALIFORNIA 91109 Materials Research Soc ety, Symosium on Advances in Materials for mrsfal196 1 Smart Systems, held Dec 1 - 5, 1996; Boston, MA



### **COLLABORATORS**

- RICK WELCH
- JAN TARSALA
- .MIKE NEWELL
- ANNETTE NASIF
- BRIAN WILCOX

### OUTLINE

- OVERVIEW: CURRENT SURFACE MOBILITY FOR PLANETARY EXPLORATION
- INSECT EXPLORERS: NEW PARADIGM FOR MOBILITY
- **APPROACH**
- FLEXIBLE MICROACTUATORS
- ELECTRICAL/OPTICAL ACTIVATION
- ENHANCED BIMORPH: LOW POWER, H GH FORCE
- APPLICATIONS
- ADVANCED MOBILITY
- OPTICAL SHAPE CONTROL
- MICROVALVES
- PRECISION MEDICAL TREATMENT/DIAGNOSTICS
- CONCLUSIONS/SUMMARY

<u>,</u>



### OVERVIEW: CURRENT SURFACE MOBILITY SYSTEMS

- Current approach for realization of small vehicles is evolutionary: through the miniaturization 1 of existing wheeled/legged vehicles based on state Of the art in miniature actuators and motors. However, such miniaturization does not lend itself to cost reduction concomitant with the size reduction because cost of the individual mobility components goes up by an order of magnitude or more for such miniature motors etc which often need to be precisely hand assembled.
- •An alternate approach with significant potential advantages, especially when traversing unusual and difficult **terrain such as** loose granular surfaces, is to imitate the mobility attributes of insects. Mimicking biology, such artificial insects may possess varied mobility modes: surface-roving, burrowing, hopping, hovering, or flying, to accomplish surface, subsurface, and atmospheric exploration". They would combine the functions of advanced mobility and sensing with a choice of electronic and/or photonic control. Preprogram'nmed for a specific function, they could serve as "no-uplink, one-way communicating" beacons, spread over the exploration site, autonomously looking for the object of interest.



### **OVERVIEW: MOBILITY APPROACHES**

**.**CURRENT APPROACH:

ENERGY SOURCE (SUN)-----SOLAR
CELLS/BATTERY ----- MOTORS ----- PASSIVE
MOBILE COMPONENTS
EFFECTIVE EFFICIENCY ~ 3-5%

•NEW PARADIGM (INSECT EXPLORERS):

ENERGY SOURCE (SUN) ------ ACTIVE MOBILE

COMPONENTS

EFFECTIVE EFFICIENCY ~10%



### VISION:

ADVANCED MOBILITY . . . . . the size of small insects . . . . . with the same mobility agility

When coupled with dedicated microsensors/microimagers -

### INSECT EXPLORERS

They will be ideal for:

- SCOUTING MISSIONS IN-SITU SENSING
- HAZARDOUS AREA EXPLORATION
- REACH NARROW CREVICES

Such "artificial" insects will enable that couldn't be easily done today

### JPL

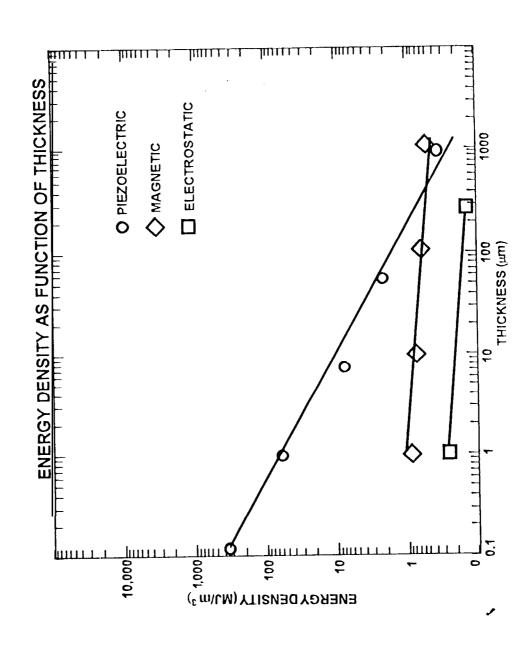
### PAY OFF - WHY INSECT EXPLORERS

- Extremely small size allows reach to places never reached before for in-situ sensing
- Expendable due to low cost will be used to explore high risk zones
- Science return /\$ would be tremendous, unprecedented.

