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Abstract

It is shown that a large class of adaptive fecdforward controllers having a sinusoidal regressor
(i.e.,a regressor comprised exclusively of sinusoidal signals), can be writtenas the parallel
connection of a purel y lincar time- invarianit (I'TT) subsystem and a linear time-varyin g
(LTV) subsystem. Under certain stated conditions the I'T'V subsystem vanishes and the
system is purely LTI.In this case, the adaptive control analysis and design can be performed
completely using I'TT methods. In the case where the L1V subsystein does not completely
vanish, an explicit upper bound is established on the induced 2-norm of the 1.1V block
which allows systematic analysis using robust control methods. The upper bound can be
maximally tightened by solving a convex optimization problem involving a related linear
matrix inequality (I.MI). This overall approach represents a strong departure from using the
standard 1 ;yapunov and H yperstability methods for adaptive control analysis, and provides
a more complete robustness analysis to ensure that this class of adaptive systems can be
confidently implemented in practice,



1 1 NTRODUCTI ON

A large number of adaptive systems usedin practice (ec.g.,for adaptive signal process-
ing, noise canceling) acoustics, vibration suppression, etc.), have regressors which contain
sinusoidal excitations. In certain cases, such systems have been found to adinit exact
finite- dime~]siona.l linear time-invariant (1.T1) representations [7] [1 O] [1 1][5] [18]. Recently,
a necessary and sufficient condition, denoted as the XO condition [I] [2], has been found
which characterizes precisely when such L'T1 representations exist. Such cases are impor-
tant because in contrast to nonlinear and/or time-varying representations, the stability,
convergence and robustness properties of LTI systems can be completely characterized
using standard methods.

Unfortunately, it is not always possible to satisfy the XO condition exactly. For example,
it has been shown in Bayard [1] that a regressor formed by filtering sinusoids through a Tap
Delay Line (TDL) will only satisfy the XO condition exactly in the limit as the number of
taps increases to infinity. As another example, implementations based on paired sine/cosine
regressors will satisfy the XO condition exactly only if successive pairs of elements of the
regressor arc perfectly matched with respect to gain and are exact 1 y 90 degrees out of phase.
Clearly, in practice it is difficult to satisfy the XO condition exactly, Hence, it is desired to
establish representations and robustness analysis for the general case.

In the present paper, it is shown that a large class of adaptive systems with sinusoidal
regressors can be written as the parallel connection of a purely 1.T1 block and an 1.T'V
Mock. An explicit upper bound is given on the induced 2-norm of the L'T'V block which
allows systematic analysis using robust control methods. The upper bound can be maxi-
mally tightened by solving a related convex optimization problem involving a linear matrix
inequality (LM 1), and solved using available software packages. As desired (for consistency
with carlier results), the nori-bound vanishes when the XO condition is satisfied leading
to a purely LTI system, An example is given showing a complete robustness aria.lysis of
an adaptive system with a single-tone sine/cosine regressor where there are errors in the
implementation. All results in this paper arc based on the anal ysis in a recent report [1].

2 BACKGROUND

2.1 Adaptive Systems with Harmonic Regressors

The configuration to be studied is shown in Figure 2.1. An estimate % of some signal y is
to be constructed as a linear combination of the clements of a regressor vector z(t) € RN,
ie.,
Estimated Signal

7= w(t) z(t) (2.1)



where w(t) €V is a parameter vector which is tuned in real-time using the adaptation
algorithm,

Adaptation A lgorithm
w = uP(p)[E(t)e(t)] 2.2)

Here, the notation I'(p)[:] is used to denote the multivariable LTI transfer function I'(s) -/
where I'(s) is any LTI transfer function in the Laplace s operator (the differential operator
p will replace the Laplace operator s in all time-domain filtering expressions); the term
e(t) € R is an error signal; p > 0 is an adaptation gain; and the signal Z is obtained by
filtering the regressor z through any stable filter $'(p), i.e.,

Regressor Filtering
= F(p)z] (2.3)

The notation F(p)[-] denotes the multivariable LT1 transfer function F(s)-I with SISO
filter F(s), acting on the indicated vector timme domain signal.

