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ABSTRACT

A compact VLSI neural processor based on the Optimization Cellular Neural Network (OCNN) has been under
development to provide a wide range of support for an intelligent remote sensing microspacecraft which requires both high
bandwidth communication and high-performance computing for on-board data analysis, thematic data reduction, synergy of
multiple types of sensors, and other advanced smart-sensor functions. The OCNN is developed with emphasis on its
capability to find global optimal solutions by using a hardware annealing method. The hardware annealing function is
embedded in the network. It is a paralleled version of fast mean-field annealing in analog networks, and is highly efficient in
finding globally optimaf solutions for cellular neural networks. The OCNN is designed to perform programmable functions
for fine-grained processing with annealing control to enhance the output quality. The OCNN architecture is a programmable
multi-dimensional array of neurons which are locally connected with their local neurons. Mgjor design features of the OCNN.
neural processor includes massively parallel neural processing, hardware annealing capability, winner-take-all mechanism,
digitally programmable synaptic weights, and multisensor parallel interface, A compact current-mode VLS| design feasibility
of the OCNN neural processor is demonstrated by a prototype 5x5-neuroprotessor array chip in a 2-pm CMOS technology..
The OCNN operation theory, architecture, design and implementation, prototype chip, and system applications have becn
investigated in detail and presented in this paper.
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1. INIROD[JCI'10ON
1. 1.Advanced Microspacecraflt Overview [1, 2]

Advanced microspacecraft are intended to provide affordable, comprehensive access to space. Increasingly, space scientists
areasked to deal with the economics of their data and the systems used to collect it. NASA is moving from amodel of
spacecraft design where science instruments are designed and built separately and then attached to the spacecraft late in the
integration process to one where science collection needs are built into a spacecraft from the beginning and designed along
with all other subsystems. This type of spacecraft has been dubbed a “sciencecraft” typified by small size and low cost. Low
mass (1 O kg to 100 kg) also provides for a 10x reduction in launch vehicle cost over traditional spacecraft (1000 kg+) when
sent on the same trajectory. One major tradeofl Of smatler spacecraft is reduced power which, inturn, results In reduced
communication bandwidth. Thus, scientists must turn to several techniques including more powerful on-board processing of
science data, to maximize, the return of useful, interesting information. The synergy arising out of simultaneous processing of
data from multiple sensors is another way of enriching the downlinked science data.

The economics of space science in the last decade of the twentieth century follows that of many other areas of endeavor.
More results must be obtained from fewer resources. intellectual capital is the one resource which can be applied without
restraint. The “mantra™ of NASA which captures this economic trend is “faster/better/cheaper” and “smarter” is the add-on
which recognizes the central role of creatively and invention. This paper explores the application of neural processing to
science data. The overall goal isto domore exciting science, both filling in the blanks left from earlier exploration and
providing additional capabilities to capture unanticipated phenomena. The increasing autonomy of sciencecraft suppor ted by a
variety of processing paradigms (general purpose, interval logic, neural net, digital signal, etc.) have the potential to give this
ncw generation of spacecraft abilities to recognize and capture important science without prior explicit instruction from the
ground.




Two important computing trends are emerging in current spacecraft infrastructure design: packaging and processor
technology. Aggressive packaging using multichip modules (MCMs), MCM stacking, chip stacking, chip-scale packaging
(CSP), plastic packaging, etc. is driving down mass and increasing the functional density of flight avionics. The decreasing
lag time between the commercial introduction of microprocessors and their use in space systems supports state-of-the-art
processing performance along with the advantages of contemporary software and hardware development tools. These advances
In packaging for microelectronics coupled with low-power design and the continued massive increases in memory capacity
form a powerful foundation for new types of spacecraft processing approaches,

Packaging advance-s also support the physical integration of microsensors, associated control/conditioning €lectronics,
buffering, processing, data compression and many other functions Traditionally separated, Data from one type of sensor may
be used to dynamically calibrate other sensors. Signals from multiple sensors may be combined to provide improved signal-
to-noise ratios. These and many other techniques are made possible by the physical proximity of sensors and the ability of
advanced packages to provide controlled electrical environments (Faraday shielding, controlled impedance, extremely short
signal paths, etc.) The stacking of MCMS and integrated circuits (3D microelectronics), allows this environmental control to
extend into the third dimension. It also readily supports the evolution of sensor structures from linear arrays to area arrays [0
solid arrays.