### JPL WHY PIEZOCERAMIC ACTUATION?

### (AS WE SCALE DOWN TO THIN FILM PIEZOCERAMICS)

|                                |                                  | POLYMERIC MATERIALS                            |                                    |                                   |                                |
|--------------------------------|----------------------------------|------------------------------------------------|------------------------------------|-----------------------------------|--------------------------------|
|                                | PIEZOCERAMIC                     | SHAPE MEMORY ALLOY                             | PVDF                               | Polymides<br>PMMA<br>Polyurethane | MAGNETO-<br>STRICTIVE          |
| MECHANISM                      | PIEZOELECTRIC & ELECTROSTRICTIVE | THERMAL: MARTENSITIC → AUSTENITIC PHASE CHANGE | PIEZOELECTRIC,<br>PHASE TRANSITION | ELECTRO-<br>STRICTIVE             | MAGNETIC FIELD INDUCED BY COIL |
| STRAIN                         | 10-4 TO 0.3X10 <sup>-2**</sup>   | 10-6 TO 10-1                                   | 10-#TO 10-1                        | 10-9 TO 10 -2                     | 10 -5 TO 10 -2                 |
| DISPLACEMENT                   | LOW TO HIGH*                     | MEDIUM TO HIGH***                              | LOW TO HIGH                        | LOW TO MEDIUM                     | MEDIUM                         |
| FORCE                          | HIGH ~100 kgm<br>FORCE           | LOW-MEDIUM ~1 kgm FORCE                        | SMALL                              | SMALL                             | HIGH                           |
| HYSTERISIS                     | TAILORABLE BY COMPOSITION        | SMALL                                          | LARGE                              | SMALL TO<br>MEDIUM                | LARGE                          |
| AGING                          | COMPOSITION<br>DEPENDENT         | VERY SMALL                                     | LARGE                              | LARGE                             | SMALL                          |
| TEMPERATURE RANGE OF OPERATION | -196°C → 300°C<br>WIDE           | -196°C → 100°C WIDE                            | -10°C → 60°C<br>LIMITED            | -10°C → 80°C<br>LIMITED           | -273°C → 100°C<br>WIDE         |
| RESPONSE SPEED                 | usec-msec                        | seconds                                        | msec                               | msec .                            | µsec-msec                      |
| ACTIVATION MODE                | BOTH OPTICAL AND ELECTRICAL      | THERMAL AND ELECTRICAL                         | ELECTRICAL                         | ELECTRICAL                        | MAGNETIC                       |
| POWER REQUIREMENT              | LOW                              | LOW                                            | MEDIUM                             | LOW TO MEDIUM                     | HIGH                           |
| RADIATION HARDNESS             | YES                              | TBD                                            | TBD                                | TBD                               | YES                            |
| CYCLABILITY                    | EXCELLENT                        | GOOD                                           | FAIR                               | FAIR-POOR                         | GOOD                           |
| PROSPECT OF<br>MINIATURIZATION | GOOD                             | GOOD                                           | GOOD                               | GOOD                              | FAIR                           |


### PIEZOELECTRICS REPRESENT A LEADING CANDIDATE FOR ADVANCED MICROACTUATION

•With amplification techniques (e. g. optically or electrically activated bimorph, flextensional elements and combination thereof to obtain double amplification)

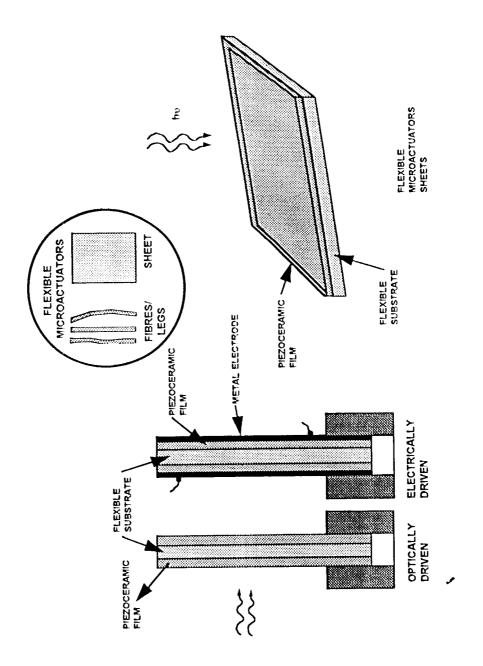
<sup>\*\*</sup> Antiferroelectric phase transition materials

