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ABSTRACT

A compact VLSI neural proeessor based on the Optimi?.ation  Cellular Neural Network (OCNN)  has been under
development to pmv-ide a wide range of support for an intelligent remote sensing mierospacecraft  which requires both high
bandwidth communication and high-performance computing for on-board data analysis, thematic data reduction, synergy of
multiple ty-px of sensors, and other advanced smart-sensor functions. Ihe  OCNN is developed with emphasis  on its
capability to find global optimaf  solutions by using a hardware annealing method. The hardware annealing function is
em~dded  in the network. It is a paralleled version of fast mean-field annealing in analog networks, and is highly efficient in
finding globally optimaf solutions for cellular neural networks. The OCNN is designed to perform programmable functions
for fine-graincxl  processing with amealhg control to enhance the output quality. The OCNN architecture is a programmable
multi-dimensional array of neurons which are locally connected with their local neurons. Major design features of the OCNN.
neural processor includ=  massively parallel neural processing, hardware anncding  capability, winner-take-all nlechanisrn,
digitally programmable synaptic weights, and mrrltisensor parallel interface, A compact current-mode VLSI design feasibility
of the OCLNN neural processor is demonstrated by a prototype 5x5-ncuroproWsor  array chip in a 2-pm CMOS technology..
TIc OCNN operation theory, architecture, design and implementation, prototype chip, and system applications have km
investigated in detail and presented in this paper.
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1. IN1ROD[JCI’1ON

1. 1.Advanced Microspacecraft  Overview [1, 2]

Advanced microspacwraft  are intended to provide affordable, comprehensive access to space. Increasingly, space scientists
are asked to deal with the economics of their data and the systenis  used to collect  it. NASA is moving from a model of
.q)acecmft design where science imstrumcnts  are designed and built separately and then attached to the spacecraft lam in the
integration prcxess  to one where seienec collection needs are built into a spacecraft from the. beginning and dcxig[mi  along
with all other subsystems. This type of spacecraft has been  dubbed a “scicncczdt”  typified by small size and low cost. LOW
mass (1 O kg to 100 kg) also provides for a 10x reduction in launch vehicle cost over traditional s~~cecraft  (1000 kg+) when
sent on the same trajectory. One major traddf  of smaller  Spaca.raft is reduced power which, irl LLlm, rCSUitS In RdL~Cd
communication bandwidth. l’trus, scientists must turn to several techniques including more powerful on-board processing of
science data, to maximize, the rc[urn of useful, interesting information. TIE synergy arising out of simultaneous processing of
data from multiple sensors is another way of enriching the downlinked science data.

The economics of space science in the last decade of the twentieth century follows that of many other arezs of endmvor,
More results must bc obtaincxf  from fewer rcsourccs.  intellectual czpital  is the one resource which can be applied without
restraint. Ilc “mantra” of NASA which captures this economic trend is “faster/better/cheaper” and “snlartcr”  is the add-on
which reqnizcs  the central role of creatively and invention. This paper explores the application of neural processing to
science data. ‘Ihc overall goal is to do rnorc exciting science, both filling in the blanks left from earlier exploration M
providing additional capabilities to capture unanucipated  phenomena. lhe  increasing autonomy of scicncmraft  suppot tcd by a
variety of processing paradigms (general purpose, interval logic, neural net, digital signal, cte.) have the potenlial to give this
ncw generation of sprreecraft abilities LO recqyliz,c and capture important seicncc without prior explicit instruction from Lhc
ground.

.
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Two important computing trwtds are emerging in current spacecraft infrastructure design: packaging and prcxxsor
technology. Aggressive packaging using multichip  modules (MCMS),  MCiM  stacking, chip stacking, chip-scale packaging
(CSP), plastic packaging, etc. is driving down mass and increasing the functional density of flight  avionics. The decreming
lag time between the commercial introduction of microprocessors and their use in space systems supports state-of-the-art
processing performance along with the advantage+i of contemporary software and hardware development tools. ~lese advances
in packaging for microelccwonics  coupled with low-power design and the continued massive incremes  in memory &?pacity
form a powerful foundation for new types of spacecraft processing approaches,

Packaging advance-s also support the physical integration of microsensors,  assmiated controi/conditioning  electronics,
buffering, processing, data compression and many other functions Traditionally separated, Data from one type of sensor may
be used to dynamically calibrate other sensors. Signals from multiple sensors may be combined to provide improved signal-
to-noise ratios. These and many other techniques are made possible by the physical proximity of sensors and the ability of
advarrmxt  packages to provide controlled electrical environments (Faraday shielding, controlled impedance, extremely short
signal paths, etc.) The stacking of MCMS and integrated circuits (3D microeleartrnics),  aflows this environmental control to
extend into the third dimension. It also readily supports the evolution of sensor structures from linear arrays to area arrays [o
solid arrays.