As mentioned earlier, packaging and processor technologies are key to the goals of twenty-first century sciencecraft; 3D
microelectronics packaging has already provided a two order-of-magnitude increase in functional density over the previous
generation of spacecraft microelectronics. Advanced 3D VLS| packaging techniques promise another two or three order-of-
magnitude increase over the next 10 years. It should be noted that thisis independent of any increase in functional density
achieved by advances in IC process technology which may provide another 4x to 9x improvement in area efficiency.
Processor technologies, through a variety of techniques, will extend the performance of spacecraft processors from the current
20 MIPS [0 over 500 MIPS over the next 10 years. Some of these Techniques involve chip-level architectures, others are
based on multi-computing arrays.

1.2. Intelligent Remote Sensing Imager

The Intelligent Multisensory Imager (IML1) is a highly integrated and versatile remote imaging instrument which performs
various types of data sensing, acquisition, processing, synergy, compression, communication, and autonomous multisensory
control. The IMI is proposed for NASA’s advanced remote sensing microspacecrafts which automatically recognize, localize,
and classify point, area, and volume objects and phenomena in real-time on the Earth and on planets [3].

The IMt includes two major subsystems: IMI Eye, and 1M1 Brain. The 1M1 Eye is a compact optoclectronic SUbsystem
which integrates a wide range of different sensors with geometric, radiometric, and spectral parameters meeting the actual
science and mission requirements. The IMI Brain is a high performance control and data subsystem which provides or-board
computing resources for the IMI to perform various on-board tasks. Due to the adaptation of multilple sensor parameters for
various dedicated tasks it is possible to optimize and to mini mize the science payload complexity for microspacec raft
applications. By means of on-board smart sensor functions and data analysis of the generated geometric and spectral data, a
minimum task specific data volume can be produced and transmitted [0 the Earth, meanwhile a maximum information may be
provided for real-time users with PC based receiver stations [4]. The success oOf the IMI development will enable new science
capabilities, enhance scientific return, improve timely information availability, reduce operation costs, and alleviate downlink
limitations for the late- 1990's and future missions.

13. The Role of a High Performance QOCNN Neural Processor

A compact VI .S1 neura processor based on the optimization Cellular Neural Network (OCNN)has been under
development to provide awide range of supports for an intelligent remote sensing microspacecraft which reguires both high
bandwidth communication and high-performance computing for on-board data analysis, thematic data reduction, synergy of
multiple types of sensors, and other advanced Smart-sensor functions.  Incorporating of the proposed VI .S1 neural
neuroprocessor into the IMI Brain offers orders-of-mrrgnitude computing performance enhancements for on-board real-time
intelligent multisensor processing and control tasks. The OCNN is 1argeted for the multiisensor applications although it is
universal as the Turing machine [7]. The neuroprocessor based on the OCNN has great potential in solving many important
scientific and engineering problems by the use of different cloning templates. For the maximum flexibility over a variety of
applications, many CNN functions has been verified via system simulation. These functions include noise filtering, isolated
pixel elimination, hole filling, morphological operations, image enhancement, edge detection, connected component
detection, feature extraction, motion detection, motion estimation, motion compensation, object counting, size estimation,
Ear[h tracking, collision avoidance, minimal and maximal detection, etc. The proper network operation is also confirmed for

nown and arbitrary cloning templates,




The OCNN operation theory, architecture, design and implementation, prototype chip, and system applications have
been investigated in detail and presented in the following sections.

