Performance Analysis and Optimization on the UCLA
Parallel Atmospheric General Circulation Model Code

John 1 m, Robert 1 ‘erraro
Jet Propulsion 1 .aboratory, California institute of Technology, Pasadena, CA 91009

John ¥<arrara, Carlos Mcchoso
Department of Atmospheric Sciences, University of California, 1.os Angeles, CA 90024

Abstract

An analysisis presented of severa factors influencing the performance of a parallel imple-
mentation Of the UCILA atmospheric genera circulation model (AGCM) on massively parallel com-
puter systems. Several modifications to the original parallel AGCM code aimed at improving its
numerical efficiency, interprocessor communication cost, load-balance and issues affecting single-
nodc code performance arc discussed. The impact of some of the optimization strategies on the per-
formance of the AGCM code as we implemented on severa staic-of-the-ar[parallel computers,
including the Intel Paragon and Cray 13D, iSpresented and analyzed.

1.1 ntroduction

The climate system is characterized by complex interactions and feedbacks among its
components. General circulation models (GCMs) of the atmosphere and ocean arc among the most
powerful tools available for studies of the climate system and its variability, Numerical simulations
performed using GCMs are among the most computationally expensive scientific applications
because several three dimensional physical ficlds need to be updated at each time step by solving a
large system of partial differential equations governing fluid motion on a rotating sphere, and also
because a very long simulat ion period is required to produce statisticall y significant numerical
results. Parallel computers arc thus natural computing tools for GCM simulations.

An a mospheric GCM model was developed at UCI.A by Arakawa and co-workers [1]
during the seventies and the model is still being constantly upgraded by atmospheric scientists
there. The first parallel implementation of the UCI.A AGCM model was developed as a collabora-
tive effort between Lawrence Livermore National 1.aboratory and the Universit y of California, 1 .os
Angeles. The results presented in the paper by Wehner et a. [2] revealed that the parallel efficiency
of the code on large numbers of processors (> 100) is mediocre. in other words, the code does not
“scale” well to alarge number of processors. 1 lere scalability y refers to the reduction of execution
time as more processors arc used for a fixed problem Size. The main objective of our work is to ana-
lyze the AGCM algorithm components and its parallel implementation from a computational per-
formance perspective, find bottlenecks that hinder the parallel scalability y of the code, and use better
agorithms and efficient parallel implementation Strategies wherever possible to maximize the per-
formance of the AGCM code on scalable parallel systems.

"T'his paper is organized as follows: Section 2 gives a brief overview of the siructure of the
paralel UCLA AGCM code and an analysis of its parallel performance, Section 3 discusses our
optimization Strategies on the code to improve its performance on massively parallel systems, Scc-

tion 4 presents a performance comparison bet ween the modified paratlel code and the original one,
Section 5 offers some of our thoughts on developing reusable template modules for GCM simula-
tions, and finally Section 6 gives our conclusion.

2. Structure and performance of the parallel AGCM code

The UCL.A AGCM code is a large software package which simulates many physical pro-
cesses. 1 *he reader isreferred to Suarez et a. [3] and references therei n for a more complete descrip-
tion of the representations of the physical processes. ‘J here arc two major components of the code:
1) AGCM/hydrod ynamics, which computes the evolution of the fluid flow governed by the primitive
equations by means of finite-differences, and ii) AGCM/Physics, which computes the effect of pro-
cesses not resolved by the model’s grid (such as convection on cloucl scales) on processes that arc
resolved by the grid. "The results obtained by AGCM/Physics arc supplied 1o AGCM/Hydrodynam-
ics as driversfor flow simulations. ‘I he AGCM code uses a three dimensional staggered grid for
velocity and thermodynamic variables (potential temperature, pressure, specific humidity, ozonc,
etc.). This three dimensional grid is formed by the Arakawa C-mesh [1]int he horizontal (latitude]
longitude) directions with relatively small number of vertical layers (usually much fewer than the
horizontal grid points). A cell in such agrid is acube in spherical geometry with velocit y compo-
nents centered on each of the faces and the thermodynamics variables at the cell center. The
AGCM/11 ydrod ynamics itself consists of two main components: a spectral filtering part and the
actual finit ¢ difference calculations. The filtering operation is needed at each ti mc step in regions
closc to the poles 1o ensure the effective grid size t here satisfies the Courant -Friedrich-1.evy (Cly)
condition [4], a stability requirement for explicit time-diffcrence schemes when afixed time step is
used throughout the whole spherical fin it c-difference gri d.