As mentioned earlier, packaging and processor technologies are key to the goals of twenty-first century Sciencecraft  3D
microekxtronics  packaging has already provided a two order-of-magnitude incr-rxx in functional density over the previous
generation of spacecraft microelectronics. Advanced 3D VLSI packaging techniques promise another two or three order-of-
magnitude increase over the next 10 years. It should be noted that this is indefxmdent of any increase in functional density
achieved by advarms in IC process technology which may provide another 4x to 9x improvement in am efficiency.
Processor technologies, through a variety of techniques, will extend the performance of spawraft  processors from the current
20 MIPS [o over 500 MIPS over the next 10 years. Some of these Techniques involve chip-level architectures, others are
based on multi-computing arrays.

1.2. Intelligent Remote Sensing Irnager
,+

The Intelligent Multisensory Imager (IMl) is a highly integrated and versatile remote imaging instrument which performs
various types of data sensing, acquisition, processing, synergy, compression, conm~unication,  and autonomous multisensory
control. The IMI is propxcd for NASA’s advanced remote sensing microspaeecrafts  which automatically recognize, localize,
and classify point, area, and volume objects and phenomena in real-time on the Earth and on planeL$ [3].

The IMt includes two major subsys[erns:  IM1 Eye, and IM1 Brain. The IM1 Eye is a compact optoclccrronic  subsystem
which integrates a wide range of different sensors with geometric, r-adiomctric,  and spectral parameters meeLing Lhe actual
science and mission re~trirements.  The IMl Brain is a high performance control and data subsystem which provides on-bud
computing resources for the IMI to perform various on-board tasks. IXre to the adaptation of multiple sensor parameters for
various dedicated tasks it is possible to optimize and to mini  rniz,e  the science payload complexity for microspace<  dt
applications. By means of on-board smart sensor functions and data analysis of the generated geometric ,and s~ctral  data, a
minimum task specific data volume cm bc produced and transmitted [o the Earth,  meanwhile a maximum information may k
provided for real-time users with PC based receiver stations [4]. lle sLIccess  of the IMI dcvclopmcnt  will enable new science
capabilities, enhance scientific return, improve timely information availability, reduce operation costs, and alleviate downlink
Iirnitations  for the late- 1990’s and fuhrre missions.

1.3. The Role of a IIigh I’erformance  C)CNN Neural I’rocessor

A compact VI .S1 neural proccsscrr  ba.s.cd  on Ihc optimization Cellular  Neural Nc[work  (C)CNN) has been under
dcvcloprncnt  to provide a wide range of supports for an intelligent remote sensing microspacwraft  which requires bo~h high
bandwidth communication and high-performance conlptrLing  for on-board data analysis, thematic data rccluction,  synergy of
rnuitiplc  types of sensors, and o[hcr adv.anc~  smart-sensor functions. Incorporating of the proposed VI .S1 neural
nctrroprocessor  into the IMI Brain offers orders-of-mrrgnitude computing pcrforrnrmce  enhancements for on-board real-1.imc
intelligent multiscnsor  processing and control tasks. The OCNN is klrgcted  for the rnulliscnsor  applications although it is
universal as the Turing machine [7]. l’he neuroproccssor  based on the OCNN has great  potential in solving many important
scic.ntific and engineering problems by the use of different cloning tc’nplate.s. For the maximum flexibility over a variety of
applications, many CNN functions has been verified via system simulation. Tlrese functions include noise filtering, isolrrtcd
pixel elimination, hole filling, morphological operations, image enhancement, edge detection, connected componcnL
detection, feature extraction, motion dctcztion,  motion estimation, motion compensation, object counting, sin cstirnation,
path tracking, collision avoidance, minimal and maximal detection, et~. 311c proper network  operation is also confirmed for
known and arbitrary cloning templates,
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The OCNN operation theory, architecture, design and implementation, prototype chip, and system applications
been investigated in dektil  and presented in the following seztions.