2. INCORPORATING A NEURAIL PROCESSOR INTO AN INTELLIGENT MULTISENSOR
MICROSPACECRAFT

Cellular Neural Networks is a multi-dimensional array of mainly identical cells which are dynamic systems With
continuous state variables and locally connected with their local cells within a finite radius. Since its original publication by
Chua and Yang [5,6] in 1988, the CNN paradigm has evolved rapidly and provides an unified framework for many
computation-intensive applications such as signa processing and optimization, Moreover, the CNN ‘architecture is a locally
connected, massively paralleled computing system with simple synaptic operators so that it is very suitable for VLS
implementation in real-time, high-speed applications [7,8]. The behavior of cellular neural networks depends on the
computing model, network topology, and coefficient templates. The operation for different applications depends primarily on
the coefficients of the templates and the procedure to apply them. A template includes the information for synapse weights,
threshold value-s, and boundary conditions.

In this paper, the OCNN is introduced with emphasis on its capability to find global optimal solutions by using a
hardware annealing method [8,9]. The hardware annealing function is embedded in the network. It is a paralleled version of
fast mean-field annealing in analog networks, and is highly efficient in finding globally optimal solutions for cellular neural
networks. The OCNN was designed to perform programmable functions for fine-grained processing with anneding control to
enhance the output quality.

2.1. Major Features of the Optimization Cellular Neural Network

The OCNN proposed for the Intelligent Multisensory System is an improved version of the original CNN. It has four
more significant features than the basic CNN: '

{A) Optimal Solutions of Energy Function:
Under the mild conditions [5], a CNN autonomously finds a stable solution for which the I.yapunov function of the
network is locally minimized. To improve the local minimized energy function of the basic CNN, the annealing
capability is included to accommodate the applications in which the optimal solutions of energy function are necded.
Hardware annealing [9] is a highly efficient method of finding optimal solutions for cellular neural networks.
(B) Multiple Layers with Embedded Maximum Evolution Functions:
Inthe original CNN every pixel is represented by one neuron. In the OCNN every pixel can be represented by
multiple neurons which form a hyperneuron and execute the maximum evolution function for various profile
selection or data synergy. For instance in the OCNN designed for motion detection, every image pixel is represented
by multiple mutually exclusive neurons which form a hyperneuron for velocity selection. Only the winning neuron
is active high and the other neurons of the same hypercolumn are umed off. The network operation will be
terminated whenever the energy function of the net work reaches a minimum.
() Digitally Programmable Synapse Weigh(s:
To improve the fixed synapse weights of the basic CNN, the digitally programmable synapse weights(10] arc
designed for the OCNN to accommodate the applications in which programmable pre-determined operators are needed.
(D) High-speed Parallel External Image 110:
To improve the global interconnections and external image 1/0 of the basic CNN, a 2,-D array of optical receivers and
transmitters is integrated with the OCNN to accommodate the applications in which high-speed parallel external
image 1/0 and optical interconnections are needed [11].

22. System Architecture of the OCNN Neural Processor

There are three mgjor different system computing architectures of an OCNN processing engine: (a) a front-end sensory
information processor, (b) a processing accelerator, and () a universal machine. datapath. For IMI applications, the first two
system architectures are selected,

2.2..1. Smart-Sensor OCNN

The OCNN can be used as a front-end sensory information processor to provide. high throughput real-time computing
power at neighborhood of the sensory circuit. Figure 2.1 shows a data ftow diagram of a smart-sensor OCNN
neuroprocessor design by taking advantage of the high-speed parallel optical 1/(), The functional blocks for the optoclectronic
OCNN neuroprocessor include: (a) an optical receiver array, (b) an electronic neuroprocessors array, and (c) a programmable




synaptic-weight matrix memory. It is feasible to put the active-pixel sensor [15] on the top of a die stack of the OCNN.
This optodlectronic smart-pixel OCNN design can take the combined advantages of the optics and electronics to achieve ultra-
high-speed smart sensory information processing and analysis at the focal plane. In order to achieve a reliable implementation
for an optoelectronic integrated computing system, the fabrication and packaging technology should be well supported for the
optical functions as well as the electrical functions.