For the. purposes of this paper, it will be assumed that the regressor z can be written as
a linear combination of m distinct sinusoidal components {w;}f’én O<w<w2<...< Wy,
where the frequencies have been ordered by size fromnsmallest to largest. Equivalentl y, it
is assumed that there exists a matrix & € RV*?™ such that,

Harmonic Regressor
z = Xc(t) (2,4)

¢(t) = [sin(wit), cos(wit), ..., sin(wy,t), cos(wnm t)]7 € R*™ (2.5)

Equations (2. 1)-(2.5) taken together will be referred to as a harmonic adaptive system.
Collectively, these equations define an important open-loop mapping from the error signal
¢ to the estimated output §.Because of its importance, this mapping will be demoted by
the special character H, i.e.,

The special structure of H is depicted in Figure 2.1.

Most generally H is a linear time-varying (LTV) operator. However, the main results
of this paper show that H can always be written as the parallel connection of an LT1
subsystem and an LTV subsystem where the “size” of the LTV subsystem is ch aracterized
in terms of a norm bound. This provides an important alternative representation of the
adaptive system, particularly in cases (often occuring in practice) where the norm bound
on the LTV perturb ation is small.

REMARK 2.1 The definition of I'(s) is left intentionally general to include analysis of the
gradient algorithm (i.e., with the choice I'(s) = 1/s), the gradient algorithm with leakage
(i.e., I'(s) =1/(s+0); 0 > 0), proportional-plus-integral adaptation (i.e., I'(s) = kp+ki/s),
or arbitrary linear adaptation algorithms of the designer’s choosing, Adaptation laws which
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Figure 2.1: LTV operator § = Hle] for adaptive system with harmonic. regressor z, adap-
tation law I'(s), and regressor filter F(s).

are nonlinear or normalized (e.g., divided by the norm of the regressor), are not considered
here since they do not have an equivalent LT1 representation I'(s). .

REMARK 2.2 The use of the regressor filter }'(s) is (2.3) allows the unified treatment
of many important adaptation algorithms including the well-known Filtered-X algorithm
from the signal processing literature [16] [11] [4] [1 7], and the Augmented Error algorithm
of Monopoli [9]. Since « is comprised purely of sinusoidal components and F' in (2.3) is
stable, all subsequent analysis will assume that the filter output # has reached a steady-state
condition, .

3 LT1 REPRESENTATI ONS

The following result taken from [I] [2] will be needed, which gives necessary and sufficient
conditions for the operator H to be LT1I.

THEOREM 3.1 (LTI Representation Theorem) Let the regressor z(t) in the adap-
tive system (21) -(2. S) be given by the general multitoneharmonic expression (2.4)(2.5)
where the frequencies {wi}it;are distinct, nonzero,and|¥(Jwi)l>0 for all i.

Then,

(i)  The mapping H from e to §is exactly representable as the linear time-invariant
operator,

H: §=H(p)e 3.1)



if and only if the matrix & in (2.4) satisfies the following X- Orthogonality (X0O) condition,

X'~ Orthogonality (X0O) Condition:

XTA . DP (3.2)
d12 * 12x2 d) PECEEE . O
p2a 0 IREIT € REmx m (3.3)
: R 0
0 . .... 0 d?" I
where, d*>0,i=1,....m are scalars and 1,,€ R**?{sthe matriz identity.

(ii) H(s) in (9.1) s given in closed-form as,

H(s) = uYo 7 Hs) (3.4)

His) - Ff? J\'“(s — jwi) 4 (s + JM;)) , F ;52) (1‘(sk jw) T(s + jw,-)) (3.5)
Fr(i) & Re(F(jw)); Fi(i) & Im(F(jw:)) (3.6)

DEFINITION 3,1 The matrix XTX = D? having the special pairwise diagonal structure

(S'. 9) :n Theorem S'.1 is defined as the confluence matrix associated with a particular
harmonic adaptive system (2. 1)-(2.5), n

Without loss of generality, the confluence matrix will be assumed to be nonsingular,
i.c., D? > 0, since any zero diagonal pair d;’ 1,,, d, ‘= O in D*> 0 corresponds to a

distinct frequency wi which can be removed from the definition of c(t) in (2.5), reducing
the value of m accordingly,