2. INCORPORATING A NEURAL  PROCESSOR INTO AN INTELLIGENT MULTISENSOR
MICROSPACECRAFT

Cellular Neural Networks is a multi-dimensional arraY of nlainly  identical cells which tie dynamic systems

have

with
continuous state variables and locally connected with their Io;al  cells within a finite radiwi. Since its original publication by
Chua and Yang [5,6] in 1988, the CNN paradigm has evolved rapidly and provides an unified framework for many
computation-intensive applications such as signal processing and optimiz~ation, Moreover, the CNN ‘architecture is a locally
connected, massively paralleled computing system with simple synaptic operators so that it is very suitable for VLSI
implementation in real-time, high-spd  applications [7,8]. The behavior of cellular neural networks depwts on the
computing model,  network topoIogy,  and coefficient templates. The operation for different applications depends primarily on
the coefficients of the templates and the pmczckrre to apply them. A template includes the information for synapse weights,
threshold value-s, and boundary conditions.

In this pa~r, the OCNN is introduced with emphasis on its capability to find global optimal solutions by using a
hardware annealing method [8,9]. The hardware annealing function is emkeddrxf  in the network. It is a paralleled version of
fast mean-field annealing in analog networks, and is highly efficient in finding globally optimal solutions for cellular neural
networks. The OCNN was designed to perform programmable functions for fine-grained  processing with annealing control to
enhance the output quality.

2.1. Major Features of the Optimization Cellular Neural Network

The 0CT4N proposed for the Intelligent Multisensory System is an improved version of the original CINN.  It has four
more significant features than the basic CNN:

.

(A) Optimal Solutions ofl?rrergy Function:
Under the mild conditions [5], a CNN autonomously finds a stable solution for which the 1,yapunov function of the
network is locally minimized. 1“0 improve the local minimized energy function of the basic CNN, the annealing
capability is included to accommodate the applications in which the optimal solutions of energy function are necxlcd.
}Iardware annealing [9] is a highly efficicn[ method of finding optimal solutions for cellular neural networks.
(B) Multiple Layers with Embedded Maximum Evolution Functions:
In the original CNN every pixel is representat  by one neuron. In the OCNN every pixel can be represented by
multiple neurons which form a hyperneuron and execute the maximum evolution function for various profile
selection or data synergy. For instance in the OCNN designed for motion detection, every image pixel is rcpm+ented
by multiple mutually exclusive neurons which form a hypemeuron for velocity selection. Only the winning neuron
is active high and the other neurons of the same hypcrcolumrr  are turrux!  off. The network operation will lx
terminated whenever the energy function of the net wclrk reaches a minimum.
(c’) Digi(ally Programmable Synapse Weigh(s:

T’o improve the fixed synapse weighLs  of the basic CNN, the digitally programmable synapse weights (10] ,are
designed for the OCNN to accommork?Le  the applications in which programmable prc-de.termincd  operators arc needed.
(D) /ligh-speeri  Parallel External trnage 110:
TO improve the global interconnections and external ima~c  1/0 of the bzsic CNN, a 2,-D array of optical receivers and
transmitters is integrated with [he OCNN to accommodate the applicatiorls  in which high-speed parallel cxterlml
image 1/0 and optical interconnections are needed [11 ].

2.2. System Architecture of the OCh’N  Neural  Processor

Ilrcrc  are three major different system computing architectures of an OCNN processing engine: (a) a front-end sensory
information processor, (b) a processing accclcmtor,  and (c) a universal machine. drrtrrpath.  For IMI applications, the f~rst two
system architectures are selected,