<sup>•\*\*</sup> Limited by Thermal Energy Input

# C-MPARISON ACTU®TIONTECHNOLOGI≪S



Sarita Thakoor mrsfall96.9




### FLEXIBLE MICROACTUATORS

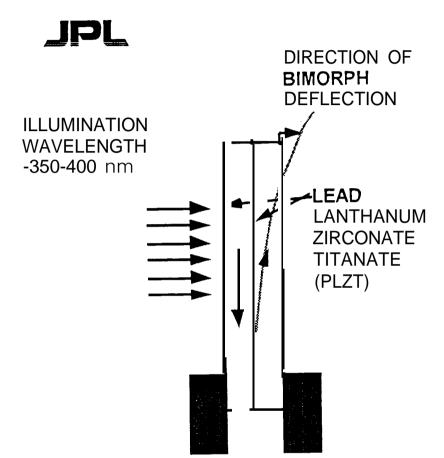
Flexible microactuators are envisioned by depositing tailored thick (~2-10 micron) films of active materials on judiciously chosen, strong flexible (polymeric) substrates. Flexible microactuators would provide a combination of high force and displacement and be operable over a wide temperature range as is required for a variety of advanced mobility applications. Potential advantages of flexible microactuators are:

- low power (10w voltage operation, 5 V), low mass, low volume
- low cost, batch production of the components compatible with VLSI processing
- high force/volume even with low voltage operation
- higher deflection
- flexible. miniaturizable microactuator: scaleable for MEMS/MOMS
- excellent cyclability -more than million cycles
- amenable to both electrical or optical activation

# JEL Flex: Ple Micro Actuators For Advanced Mobility



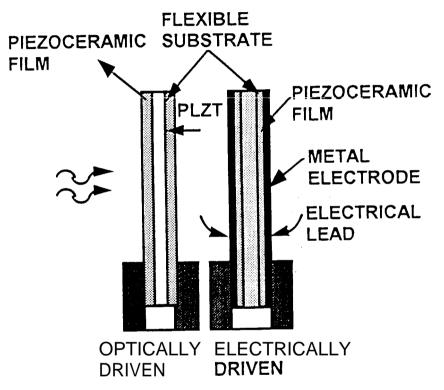



### FLEXIBLE MICROACTUATORS

Flexible microactuators would enable a new generation of microelectro- mechanical and micro-opto-mechanical systems where the actuation will not be restricted by the clamping effect due to the rigid substrate as in the current silicon based micromachined structures. Also in the current micromachined structures, the actuation force out of the structure is limited by the thickness to which the micromachined structures could be grown. Deposition of tailored piezoceramic thin films on flexible substrates would substantially eliminate the substrate clamping effect and thicker films can be deposited by high rate deposition processes, leading to mobile elements with substantially higher force to input power ratio with the option of contact-less optical activation.