AGCM Main Body Hydrod ynamics
Hydrod ynamics Physics Spectral Filtering 1 inite Difference
72% lime on 16 nodes 36% time 011 16 nodes
86 % time on 240 nodes 49% lime on 240 nodes

Figure 1. Execut ion times of” major components in the UCLA AGCM code

A two-dimensional grid partition in the horizontal plane is used in the parallel implemen-
tation of the UCI.A AGCM model. This choice of grid partition is based on the facts that column
(vertical) processes strongly couple the grid points which makes the parallelization less efficient in
t he column direction, and that the number of grid points in the vertical direction is usually small.
Hach subdomain in such a grid is a rectangular region which contains all grid points in the vertical
direction. With this grid partition, there arc basically two types of interprocessor communications
involved in the parallel AGCM simulation. Message exchanges arc needed among (logically) neigh-
boring, processors (nodes) in finite-difference calculat ions; non-nearest neighbor message-passing is
needed for implementing the spectral filtering operations. Timing measurements on the main com-
ponents of the original paralel AGCM code, using the 2 x 2.5 x 9 (lat X long X vertical) resolu-

tion which corresponds to a 144 x 90 x 9 grid, is shown in Yigure 1.

As shown in Figure 1, the AGCM main body consists of’ a hydrodynamics module and a
physics module, with preprocessing and postprocessing parts excluded, Since preprocessing and
postprocessing steps are only performed once, whereas the main body part isiterated through atime
stepping loop in the AGCM simulation, the latter is absolutely dominant in terms of exccution ti mc.
Comparing the two modules in the main body, we can see the hydrodynamics part is dominant in
cost especially on large numbers of nodes. Yurthermore, our timing analysis on the hydrodynamics
part indicates that the spectral filtering is a very costly component with poor scalability to large
number of nodes (sec Figure 1). Although the usc of spectral filtering in the UC1.A AGCM model
improves the computational efficiency of the finite-diffcrcnee calculations by enabling the use of
uniformly larger time st cps, the high cost of performing the filtering scems to offset a large part of
this performance gain. The inferior performance of the filtering operation is due to the usc of an
inefficient filtering algorithm and the existence of asevere load imbalance in the filtering stage.

It isclear from | igure 1 that in order to substantially improve the overall performance of
t he AGCM code, some optimi zation must be clone first on the filiering part of the code [2].

3. Optimization strategies andimplementationsin the parallel AGCM code

‘1’here arc primary two waysto improve the performance Of @ parallel code running on a
distributed memory message-passing computer. Onc way is to optimize its single-node performance
by using a more efficient computational agorithm, making more efficient usc of cache or climinat-
ing redu ndant operations in the code. Single. node optimizations can usually be achieved by rest ruc-
turing the data structures and other computational parts of the code. Another way is to improve its

scalability y to large numbers of processors so that onc can eit her reduce the solution time for a large
problem by using more processors, or can solve increasing] y larger problems with more processors
within a fixed amount of time. The scalability y of a parallel code is affected both by the ratio of com-
munication cost to computation cost and the degree of load imbalance in the code. As stated above,
our timing results indicate the cost of spectral filtering procedure is a dominant part in the parallel
AGCM code especiall y when running on a large number of nodes. We therefore focused our first
effort on improving the overal | performance of the filtering part in the AGCM code.

3.1) Spectral filtering in the UCLA AGCM model

The filtering algorithm used in the UCI.A AGCM model is basically a set of discrete Fou -
ricr filters specifically designed to damp fast-moving gravity-inertial waves near the poles. These
wave modes become numericall y unstable when the CI, condition is violated in the vicinit y of the
poles as aresult of the increasingly smaller zonal grid distances as onc approaches the polesin a
uniform longitude-lat itude grid. The filters contain alatitudinal dcpendence but arc applied over the
complete longitudinal domain on every vertical layer. As discussed in [1], the filtering operation
takes the form of an inverse Youricr transform in wavenumber space as

M ~
() = ¢ M1+ n)»_‘llé(s)ﬁ*(s)e’“‘ @

where §(s) is the Fouricr transform of a generic variable ¢(s) to be filtered, 8(s) is a prescribed
function of wavenumber and latitude, but is independent of time and height. In particular, two types
of filtering arc performed in the UCI.A AGCM code. Onc is the so called “strong filtering” which is
applicd 1o about one half of the latitudes around the poles in each hemisphere; the other is a “weak
filtering” which is applied to about one third of the latitudes around the poles in each hemisphere.
The convolution theorem for Yurrier transforms states that the filtering as defined in (1) is mathe-
matically equivalent to the convolution

M
¢’(i) =)" S - n).)

s=1
In the original AGCM code, filtering was performed using the convolution formin (2). In its paral-
lelimplementation, the summation defined in (2) was implemented in several ways, involving either
communications around “processor rings’ in the latitudi nal direction, or communicant ions in binary
trees [2]. 1etting N denote the number of grid points and 7 the number processors in the lat it udinal
direction and since no partial summation is performed during the data transfer, the ring approach
requires P’log P messages and a total transfer of NP data clements; the binary tree requires O(2P)
messages and a transfer of O(NP + N logP) data clements [2].