2.2..1. Smart-Sensor OCNN

T%c OCNN can be used as a front-end sensory information processor to provide. high throughput rcxnl-[ime  computing
power at neighborhood of the semsory circuit. I~igurc  2.1 shows a datrr ftow diagiam  of a smarl-sensor  OCNN
ne.uroproccssor  design by trrking advanmgc of Lhc high-speed parallel optical 1/(), lIc functional blocks for the op[oclectronic
OCNN ncuroproccssor  include: (a) an optical reccivcr  array, (b) an electronic “ncLlroproccssors array, and (c) a programmable
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synaptic-weight matrix memory. It is feasible to put the active-pixel sensor [15] on the top of a die stack of the OCINN.
This optoelectronic smart-pixel OCNN design can take the combined advantages of the optics and elcztronics  to achieve uhra-
high-~d smart sensory information processing and analysis at the focal plane. In order to achieve a reliable implementation
for an optoelectronic integrated computing system, the fabrication and packaging technology should be well supported for the
optical functions as well as the electrical functions.

2.2.2, processing Accelerator OCNN

The OCNN can be used as a processing accelerator in a heterogeneous computing system. A heterogeneous computing
processor with embedded neuroprocessors  is shown in Fig. 2,2. This integrated computing module includes an 256x256-array
OCNN neuroprocessor,  dual RISCS,  data and program memories, mass memory, high spetd data links, spacecraft bus
interface, multi-senscm  interface, and optional host bus interface. It is implemented in a multichip  module (MCM) of
substrate size 1250 mm x 500 mm. Table 2.1 shows its projwted performance data based on a 0.5-Itm CMOS technology and
a 1997 delivery schedule. The power dissipation of the proposed IMI Brain  MCM is about 15 W at 50 MHz nominal
operation. The network operation clock for the OCNN is about 0.2 MHz. Tire IMI Brain MCM provides 55x2 MIPS and
82x4 GCPS (gigs-connections per second). Its volume is less than 100 cm’ and its mass is about 200 gm.

A functional operation of the IMI processor is briefly descritmd in the following. The master RISC gets an intemupt  if
the system is receiving commands. The master RISC has a task link to the slave RISC, In the interrupt prcmdure  the slave
RISC will be initialized by the master RISC and boti RISC’s are waiting for the next trigger, The master RISC has the
highest priority and manages the tasks and procedures. In the command phase, the master RISC initializes the ncuroprocessor
array and controller. I%e OCNN is used as a high-performance processing accelerator for the master RISC to perform on-
board computation and control tasks. The neural processing commands are ~e-stored in the programmable synaptic-weight
memory. Update of the synaptic weights is dcpmdcd on the application algorithms and their a.sscciated  learning process.
Meanwhile the slave RISC has to control the multisensory electronics and direct the multi-sensor data [o the local mass
memory or to the neuroprwessor data memory. The buffered raw data and the pmessed data are un&r the control of the
master RISC. The master RISC builds up data frames with synchronize  lab++s and house keeping data. The frames are Ihen
transmittal to the microspacecraft  for further storage or downlink  to the ground. A de-able  multiprocessor architecture can
also be realized through high speed data links for advanced parallel prcce-ssing  tasks.

2 .4. Advanced Packaging and Ultra-Low-Power Electronics [2]

An ultra-low-power 1024x1024-array OCNN neural proce.wing engine has been under a development study by using a 3-
D VLSI die stacking technology combined with a sub-O.25 ~m low power (VM = 0.9 V) SOI CMOS process twhnology
which is under development in MIT Lincoln Laboratory. A 3-D VLSI stack of dimensions 3 cm x 3 cm x 0.5 cm is projected
to accommodate a complete 1024x1024-array OCLNN processor with one 1024x1024 active-pixel sensor on the top of the die
s~~ck. A miniaturized highly-integrated IMI Brain is therefore feasible to be implemen[cd into a compact cube, at a manageable
Imwer  dissipation rate.

Fig. 2.1. Data flow diagram of the
scmsor OWN  ncuroprewx$or  array.

I’nble  2.1. Performance data  for

optoelectronic snmrL-

=-E~qCMOS Technolo

RISC Chip F,xam Ic
OCNN neuron size

an IMI Ilrain MCM

] OCNN die size I 15 mmx 15 mrn I 28.5nm~x28.5  mm I
I OCNN  array size I 128x128 I 512x512 I

IOCNN network speed 5 Usec
OCNN  performance 82 CiCPS/dic
Program/Data Memory 2,5 MB E:!
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lMIEye  lntqrakd .-.
r PE1

(MC3i  Sutantc.  Sb.:  10cmx5cm)

Fig. 2.2. System structure of the Intelligent Multisensory
Imagcr  with embedded OCNN ncuroprcxxssors,

Fig. 2.3. The IMI Brain MCM silicon substrate layout.