2.2.2, processing Accelerator OCNN

The OCNN can be used as a processing accelerator in a heterogeneous computing system. A heterogeneous computing
processor with embedded neuroprocessors is shown in Fig. 2,2. This integrated computing module includes an 256x256-array
OCNN neuroprocessor, dual RISCs, data and program memories, mass memory, high speed data links, spacecraft bus
interface, multi-sensor interface, and optional host bus interface. It is implemented in a multichip module (MCM) of
substrate size 1250 mm x 500 mm. Table 2.1 shows its projected performance data based on a 0.5-pim CMOS technology and
a 1997 delivery schedule. The power dissipation of the proposed IMI Brain MCM is about 15 W at 50 MHz nominal
operation. The network operation clock for the OCNN is about 0.2 MHz. Tire IMI Brain MCM provides 55x2 MIPS and
82x4 GCPS (gigs-connections per second). Its volume is less than 100 cm’ and its mass is about 200 gm.

A functional operation of the IMI processor is briefly described in the following. The master RISC gets an interrupt if
the system is receiving commands. The master RISC has atask link to the slave RISC, In the interrupt procedure the stave
RISC will be initialized by the master RISC and both RISC's are waiting for the next trigger, The master RISC has the
highest priority and manages the tasks and procedures. In the command phase, the master RISC initidizes the neuroprocessor
array and controller. The OCNN is used as a high-performance processing accelerator for the master RISC to perform on-
board computation and control tasks. The neural processing commands are pre-stored in the programmable synaptic-weight
memory. Update of the synaptic weights is depended on the application algorithms and their associated learning process.
Meanwhile the slave RISC has to control the multisensory electronics and direct the multi-sensor data [o the local mass
memory or to the neuroprocessor data memory. The buffered raw data and the processed data are under the control of the
master RISC. The master RISC builds up data frames with synchronize labels and house keeping data. The frames are then
transmittal to the microspacecraft for further storage or downlink to the ground. A scaleable multiprocessor architecture can
also be realized through high speed data links for advanced parallel processing tasks.

2 4. Advanced Packaging and Ultra-Low-Power Electronics [2]

An ultra-low-power 1024x1024-array OCNN neural processing engine has been under a devel opment study by using a 3-
D VLSI die stacking technology combined with a sub-0.25 pum low power (Vi = 0.9 V) SOl CMOS process technology
which is under development in MIT Lincoln Laboratory. A 3-D VLSI stack of dimensions 3 cm x 3 cm x 0.5 cm is projected
to accommodate a complete 1024x1024-array OCNN processor with one 1024x1024 active-pixel sensor on the top of the die
stack. A miniaturized highly-integrated 1Ml Brain is therefore feasible to be implemented into a compact cube at a manageable
power dissipation rate.
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, . , mocramemane | GO Technology 0.5 um 0.25 um (SOI)
Toage Rveir “ AT R orcen ¢ smamicwamne | RISC Performance | 5SMIPS@S0MHz. | 150MIPS@66MHz.
R Sypewelg RISC GhipiEixanple | RADG000-5L. PowerPC620

Row-by-Row Reagnut

OCNNI meuiton size 470x746 A?

ital Words
R N ) OCNN die size 15 mmx 15 mrn | 28.5mmx28.5 mm
. 4 OCNN aray size 128x128 512x512
— e OCNN network speed | 5Usec 2.5 us
e b OCNN performance 82 GCPS/die 1048 GCPS/dic
~ 2 rees < Program/Data_Memory | 2,5 MB 80 MB
wC Bramrclmage  “Reg, > e Mass Memory 1 GB 32GB
(Analog Phets) Power 15 Waltts 10 Watts
Volume 100 cm’ 50 cm®
Fig. 2.1. Dataflow diagram of the optoelectronic smart- | Mass 200 gm 100 gm
sensor OCNN neuroprocessor array. Voltage SV 33V

Table 2.1. Performance data for an IMI| Brain MCM
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3. THE OPTIMIZATION CELLULARNEURAL NETWORK

Cellular neural network (CNN) is a class of recursive neural networks with locally-interconnected neural processors. The
behavior of cellular neural networks depends on the computing model, network topology, and coefficient templates. The
operation for different applications depends primarily on the coefficients of the templates and the procedure to apply them. A-
template includes the information for synapse weights, threshold values, and boundary conditions. In this paper, the
optimization Cellular Neural Network is developed with emphasis on its capability to find globa optimal solutions by using
a hardware annealing method and a high-sped optoelectronic 1/0. The hardware annealing function is embedded in the.
network. It is a paraleled version of fast mean-field annealing in analog networks, and is highly efficient in finding globally
optimal solutions for cellular neural networks. The OCNN was designed to perform programmable functions for finc-grained
processing with annealing control to enhance the output quality.