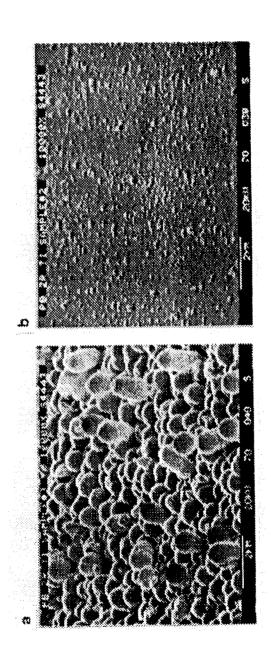
### FLEXIBLE MICROACTUATORS

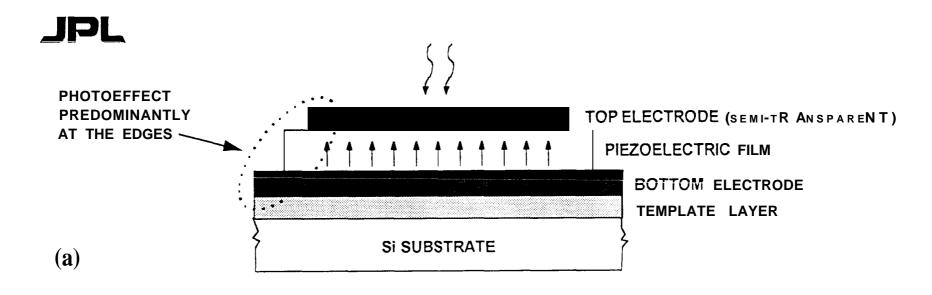

- •Optimization of the Piezoceramic films:
  - Optical quality enhancement
  - Polarization direction& intensity optimization
  - Optimization of the optical penetration effect



### **CERAMIC BIMORPH**

ceramic thickness: 200 micron


(a)




### **FLEXIBLE MICROACTUATOR**

film thickness: 2 micron

(b)





⇒ HYPOTHESIS: EFFECT WOULD BE MAXIMUM FOR NORMAL INCIDENCE OF PHOTONS WHEN C-AXIS IS PARALLEL TO SUBSTRATE





TABLE 4: Flexible film microactuators, matrix of improvement

|                                    |                                     | Current Status Ceramic Bimorph | 'rejected Improvement<br><b>ïlm</b> Bimorph          |
|------------------------------------|-------------------------------------|--------------------------------|------------------------------------------------------|
| ELECTRICAL ACTUATION               | Thickness                           | 200 microns                    | ! microns: Thickness reduced.<br>material tailored   |
| PARAMETERS                         | Operating Voltage                   | 100 v                          | 5 V : Operational voltage reduced                    |
|                                    | Energy Density                      | 1X                             | 25 x : inherent advantage of reduced thickness       |
|                                    | Force/Volume                        | 1X                             | 5X enhancement for film bimorph                      |
|                                    |                                     |                                |                                                      |
| OPTICAL<br>ACTUATION<br>PARAMETERS | Optical Power                       | 80 mW/cm <sup>2</sup>          | 3 mW/ cm <sup>2</sup> : Illumination Intensity       |
|                                    | Power Ratio                         | 1 0X                           | 1 x                                                  |
|                                    | Photonic to                         | 0.1 %                          | 10/0 - 100/0 : significant<br>enhancement in         |
|                                    | Mechanical Conversion<br>Efficiency | 1x                             | overall efficiency                                   |
|                                    | Force./Energy                       | F                              | 2F to 20F: Multifold enhancement in the film bimorph |
|                                    | Force/Power                         | 1x                             | 20X to 200X                                          |



### CHEMICAL STRUCTURE OF POLYBEN ZOXAZOLE (PBO)

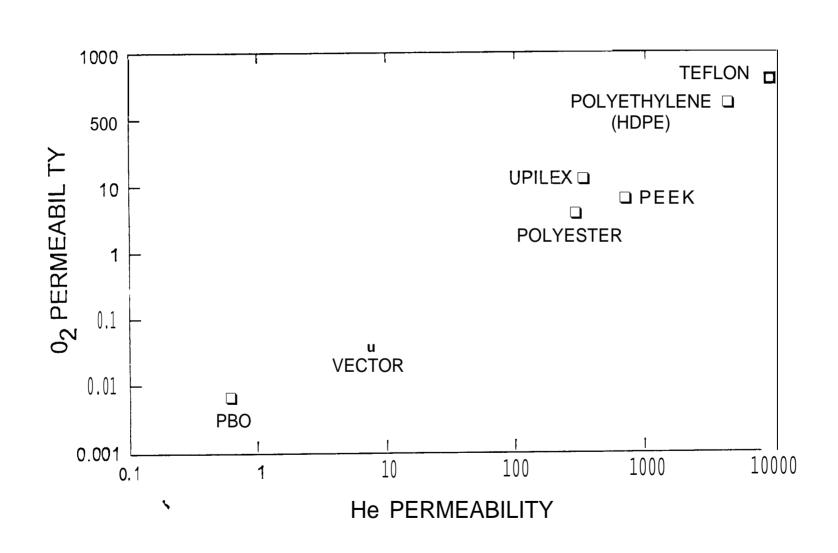
PBO IS A CONJUGATED AROMATIC HETEROCYCLIC LIQUID CRYSTALLINE POLYMER (LCP) WITH OPERABILIT% DEMONSTRATED AT 460°C. THE HIGH STRENGTH AND SUPERIOR PHYSICAL PROPERTIES OF PBO ARE DUE TO THE ROD-LIKE NATURE OF THE PBO MOLECULE AND THE ORIENTATION THAT CAN BE BUILT INTO THE POLYMER FILM. PBO FILM'S SELF-REINFORCING MICROSTRUCTURE RESULTS IN A "MOLECULAR FABRIC" WITH PROPERTIES COMPARÁBLE TO THOSE OF ADVANCED, FIBER-REINFORCED MATERIALS. BUT WITHOUT THE DRAWBACKS OF DISTINCT FIBER AND MATRIX COMPONENTS