. . -.

3. TIIE OPTIMIZATION CIH.I.UI.AR  NIWRAL NETWORK .

Cellular neural network (CNN) is a class of recursive neural networks with locally-interconrv.xted  neural processors. The
behavior of cellular neural networks depends on the computing model, network topology, and coefficient templates. Ihe
ofxmtion  for different applications depends primarily on the coeftlcicnts  of the templates and the procedure to apply them. A-
tcmplate  includes the information for synapse weights, threshold values, and boundary conditions. In this paper, the
optimization Cellular Neural Network is developed with emphasis on its capability to find global optimal solutions by using
a hardware annealing method and a high-sped optoelectronic 1/0. ~le hardware  annealing function is embedded in the.
network. It is a paralleled version of fast mean-field annealing in analog networks, and is highly eflicicnt  in finding globally
optimal solutions for cellular neural networks. TIc OCNN was designed to perform programmable functions for fmc-grairml
processing with annealing control to enhance the output quality. .,

3 .1 .Operation  l’heory

Consider the OCNN with n x m neurons on rectangular grid as shown in Fig. 3.1. Fig. 3.2 shows a model  of tic-”
OCNN neuron. F~ch neuron hm the piczewise-linear  transfer function~pwf.)  d i~ gain is v~iablc. The gain is ~n~oll~
by a monotonically increasing function g(t) such that

(1)

The OCNN dyrmrnic  behavior satisfies a set of differential equations in the matrix notation as given:

(2,)

whcrcx = [VX1VX2...VXNIT,  x = [VY1VY2...VYN”,”, u = [VU1VU2...VUN ]1, and w = [ll..,l]l’ is an Nxl unity vector, N:= n x m.

lhc capacitance C’, and resistance ~x a( the sktc node of the processing clcmcnt,  annealing gain control g(f), and bias cur[cnt
lb arc assumed to bc the same for the whole network. In (2), A and U arc two-real N-by-P/ matrices consisting of fwdlnck
and feed-forward synapse wcigh~s and dctc,nnined  by given cloning templates TA and 1’1], respectively. }~or the shift-invariant

CNNS, they arc real symmetric. Since a pie.ccwisc-linear function is used as the transfer furrc[ion of the network, the
gcncraliz,cd  energy function is a scalar-valued quadratic function of the output vector y,
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()where Mg = A - ~-l and b = IIu +]bw. Notice that 1’ = ~- .
gRx x Rx

Here lhe factor I/g in the second term stems from the energy associated with the piecewise-linear  function with a neuron gain
other than unity. The process of finding the optimal solutions takes place during the change of Mg from negative definite to
indefinite matrix, as the annealing gain increases. Since Mg is also a real symmetric matrix, it can k. diagonrrlized  as

Mg  = Q AgQT, where Ag is the diagonal matrix of eigcnvalucs  Ik, k = 1, 2, , N, and Q is an NxN matrix whose

columns are made of orthonormal  set of eigcnvcxtors  ek’s. In an annealed neural network, the elements of Ag are tirne-

varying. IIowcvcr, Q is independent of the neuron gain becarse M and M g commute. By noting that
M ~ = A - 7; I - ((1 -g~~g)  I= M - (( l-g)7”#g) I, the relationship between the eigcnvalucs  of un-annealed  and anne.akd

network can be easily shown to be

/lk =,-l ‘k - Q3-1-. = alk. (l-g)T~,k= 1,2, . . ..N
g Rx t? (4)

where ~k are the cigenvalues  of M. In the hardware annealing, the eigcnvalucs  Ak ‘s are changed from all negative ini tiai
values 10 the final values A’k’s by increasing the neuron gain g, such that the energy function (3) which is initially a convex..
function of y, is transformed gradually into a concave function. The initial neuron gain go must be chosen such that
ak(go ) <0, v k. After the state is initialized Lo x = x(0), the initial gain at time = O can be set [o a very small,
positive value such that O < g(0) <<1. Therefore, the network can kc effectively lincarlizcd.  It then increases continuously-
for O < t ~ 7U to the nominal gain of 1 required by the cellular network. Regardlms  of initial state values, the network results
in the optimal solution at which its energy is minimized globally. Despite of the time-varying nature of the hardware
annealing mclhod.  the stability of the network is still maintained as long as the gain control function g = g(t) are non--
negative.