DEFINITION 3.2 A minimal realization of an LTI harmonic adoptive system (2,1)-
(2.5) is defined by the regressor choice ;== X;c(t) where X; € R***™ {5 any squarc
matrix factor of its confluence matriz D°> 0, t. e.,

DEFINITION 3.3 Tonal canonical form isdefined as the unique minimal realization
of an LTI harmonic adaptive system (2.1)-(2.5) specified by the regressor choice 1= X ¢(t)

where Xy € pom x 2m 18the unique positive diagonal square-root A3 = D > 0 of :ts confluence
matriz D’ u

The following Corollary to Theorem 3.1 will be useful for a later example,



COROLLARY 3.1 (Gradient Algorithm with Leakage) Assume thattheadaptive
system with harmonic regressor (2. 1)-(2. 5)1s specified as the gradient adaptive algorithm
with leakage, a. e.,

w=-ow + z(t)e(t) (3.7)

for some value of the leakage parameter o > 0(cf., Joannouw and Kokotovic [8]). Then, if
the XO condition of Theorem S.1 issatjsfied. the LTI egpression ($.4) for ‘H is given by,

H(s) :'=1ﬂ X éasj?wa+ ,,)l (3.8)

PROOF: Result (3.8) follows by substituting, I'(s) = a,o> O, and F(s) = 1 in
Theorem 3.1, and rearranging.

4 THE LTI/LTV DECOVPOSI TI ON

The main result is given next, showing that in the general case where the XO condition
is not satisfied, the mapping H can always be decomposed into a parallel connection of an
LTI subsystem and an LTV perturbation,

THEOREM 4.1 (LTI/LTV Decomposition) Consider -the adaptive system (2.1)-(2.9)
with harmonic regressor (2.4)(2.5). Then,

(i) In general the mapping H from ¢ to ¢ can be expressed as the parallel connection of an
LTI block H(s), and an LTV perturbation block A,

H: §=H(p)e+ Al (4.1)
where,
H(s) & pd d? Hys) (4.2)
1=1
Ald 2 ue®)" AT (p) [fc(t)c] (4.3)
ALXTXY - D (4.4)
F £ blockdiag{F;} € ¥ (4.5)
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A “(i) Fl(i)ﬂ . p2X2. .
Fi = _Fy(i) FR(QE' RE*% fori=1,...,m (4.6)

Fr(i) 2£Re(F(jw)); Fi(i)& Im(F(jw)) (4.7)
and where H;(s)1s as defined in (8.5) of Theorem S.1, and D’is chosen (?~on-uniquely) as

any matriz of the 2 x 2 block-diagonal form($.3).

(ii) If the adaptation law I'(s) s stable with infinity norm ||I’(s)||e, then the gain of the
LTV perturbation can be bounded from above as,

1A]l2i < prmio (A)[|T(s)

oo max | F(wi)] (4.8)

where ||-||2¢ denotes the induced Lq-norm of the indicated operator.

PROOF:

Proof of (i): Substituting (2.4) and the relation & == F(p)[X'¢(t)]= X.Fe(t) into (2.1)-(2.3)
gives,

¥ = pz(t)TT(p) ”,(tz:c_ (4.9)
= puc@)TXTX - T(p) fc(t)c] (4.10)

Decompose X7 X into two distinct parts using the identity,
XTx=D*+(X"'x -D)=D"+ A (4.11)
Substituting identity (4.1 1) into (4,10), and expanding gives two distinct subsystems,

§ = pe®)’ D? - T(p) [fc(t)c] 1 pe(t)'A - T(p) [fc(t)c] (4.12)

By the results of Theorem 3.1 the LTI part Tlgs) is uniquely associated with the operator
containing the D*term, and the LTV part A is uniquely associated with the operator
containing the A term in (4.12).