### **Jbr**

### COMPARATIVE DATA FOR FILMS

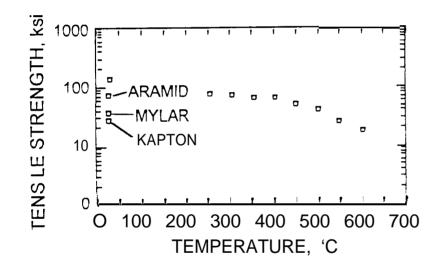
| PROPERTY                             | UNIT              | KAPTON | ARAMID           | PET         | PEN           | PBO    |
|--------------------------------------|-------------------|--------|------------------|-------------|---------------|--------|
| DENSITY                              | g/cm <sup>3</sup> | 1.420  | 1.500            | 1.395       | 1.355         | 1.54   |
| MELTING TEMP                         | "C                | NONE   | NONE             | 263         | 272           | NONE   |
| GLASS TRANSITION TEMP                | 'c                | 350    | 280              | 68          | 113           | NONE   |
| YOUNG' S MODULUS                     | kg/mm²            | 300    | I 000-<br>, 2000 | 500-<br>850 | 650-<br>I 400 | 4900   |
| TENSILE STRENGTH                     | kg/mm²            | 18     | 50               | 25          | 30            | 56-63  |
| TENSILE ELONGATION                   | %                 | 70     | 60               | 150         | 95            | 1-2    |
| LONG-TERM HEAT STABILITY             | ,C                | 230    | 180              | 120         | 155           | >300   |
| HEAT SHRINKAG E (200°C x % min)      | %                 | 0.1    | 0.1              | 5-10        | I 1.5         | I <0.1 |
| COEFFICIENT OF THEW EXPANSION        | ppm/°C            | 20     | 15               | 15          | 13            | -2     |
| COEFFICIENT OF HYDROSCOPIC EXPANSION | ppm/% RH          | 20     | 18               | 10          | 10            | 0.8    |
| MOISTURE ABSORPTION                  | %                 | 2.9    | 1.5              | 0.4         | 0.4           | 0.8    |