Figure 3.3 shows plots of the energy landscape for increasing neuron gain values. The energy function is convex,
indefinite. and concave when the gain is in the range 0.1 < g S. 0.4, 0.4 < g s 2/3, and 2/3 < g S1, rcspcctivcly.  Tlrc -

solution moves toward the global minimum point as the gain value incrcasc. The global minimum is guamrrtced  when the
gain value reaches 1. .

F
VX(l,J) x G—

TCx Rx
t

.

L

T
—\ Digital Programn~blc  Weights- - - -  --aa- - - - - -  - - - - -  - - - - -  - - - -

A(ij;kl)

Fig. 3.1. An n-by-m C)CNN  on rectangular grid. l’trc

shaded boxes arc the neighborhood cells of C(i j). Fig. 3.2. Modcl of the OCNN neuron C(i,j).
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Figure 3.3. A sequence of snapshot the energy landscape for increasing neuron gain values from 1.0 to 0.8.

3.2 .7’wo-Neuron OCNN Experiment

To clearly illustrate the local-minimum issue in a network, a two-ncurorr  network as shown in Figure 3.4 is considered.
For a symmetric cellular neural network, a Lyapunov energy function can be found. The generalizuf  energy function -

associated with the network Pssesses many heal-rninirnum points which could trap the network into unwanted solutions
when the network is used for optimization applications.

A.ssurnc that the piccewise-linear  transfer function is used. The integration capacitance C= is normalized to a unity, the-
fcedback weights arc symmewic such hat AIJ = Azz = AO > T, = UR,t AJZ = AAJ = AI. the feed-fo~ard  weights Bj,] = BZ,Z =

1, and the network bias lb = O. Then, the generalized energy function of (2) can be simplified as

E - -
‘ ‘:: ;:TX][:;]-[;;T[  :;I, ‘-

[ 11

J. ‘y]
‘ - 2 VY2

where -1 < v,,, VY2 < +1. After solving the equation Mx = A x, the cigcnveztors  and eigenvalues  of M can be obtained as xl –
= [1 -l]T, x, = [1 I]T, and 21 = A. -Al - 7;,&= Ao + A, -7:, respectively. If the cigenvalues  2’s are positive and Lhe bias is
quite small, then the minimal occur at all corners.

The lowest energy function value corresponds to the global nlinimum  while dIC others corrwpond  to local  n~inin~al. A.
Madab  program wrM written to simulate the two-neuron network with do = 2 and A, = -0.25. This simulation is perfonmd
with four different initial condition points, namely point A = (0.4, 0.2), point B = (0.5, 0.7), point C = (-0.9, -0.8), point D
= (0.5, 0.6). ~lre trajectories of output values for un-annealed  and annealed cases with VU, = 0.2 and VU2 = -0.5 arc shown in

Figure 3.5 (a), (b). . .

An }ISPICE circuit simulation based on the electronic neurons dewntxxt in Section 4 was pcrfonned.  An initial
condition set-up time of 1 ps was used, The time constant is 0,3 p.s. In the simulation, an annealing period of 15 ps (50
time constants) was employed, The results are shown in Figure 3.6, The outputs of both neurons, the state variables of botl-
neurons and the annealing control signal are plotted. In the un-annealed case, the stable output is (-1, -1) for initial condition
C, while in the annealed cm+e, the stable output (1, -1). The whole  optimization process completed with 50 time constants.
The  measure results are shown in Fig. 3.7.

w 1 ‘u 2

@x!iDR1.1 1]22

C(2)

*1) I *21 * 1 , 2 I %2

Vy 1 Vy 2

Fig. 3.4. Block diagram of a two-neuron

.——. .
1

08k i

Ii “’} \ /“{
{ “’t ● O L%21 ,, ; 02,

Fig. 3.5. ~’rajectorics  of optirnimtion process. (a) Un-annealed case. (b)
Annealed ca<c.
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set rnltial AmcAng Amcti,”g
Condition is ON M compleicd

1 ‘i 1

Fig. 3.6. HSPICE simulation result. (a) Un-annealed ease. (b)”Annded  case at g(t)  = 1 V

Fig. 3.7. Measurement results of network opera~ion. (a) Un-anne.sled case. (b) A~ealcd case.