3.1 .Operation Theory

Consider the OCNN with n x m neurons on rectangular grid as shown in Fig. 3.1. Fig. 3.2 shows a model of the™
OCNN neuron. Each neuron has the piecewise-linear transfer function fpyu(.) and its gain is variable. The gain is controlléd

by a monotonically increasing function gt} such that
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The OCNN dynamic behavior satisfies a set of differential equations in the matrix notation as given:

x dr

—_ T _ T = 1 - b i =
wherex = [V 1V oo ), X = ["yl"yZ“"va] ,u [VulvuZ"‘VuN] ,andw =[ll..,I]" isan Nx1 unity vector, N =nx m.

The capacitance C', and resistance R, at thestate node of the processing element, annealing gain control g(1), and biascurrent
Ib arc assumed to be the same for the whole network. In (2), A and B arc two-real N-by-P/ matrices consisting of fecdback
and feed-forward synapse weights and detenmined by given cloning templates Ta and Ty, respectively. For the shift-invariant

CNNS, they arc real symmetric. Since a pie.ccwisc-linear function is used as the transfer function of the network, the
generalized energy function is a scalar-valued quadratic function of the output vector v,

dx o 1y 4 :
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Here the factor 1/g in the second term stems from the energy associated with the piecewise-linear function with a neuron gain

other than unity. The process of finding the optimal solutions takes place during the change of Mg from negative definite to

indefinite matrix, as the annealing gain increases. Since Mg is also a real symmetric matrix, it can be diagonalized as

Mg =Q AgQT, where /\g is the diagonal matrix of eigenvalues k- k=1, 2,, N, and Q is an NxN matrix whose

columns are made of orthonormal set of eigenvectors €k’s.  In an annealed neural network, the elements of Ag are time-
varying.  However, Q is independent of the neuron gain because M and M g commute. By noting that
M g A-T,I- (@ 'g)Tx/g) I=M - (( Lg)’]'ljg) I, the relationship between the eigenvatues Of un-anncaled and annealed
network can be easily shown to be

h=ak-G8 A 0Tx po1p N @
gR 8
where A° are the eigenvalues of M.  In the hardware annealing, the eigenvalues A ‘s are changed from all negative ini tial

values to the final values A° 's by increasing the neuron gain g, such that the energy function (3) which is initially a convex..
function of y, is transformed gradually into a concave function. The initial neuron gain g, must be chosen such that

;Lk(go) < 0,V k. After the state is initialized to X = x(0), the initial gain at time = O can be set [0 a very small,

positive value such that O < g(0) << 1. Therefore, the network can be effectively lingarlized. It then increases continuously-
for O <t < Ta to the nomina gain of 1 required by the cellular network. Regardless of initial state values, the network results

in the optimal solution at which its energy is minimized globally. Despite of the time-varying nature of the hardware

annealing method, the stability of the network is still maintained as long as the gain control function g = g(#) are non--
negative.

Figure 3.3 shows plots of the energy landscape for increasing neuron gain values. The energy function is convex,
indefinite. and concave when the gain is in the range 0.1 <g < 0.4, 0.4 <g < 2/3, and 2/3< g <1, respectively. The’
solution moves toward the global minimum point as the gain value increase. The global minimum is guaranteed when the
gain vaue reaches 1.
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Fig. 3.1. An n-by-m OCNN on rectangular grid. The
shaded boxes arc the neighborhood cells of Cfi j). Fig. 3.2. Model of the OCNN neuron C(i.j).
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Figure 3.3. A sequence of snapshot the energy landscape for increasing neuron gain values from 1.0 to 0.8.