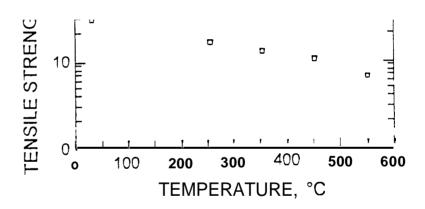



### PROPERTIES OF HIGH-PERFORMANCE FIBERS

| PROPERTY                           | РВО   | PBO<br>HIGH<br>MODULUS | ARAMID       | STEEL | SPECTRA®<br>(HDPE) | CARBON<br>(HI-<br>TENSILE) | GLAS<br>(s-2) |
|------------------------------------|-------|------------------------|--------------|-------|--------------------|----------------------------|---------------|
| TENSILE STRENGTH (ksi)             | 820   | 800                    | 400-500      | 250   | 435                | 500-700                    | 665           |
| TENSILE MODULUS (Msi)              | 25-30 | 40-45                  | 10-25        | 29    | 25                 | 30-40                      | 12.6          |
| COMPRESSIVE<br>STRENGTH (ksi)      | 40    | 65                     | 65           | 250   | 10                 | 300-400                    | >150          |
| ELONGATION, BREAK (%)              | 3.0   | 1.5                    | 1.5-4.0      | 2.0   | 3.5                | 1.5-2.0                    | 5.4           |
| DENSITY (g/cc)                     | 1.56  | 1.56                   | <b>1</b> .44 | 7.86  | 0.97               | 1.8-1.9                    | 2.4           |
| SPECIFIC TENSILE<br>STRENGTH (ksi) | 525   | 510                    | 280-350      | 32    | 450                | 270-380                    | 280           |
| SPECIFIC TENSILE MODULUS           | 16    | 26                     | 7-18         | 4     | 26                 | 16-22                      | 5             |
| LIMITING OXYGEN INDEX (LOI: %)     | 56    | 56                     | 30           |       | '19                | 50-65                      |               |

Sarita Thakoor mrsfall9620


### JPL


### PERMEABILITY COMPARISON DATA

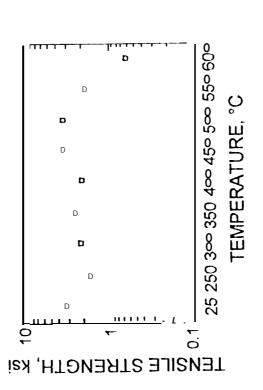


### JPL

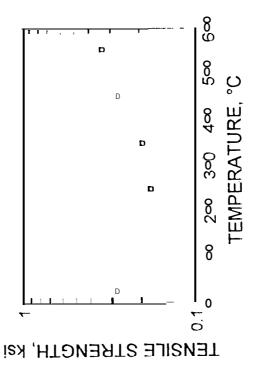
### TEMPERATURE DEPENDENCE OF FILM TENSILE STRENGTH