3.3. Applications

To illustrate the OCNN prime performance, the edge detection results of a 64-by-64 OCNN for un-annealed  and annealed
conditions is shown in Figure 3.8. The hardware annealing provides enough stimulation to those frozen neurons caused by
Su(

(a)

:h ill-con

Original 64x64  gray-scale test image.

❑
(3——. —___

better

~_ -... .-. —. . . . .

I❑o-—-  A—.  -

results.

‘A=
“1
(b) Feedback and Fkxxlforward  cloning templates.

. . . . –. ---—

❑
b “

(un-annealed operation) (anneAxl  operation). (un-anne<lled operation) (annealed operation).
(c) 7zxo-initial conditions: VX(0) =0, vu= input image. (d) Ill-initial conditions: VX(0) >1, vu z inpu~ image..

Fig. 3.8. Edge dele-ction application of a 64-by-64 CNN.
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4. A COMPACT CURRENT-MOI)IZ  VI,SI  N131JRAL PROCESSOR DESIGN

4. 1.Neuroprocessor Architecture and Operation

Figure 4,1 shows a complete C)(NN multiprocessor architecture which is an nxm neuroprocessor array mangcd in an n-
by-m rectangular grid with appropriate interconnections. The block diagram of a neuroprossing  clement is shown in Figure
4.2. Fach OCNN neuroprocessing  element consists of a core neuron cell, synaptic weights, input/outprrt  circuits, and digital
interface. The network considered in this design is a continuous-time, rettangul,ar-type  OCNN with r = 1. A muitilayer
OCNN can be realized in a time-multiplexed fashion or in a multiple OCNNS  configuration.

The digital interface provided are control data buses and read data lines, Four control buses for weights a,, al, Oz, and bO
are 5-bit wide each. On the other hand, a mad data line is common to all the cells in a row, and a column select line is
activated at a time to read cell outputs in a spific column. llrc data for synaptic weights are Wr-it[en into op.rater registers
and the network outputs are fetched from the cell output latches to the output buffer regegisters  in column prrrallcl.  Depending
on the applications, x(0) can be initialized to zero, a salcd  Vu, or the weighted external inputs. Onc terminal of the copacitor
C is switched to the voltage x(O) during the initialization operation. At the same time, the outputs of the sylmpse.s  go into
the high-impedance state by control signat r#I and Q and the state node is connected to the ground to avoid possible spurious
operation caused by the closed loop with the parmitic capacitance at the state node.

4.2. Iluilding Blocks and Circuit I)esign

This section bricfty describes tJre building blocks and associated circuits based on the current-mode approach [13] for a
low-power compact C)CNN neuroprwmsor  implementation.

Programmable synapses: Ilc digital programmable synapse is reatimd using a binary-weighted current source army.
Programmability of -3.75 to 3.75 for each synaptic weight is provided. ~“~is  synaptic weight function can achicvc 5-bit
programmability and a resolution of higher than 8 bits.

Transimpedance  multiplier: The hardware annealing is pc.rforme.d  by the pre-nlultiplication  of the Sk_rtc  vxi~ by the gain
contro]  function g before the nonlin~r  function f(x) takes pIace. ~hc bmic element of the proposed circuit is the double-.
MOS differential resistor operating in triode region

Summing circuit: If the summation of the weighted currents from the neighboring cells is carried out dircc[ly in the
transimpcdancc  multiplier, the value of resistance Rx is inversely proporticmal  to the gain-control voltage Vc. In order to
accommodate a constant Rx, the constmt  input irnpcdancc current inver-ter  is used at the input stage of the multiplier.