3.2 .Two-Neuron OCNN Experiment

To clearly illustrate the local-minimum issue in a network, atwo-neuron network as shown in Figure 3.4 is considered.
For a symmetric cellular neural network, a Lyapunov energy function can be found. The generalized energy function -
associated with the network possesses many heal-rninirnum points which could trap the network into unwanted solutions
when the network is used for optimization applications.
Assume that the piccewise-linear transfer function is used. The integration capacitance C, is normalized to a unity, the-
feedback weights arc symmetric such that A;, = A,, = A, > T, =1/R,, A, = A, = A}, the feed-forward weights B, = B,,”
1, and the network bias 7, = O. Then, the generalized energy function of (2) can be sim7plified as

E--1l Yy ApTy A M 6% } X [ Vy1 } [ Vul }

2 [ Y2 11 _ Al _ Ao'Tx Vy2 Vy2 Yz . _
where -1 <v,,,v,, < +1. After solving the equation Mx = 4 X, the eigenvectors and eigenvalues of M can be obtained asx, —
=(1-1]", x,=[11],and A, = A,-A; - 7;,&= A, + A, -T,, respectively. [f the cigenvalues 2's are positive and the biasis
quite smdl, then the minimal occur at all corners.

The lowest energy function value corresponds to the global minimum while the others correspond to local minimal. A.
Matlab program was written to simulate the two-neuron network with 4,=2and A, = -0.25. This simulation is performed
with four different initial condition points, namely point A= (0.4, 0.2), point B = (0.5, 0.7), point C = (-0.9, -0.8), point D
= (0.5, 0.6). The trgjectories of output values for un-annealed and annealed cases with VU, = 0.2 andv,; = -0.5 arc shown in

Figure 3.5 (a), (b). h

An HSPICE circuit simulation based on the electronic neurons described in Section 4 was performed. An initial
condition set-up time of 1yts wasused. The time constant is 0,3 ys. In the simulation, an annealing period of 15 ps (50
time constants) was employed, The results are shown in Figure 3.6, The outputs of both neurons, the state variables of both-
neurons and the annealing control signal are plotted. In the un-annealed case, the stable output is (-1, -1) for initial condition
C, whilein the annealed case, the stable output (1, -1). The whole optimization process completed with 50 time constants.
The measure results are shown in Fig. 3.7.
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Fig. 3.7. Measurement results of network operation. (a) Un-anne.sled case. (b) Anncaled case.

3.3.  Applications

To illustrate the OCNN prime performance, the edge detection results of a 64-by-64 OCNN for un-anncaled and annealed

conditions is shown in Figure 3.8. The hardware annealing provides enough stimulation to those frozen neurons caused by
SuCh ill-conditioned initial states and gets better results.
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Fig. 3.8. Edge delection application of a 64-by-64 CNN.




4. A COMPACT CURRENT-MODE VLSINEURAL PROCESSOR DESIGN

4. 1.Neuroprocessor Architecture and Operation

Figure 4,1 shows a complete OCNN multiprocessor architecture which is an nxm neuroprocessor array arranged in ann-
by-m rectangular grid with appropriate interconnections. The block diagram of a neuroprossing clement is shown in Figure
4.2. Each OCNN neuroprocessing element consists of a core neuron cell, synaptic weights, input/output circuits, and digital
interface. The network considered in this design is a continuous-time, rectangular-type OCNN with r = 1. A multilayer
OCNN can be redlized in a time-multiplexed fashion or in a multiple OCNNs configuration.

The digital interface provided are control data buses and read data lines, Four control buses for weights a,, a,, a,, and b,
are 5-bit wide each. On the other hand, aread datalineis common to all the cellsin arow, and a column select lineis
activated at atime to read cell outputs in a specific column. The data for synaptic weights are written into op.rater registers
and the network outputs are fetched from the cell output latches to the output buffer regegisters in column parallel. Depending
on the applications, x(0) can be initialized to zero, a scaled vy, or the weighted external inputs. One terminal of the capacitor
C is switched to the voltage x(0) during the initialization operation. At the same time, the outputs of the synapses- go into
the high-impedance state by control signat ¢ and ¢, and the state node is connected to the ground to avoid possible spurious
operation caused by the closed loop with the parasitic capacitance at the state node.

4.2. Building Blocks and Circuit Design

This section briefly describes the building blocks and associated circuits based on the current-mode approach [13] for a
low-power compact OCNN neuroprocessor implementation.