Proof of (ii): This result follows by standard signal norm bounding methods, and only a
brief outline is given. Let,

va & Ald = uc" AT (p)[ Fee) = pl A7l (4.13)

where,

BEAC (4.14)
n 4 I(p)[Fee] (4.15)




1
and the 2-norm is defined as ||z||, £ [ 0 medt] . Then,

llalle = ullB7nll2 < pllnll, max(8” )} (4.16)
But it can be shown that, o .
max(f#)? <mi . 5(A) (4.17)
and, 1
linllz < 1IT(s)lleom? max |F(ws)] - []e]l2 (4.18)

Combining (4.16)(4,17) and (4.18) gives,

llyalle < pma(B)|I1(s)lleo max |F(wi)] - [le]l2 (4.19)
Hence,
1401 2 sup 12112 < g (A P(8)l o0 mie | () (4.20)
e€l; ||c||2 ¢
which is the desired result, "

The LTI/LTV decomposition of H can be understood by the sequence of block diagram
rearrangements shown in Figure 4.1. Specifically, Figure 4.1 Part a. shows the initial
adaptive system with harmonic regressor; Part b. shows the matrix A" pushed through
scveral scalar matrix blocks of the diagram; Part c, uses the identity A7X = D? + (XX -
D2) to split the diagram into two subsystems; and Part d. recognizes the upper subsystem
as LTI and the lower subsystem as LTV (from Theorem 3,1) with the indicated norm
bound,

REMARK 4.1 The LTI/LTV decomposition in Theorem 4.1 is important for adaptive
systems which do not exactly satisfy the XO condition. In this case, the adaptive system
can be analyzed using modern robust control methods (i.e., small gain theorem) making
use of the analytic expression (4.2) for the LT1 block Il(s) and the norm bound (4,8) on the
time-varying perturbation block A [15] [20], The induced £o-norm has been bounded here
since it is consistent with the use of H,, theory for robustness analysis, However, other
induced norms (e. g., £ p-norm,p =1 or 3 <p <oo)can be similarly bounded and may be
of interest for other types of analysis [19], [

REMARK 4.2 The need for ||I'(s) || to exist in Theorem 4.1 (part ii) requires that the
adaptive law uses some type of ‘{leakage” (cf., Ioannou and Kokotovic [8]). This condition
is somewhat conservative in light of the fact that many adaptive laws without leakage
are known to be stable in closed-loop from separate Lyapunov stability arguments [12],
Hence, it is conjectured that a less conservative norm-bound is possible which does not
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require leakage. The search for such a bound (if it exists) is left as an open issue, However
Theorem 4.1 will be applicable to most practical implementations since leakage is often
added to ensure robustness. .

5 OPTIMZED NORM BOUNDS

The decomposition as stated in Theorem 4.1 is only unique for a specified choice of D2,
Hence, D? plays the role of a “multiplier” which should be optimized to capture “most”
of the L'T1 character of the H operator in the LTI/LTV decomposition. The optimization
problem will be addressed in this section,

The approach is to minimize the norm-bound (4.8) of the LTV operator over all possible
D’of the appropriate pairwise diagonal form (3.3). Since the matrix D’only appears in
the o(A) term, this is equivalent to minimizing o( X7 A"~ D?). The problem is stated below
and shown to lead to a convex linear matrix inequality (LMI) optimization problem.

LEMMA 5.1 (LTV Norm-Bound Optimization) Consider the following optimization
problem,

min o X'x - D) (5.1)
subject to,
d12 Taxs 0 A 0
paApA 0 | 5 € R2mx2m (5.2)
6 @' d’? ‘012x2
where, d°> O, 1=1, ... . m are arbitrary scalars.

Then the solution is given by solving the following equivalent convex, optimization prob-
lem,

min { (5.3)

subject to,
t-1 XTx -1 0
[ XTx-D t- I (5.4)

t>o0 (5.5)

D>0 (5.6)
where D 1s constrained to have the pairwise diagonal structure (5.2)
PROOF: Consider the related optimization problem,

min t (5.7)

10



subject to,

t.1 XTx - D
XTx —-D i1 20 (5-8)

t>o0 (5.9)

Given t > 0, inequality (5.8) is known to be equivalent to S > O where S is the Schur
complement t — (XTX - D) (1. I)(XTX — D) (cf., [3]), But inequality S > O is equivalent
to the inequality t'> (X7AX' - D) (X7 X -- D), which is minimized by t = 5(XTXx — D). The
result of the lemma follows by further optimizing this solution over D with the constraint
D>0.