FILM TENSILE STRENGTH IN MACHINE DIRECTIONS

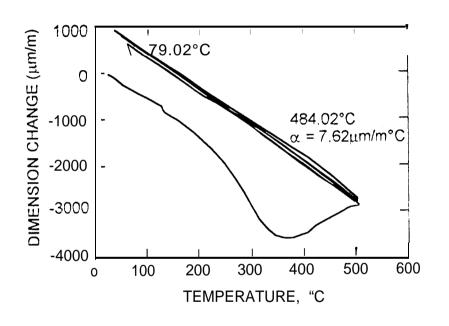
5

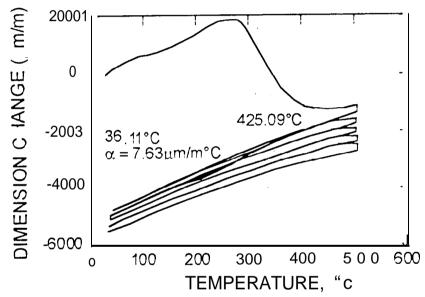

FILM TENSILE STRENGTH IN TRANSVERSE DIRECTIONS



### FILM TE SILE MODULUS FOR PBO FILM TEMPERATURE DEPENDENCE OF





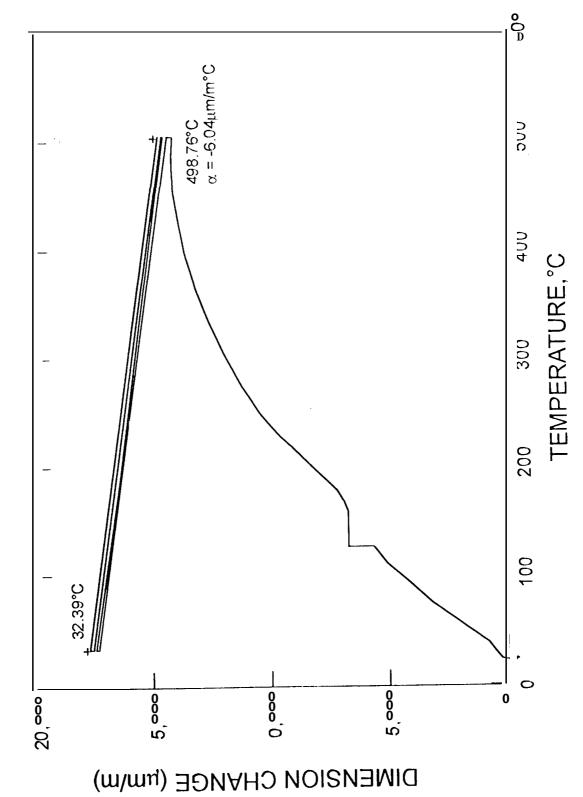




FILM TENSILE MODULUS IN TRANSVERSE DIRECTIONS

Sarita Thakoor mrsfall96.25

### COEFFICIENT OF THERMAL EXPANSION (CTE) OF PBO FILM

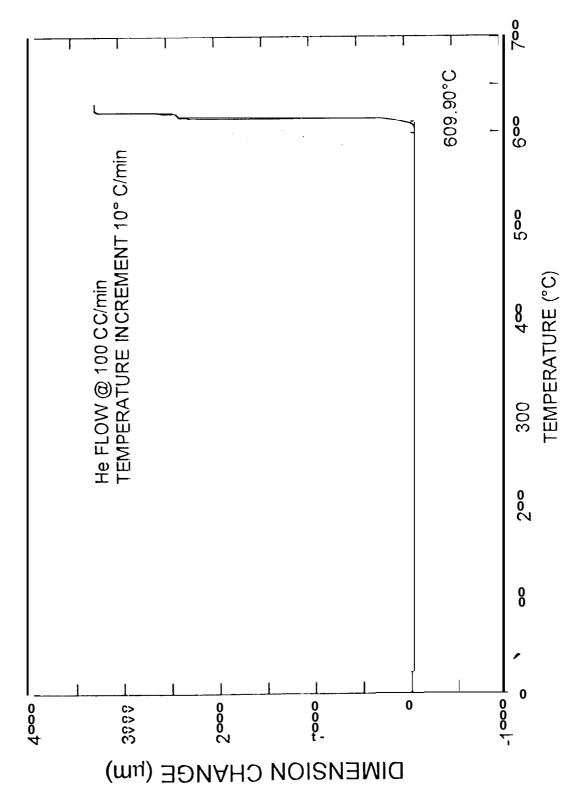





MACHINE DIRECTION (NEGATIVE CTE)

TRANSVERSE DIRECTION (POSITIVE CTE)