Programmabl e synapses: The digital programmable synapse is realized using a binary-weighted current source army.
Programmability of -3.75 to 3.75 for each synaptic weight is provided. This synaptic weight function can achicve 5-bit
programmability and a resolution of higher than 8 hits.

Transimpedance multiplier: The hardware annealing is performed by the pre-multiplication of thestate v;; by the gain

control function g before the nonlinear function f(X) takes place. The basic element of the proposed circuit is the double-.
MOS differentia resistor operating in triode region

Summing circuit: If the summation of the weighted currents from the neighboring cells is carried out directly in the
transimpedance multiplier, the value of resistance Rx is inversely proportional to the gain-control voltage V.. In order to
accommodate a constant Rx, the constant input impedance current inverter is used at the input stage of the multiplier.

Nonlinear function: The circuit for the nonlinear function y = f(x) is accomplished by a simple transconductor consisting.
of a differential amplifier. Itslarge signal transfer function is a smooth, sigmoid-like characteristics. A weak positive
feedback is applied to increase the transconductance vaue without increasing the (W/1,) ratio of the differential-pair transistors.

optical receiver: A vertical CMOS-BJT is utilized as a phototransistor and further integrated with two bipolar transistors-
in a Darlington configuration. A 60x60-mm Darlington-phototransistor provides a 20 mA with 100 dB dynamic range [ 16],

4,~.Current-NJode VLSIOCNN Neural Chip: Prototype and Demonstration

To illustrate the implementation feasibility, a programmable 5x5 cellular neural processing chip of active dimensions
1380 pm X 746 pm was designed and fabricated in a2-pm CMOS technology through MOSIS Services. The dic photo and
the layout design of each neuron is shown in Fig. 4.3. There arc atotal of 11,250 transistors on the chip. The power
consumption 1s 989 W per neural cell, and that for the whole active array is less than 25 mw. A ccll density of S05
cellglenl’is achieved.

If an ultra-]Jow-power sub-().25 um SOI-CMOS technology is used, acelt density of 16,160 cells'cnl’can be achieved. A
network Of 512 X 5]2 anncaled neurons can be realized in a2.9 cm x 2.9 cm chip. A network of 1024 x 10?,4 anncaled
neurons is feasible to bc designed with 4 5§12x512 OCNN chips and packaged into a 3-D dic stack.

A circuit board was built to demonstrate the operation of this prototype chip. The output arc connected to an array of
LED displays. Experiments on edge detection were performed. The templates for edge detection operation arc
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The input pattern and the measured result of the edge detection experiment are shown in Fig. 4,4(a) and Fig. 4.3 (b),
respectively. The measured result agrees well with the C-based simulation result. The CPU time for the C-based simulation

is 2.53 seconds. The speedup is about 160,000.
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4.1. An OCNN multiprocessor implementation based on an nxm ncuroprocessor array architecture.
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Fig.4.2. An OCNN unit consists of a core neuron cell, synaptic weights, 1/0 circuits, and digital interface.
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5. CONCLUSIONS

Different system computing architectures of an OCNN processing engine were studied for microspacecraft on-board
computing applications. Integration of an OCNN neuroprocessor array into the IMI Brain offers orders-of-nmgnimdc
computing performance enhancements for on-board intelligent multisensory processing and autonomous control tasks.

The OCNN algorithmic property for optimization solution is explored and illustrated. Important featres of the
OCNN implementation arc well developed which include effective VLS| neural computing architecture, programmability for
various algorithms, global optimization capability, compact neurons and synapses, fast data manipulation and routing, photo-
sensors for front-end image acquisition, multisensory parallel interface, low power consumption, high cell integration density,
and low manufacturing cost.

A compact current-mode VLS| 5x5-array OCNN chip was developed in a2-pm CMOS to illustrate the implementation
feasibility. A 3-1) VLSI stack of dimensions 3 cm x 3 cm x 0.5 cm is projected to accommodate acomplete 1024x1024-array
OCNN embedded processor with one 1024x1024 active-pixel sensor on the top of the die stack. A miniaturized highly-
integrated IMI Brain is therefore feasible to be implemented into a compact cube at a manageable power dissipation rate.
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