Nonlinear function: The circuit for the nonlinear function y = f(x) is accomplished by a simple transeonductor consisting.
of a differential amplifier. Its large signal transfer function is a smooth, sigmoid-like  characteristics. A wcx?k positive
fe.cdback is applied to increase lhe trwrxonduc~ncc  value without increasing the (W/I,) ratio of the differential-pair trrmsistors.

optical receiver: A vertical CMOS-BJT is utilized as a phototransistor and further integrated with two bipolrrr trrrnsistors
in a I)arlington  configuration. A (iox(io-mm”  Darling[on-phototransistor  provides a 20 mA with 100 CIII dynamic range [ 16],

4,~.Current-NJode VI.Sl  OCNN Neural Chip: I’rototypc and I)emonstration

“1’o illustrate the implcnlcnLl[ion  feasibility, a programmable 5x5 cellular neural proccssi[lg  chip of active dimensions
1380  pm x 746 ~tm was designed and fabricamd in a 2-pm CMOS technology through MOSIS Scrvicc.s.  “1’hc dic pho[o  and
lhc layout design of each neuron is shown in IJig. 4.3. lhcre arc a toktl  of 11,250 transistors on the chip. ‘1’hc power
consumption is 989 pw Ircr ncura]  cell, and that for the who]c active array is less than 25 [NW. A CCII  (icnsity  of S05
cells/cn1 2 is achieved.

If an ultra-]ow-power sub-().25 pnl SOI-CMOS” technology is used, a CCI1 density of ]6,]60 cells/cn12 can bc achieved. A
nc(work of 512 x 5 ]2 ann~aled neurons Mn bC realized in a 2.9 cm x 2.9 cm chip. A network of 1024 x 10?,4 .anncalcd
neurons is fcm,iblc to bc designed with 4 512x512  OCNN chips and packaged into a 3-D dic stack.

A circuit board was built to dcmons~atc  the operation  of this pro~typc chip. “IIC output  arc conncc.tcd to an array of
LF.D displays. ]ixpcrin~cnLs  On CCIgC dc[~tion were pcrfonned.  I’he templates for edge detection operation arc

9



d

~A=[.;5:-:,]andTB=[:::l.
The input patlem  and the mcawcd result of the edge detection experimc.t are shown in Fig. 4,4(a) and Fig. 4.3 (b),
respectively. ‘I?rc mcmured  result agrees well with the C-based simulation result. Ilc CPU time for the C-based simulation
is 2.53 seconds. The speedup  is about 160,0(!4).
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4.1. An C)CNN multiprocessor implcmcntatio.  based on an nxm ncuroproeessor  array architecture.
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IJig. 4.2, An OCNN unit consists of a core neuron CCII, synaptic wcighLs,  1/0 circuits, and digital intcrfacc.
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Fig, 4.3(a). A 2-pm CMOS die photo of the OCNN chip with 5x5 neural cells,

Fig. 4.3 (b). A 2-pm CMOS layout design of each OCIW neural cell.
.

5x5-neuroproccssor  ,arrtty  chio

s.. .

I:ig. 4.4. Edge detection function, (a) Initial condition. (b) Itoard-level cxpcrirnental  result.
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5 .  CONCI/USIONS

Different system computing architectures of an OCNN processing engine were studied for microspacecraft  on-tmr’d
computing applications. Integration of an OCNN neuroproccssor  array into the IMI Brain offers orders-of-nmgnimdc
computing performance enhancements for on-board intelligent multisensory processing and autonomous control tasks.

The OCNN algorithmic property for optimization solution is explored and ilhrstratcd. Imporkmt  ftnturcs  of the
OCNN implementation arc WC1l developed which include effective VLSI neural computing architecture, programmrrbility  for
various algorithms, global optimization wpability,  compact neurons and synapses, fast data manipulation and routing, photo-
sensors for front-end image acquisition, multisensory parallel interface, low jmwcr  consumption, high cell integration density,
and low manufacturing cos~

A compact current-mode VLSI 5x5-array OCNN chip was developed in a 2-j.tm CMOS to illustrate the implementation
feasibility. A 3-I) VLSI stack of dimensions 3 cm x 3 cm x 0.5 cm is projected to accommoda~ a cornplctc  1024x1024-array
OCNN e.mbxlded  processor with one 1024x1024 active-pixel sensor on the top of the die stack. A miniaturized highly-
intcgrated IMI Brain is therefore feasible to be implemented into a compact cube at a manageable power dissipation rate.
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