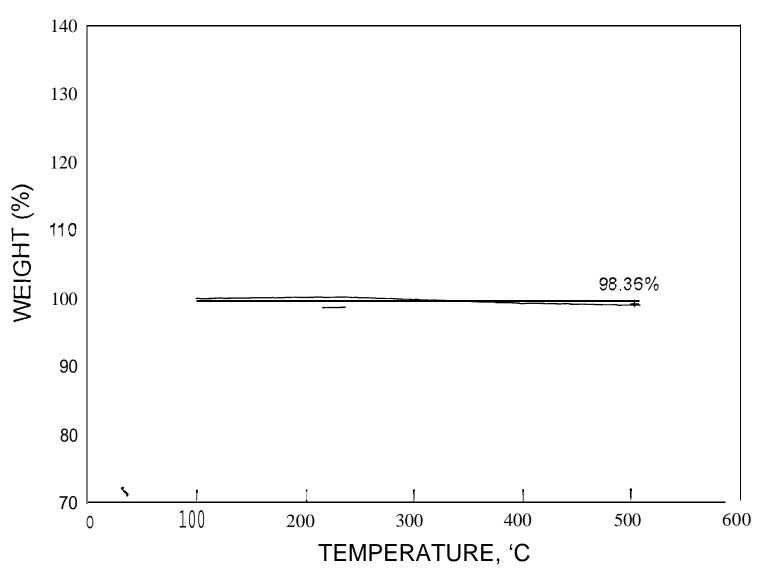



## CTE OF HBO FIBER BUNDLE

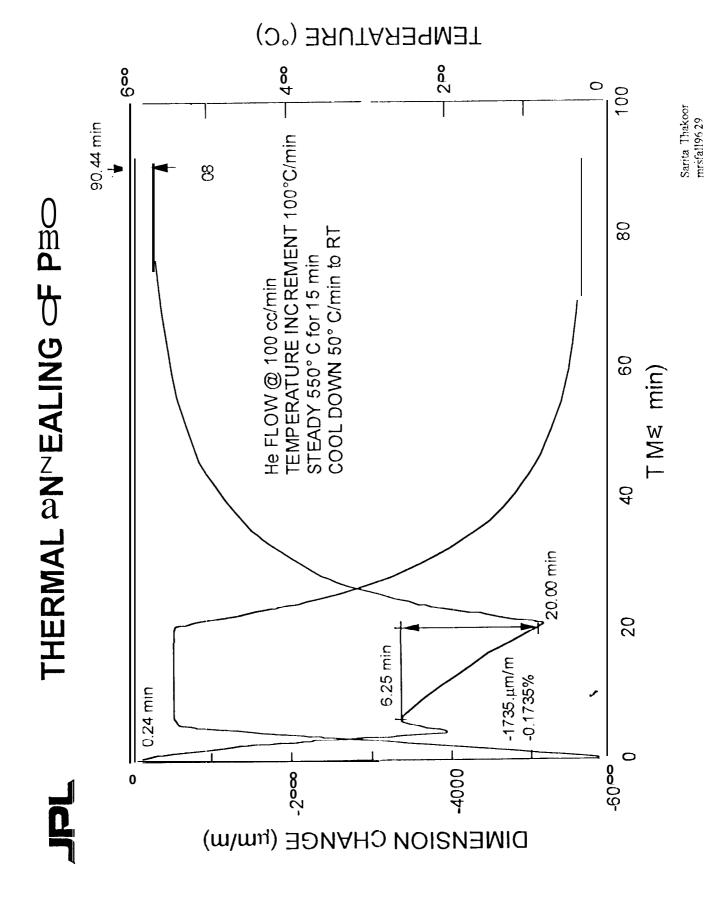


Sarita Thakoor mrsfall96.26




## THERMAL BNNABLING OF PHO




Sarita Thakoor mrsfall96 23

### JPL

### THERMOGRAVIMETRIC ANALYSIS (TGA) OF DRIED ?60 FILMS



Sarita Thakoor mrsfal19628



### JPL ADVANCED MOBILITY FOR INSECT EXPLORERS

CILIARY/FLAGELLAR MECHANISMS FOR FLUID NAVIGATION **MULTIPOD** HOVERING MECHANISMS **FLEXIBLE** (AERIAL EXPLORATION) CRAWLING MECHANISMS **MICROACTUATORS** (INSECT ROVERS/CRAWLERS) FIBRES/ SHEET **LEGS** HOPPING MECHANISMS (OPTICAL/ELECTRICAL BURST **TECHNIQUE INNOVATIONS)** Sarita Thakoor Mobility #4



### CONCLUSION

- •FLEXIBLE MICROACTUATORS OFFER A COMBINATION OF HIGH FORCE AND DISPLACEMENT WITH POTENTIAL OF OPERABILITY OVER A WIDE TEMPERATURE RANGE AND A CONTACT-LESS OPTICAL ACTIVATION
- PIEZOCERAMIC BASED FLEXIBLE MICROACTUATORS FORM AN ENABLING TECHNOLOGY FOR A VARIETY OF APPLICATIONS:
  - ADVANCED MOBILITY
  - SHAPE CONTROL
  - MICROVALVES
  - MINIMALLY INVASIVE PRECISION MEDICAL TREATMENT/DIAGNOSTICS



### **COLLABORATORS**

- .PENN STATE
  - KENJI UCHINO
  - QIMING ZHANG
  - ERIC CROSS
- .CLEMSON
  - GENE HAERTLING
- .ROCKWELL
- .JET PROCESS CORPORATION



### **ACKNOWLEDGEMENTS**

### •NASA

- ADVANCED CONCEPTS
- MARS EXPLORATION DIRECTORATE
- JPL DIRECTOR'S RESEARCH AND DEVELOPMENT FUND