The optimization problem (5.3)-(5,6) is in a standard form of a linear objective function
with LMI constraints. As such, it can be solved using many available software packages
for LMI problems, such as the LMI Control Toolbox [6] which implements the Projective
Algorithm of Nesterov and Nemirovskii [13][1 4].

For single-tone problems, the optimal D?=d? .1 canbe found analytically.
LEMMA 5.2 (Single-Tone Case) Consider the optimization problem,
nlli;n (XTX — & Lys) (5.10)

where d > O 18 an arbitrary scalar.

Then the solution d?is given by the average of the diagonals of X7 X, i.e.,

d 22 %(m” + m??) (5.11)
wh ere,
XTx & M (5.12)
A [t 2
M= [ m? 22 | € 1 (.13)

PROOF: The singular values oy,02 of the 2 x 2 symmetric matrix A = XTX — d*, I can
be written in terms of its eigenvalues as,

0i(A) = [M(A)] = (X X) — @, i = 1,2 (5.14)

where Ai(A) denotes an cigenvalue of A and ai(XTX) denotes an eigenvalue of XTAX,
Here, the eigenvalues Ai and @ arc related by the shift in the complex plane i.C.,/\i =
a;—d?, i=1,2.Henceas d’is increased, the Ai are detcrmined by shifting the (nonegative
real) eigenvalues @; to the left along the real axis a distance of d*, The quantity o(A)=
maz(|A1], 1~,1) is clearly minimized at the point where A= — A2, or equivalent] y where,

d’= (a; + @2)/2 = Trace(XTX)/2 (5.15)

11



which is the desired result (5.11).

6 EXAMPLE

Consider the gradient adaptive algorithm with leakage, i.e.,
W =—ow+ z(t)e(t) (6.1)

for some value of the leakage parameter o >0. This corresponds to the choice I'(s) =
/(s + 0), F(s) = 1 in the adaptive system (2.1)-(2.5).

The ideal sine/cosine regressor is defined by,

Ein wit
T = '
08 Wity
Since == A&} c(t) with &y = diag[1,1it follows that the XO condition X]' X} = D? is
satisfied exactlv with confluence matrix D= diaa [1. 1]. Usine the results from Corollarv




Hence, by the LTI/LTV decomposition the adaptive system is representable by a parallel

connection of the LTI Mock H(s) given in (6.2) and an LTV perturbation block A with
induced 2-norm bound, .
1A]l2: < pma (B)]IT(s) [loo | F(Fewn )]
2
€

1w

It is seen that as ¢— O and § — O, the norm bound A goes to zero, which ensures
a pure LTI representation in the limiting case of a perfect regressor implementation. For
finite € and 6 the, above L'TI/LTV decomposition is amenable to analysis using standard
robust control methods.

7 CONCLUSI ONS

This paper provides an alternative representation of adaptive feedforward systems with
sinusoidal regressors. Specifically, the LTI/LTV Decomposition Theorem is proved which
decomposes the adaptive system into a parallel connection of an LT1 subsystem and an LTV
subsystem. An explicit norm-bound is established on the LTV subsystem, to enable the use
of robust control methods applicable to LT1 systems with norm-bounded perturbations.

The LTI/LTV decomposition is unique up to the choice of a certain multiplier matrix D2,
This multiplier is ideally chosen to minimize the normn-bound on the LTV operator, It was
shown that the optimal multiplier could be found by solving a related convex programming
problem involving a linear matrix inequality, The LM1 problem is readily solved using
available software. For the single-tone case, an analytic solution was provided.

A simple example was given to demonstrate the main ideas, using a regressor con-
structed from a non-ideal sine/cosine basis. The system was optimally decomposed into
LTI and LTV subsystems, indicating that the LTV perturbation is on the order of phase
and amplitude perturbations in the regressor. As desired, a perfect LT1 representation is
recovered in the limit as the phase and gain distortions became small,

The LTI/LTV representation is significantly different from other representations of
adaptive systems which typically require the usc of Lyapunov and Hyperstability meth-
ods for adaptive control analysis [12]. In contrast, the LT1/LTV representation can be
analyzed and designed using modern robust control tools applicable to 1Tl systems with
norm-bounded perturbations, It is hoped that this will open up a new understanding of
how such adaptive systems work and speed up their reduction to practice.

13
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