‘1 *he high cost of the filtering compared tot he rest of the hydrod ynamics module as shown
in 1 ‘igure 1 stems from two important factors. The first is the usc of convolution formation (2) in
physical space for the filtering. Assuming a three-dimensional grid for filtering has dimensions
N x M x K, where N, M, K, arc dimensions in latitudinal, longitudinal and vertical directions,
respective] y, the computational cost of doing convolution on the grid is of order O (N°x M xK),
whereas the cost for the rest of hydrod ynamics code is of order O(N x M x K). The second is the
existence Of ascevere load imbalance caused by the fact that only subdomains at high latitudes
require filtering. Solutions to these problems arc somewhat obvious: (i) usc the fast Yourier trans-
form @171y instead of performing direct convolution for the filtering, and (ii) perform load balanc-
ing before filtering by redistribut ing dat ato be filtered from processors containing high latitude
subdomains t0 processors containing low latitude subdomains which either have very little filtering
to do or arc completely idle during the filtering stage.

3.2) Efficient parallel spectral filtering

Since the spectral filtering is applied to lines of grid points at high latitudes and the grid
decomposit ion for the UC1.A AGCM code is atwo dimensional decomposit ion in the horizontal
plane, the FIFT operation also requires interprocessor communication. ‘J here are at least two possi-
bilitics to parallelize the ¥ET filtering. One is to develop a paralicl one dimensional Y11 procedure
for processors on the same rows in the processor mesh, so that this procedure can be applied to
every line of datato be filtered. The second approach is to partition the data lines to be filtered and
redistribute thcm among processor rows in the latitudinal direction so that 1 #1's on each dataline
can be done locally in each processor. The second approach essentially involves a data array trans-
pose. These 1T filtering approaches have a computational cost of O(N x logNx Mx K). Agan
letting N denote the number of data elements and P denote the number of processors in the lat itud i-

nal direction, the approach using the parallcl one dimensiona 1171 requires O(PlogP) messages
and a transfer of O(NlogN) data elements, while the approach using FII' with data transpose
requites 0(1’2) messages and a transfer of O(N) data elements. Therefore the first approach
requires fewer messages but exchanges larger amounts of data than the second approach.

We chose to implement the second approach for the spectral filtering in the AGCM code.
The main reason for our choice isthe relative smplicity of implementing the data transpose and the
possibilit y of using highl y efficient (somet imcs vendor provided) 1471 library codes on wholc lat it u-
dinal data lines within each processor.

i 04047 R
""44777> _ » & @
2 0+0+0 Om*](-l -
” + 6+
- * .
i 04 0+0 . - :lﬂ'{ﬂ !
14142 * % 14240 .**
E N : 1142
. 8+848 T 7+040 x

Figure 2. Anillust ration of data row redistribution for aload balanced filtering.

3.3) Load-balanced parallel FFT filtering

To solve the Joad-balance problem in filtering, we need to redistribute the data rows to be
filtered along the longitudinal direction. In the UCI.A AGCM code, the spectral filtering is per-
formed at each time step before the finite-difference procedures arc called. Weak and strong filter-
ings are performed on different sets of physical variables, one variable at atime inthe origina
AGCM code. To maximize the performance efficiency from the load balance procedures, wc rcor-
ganized t he filtering process so that all weakly filtered variables are filtered concurrentl y, asarc all
strongly filtered variables. This change is possible because there is no data dependency among
weakly filtered variables, nor among strongly filtered variables in the filtering process. Based on
these considerations, wc decided to implement a generic load balancing module which dots the fol-
lowing: given an M x N processor mesh, with M processors in the latitudinal direction and N pro-
cessors in the longitudinal direction, with 1. variables to be filtered (weakl y or strongly), each with
R;(j=1..1) rowsof datam bc filtered, the goal of load balancing isto redistribute the data rows
in the longitudinal direction so that after redistribution, each processor will contain approximately
(since total number of data rowsto be filtered arc usually not divisible by N)

1,
[E R j]/ N @)
j=1
rows to be filtered. If it could be assumed that exact] y half of the data rows in one hemisphere arc to
be filtered, which is the case for the strong filtering in the AGCM code, the implementation of data
redistribution for load balancing would be arelatively simple task. All that would be required in this
case is to redistribute data rows in a way which is symmetric about the middle Iatitude line in each

eeely
e ool
o e sl
oo o
Y I
R IS
IS

* o of =

Figure 3. Data row transpose in latitude direction following the row redistribution
shown in Figure 2.

hemisphere. Since we need to do load balancing for both weak and strong filterings, a more general
scheme is needed. We therefore decided to implement a code module which can produce a balanced
load in (3) regardless of the number of rows to be filtered in each hemisphere. 1 ‘igure 2 shows an
example of how data rows for three variables arc redistributed in a hemisphere in an M x 8 proces-
sor mesh. The load redistribution is followed by a data row transpose and redistribution among pro-
cessors in the latitudinal direction. 1 ‘gure 3 shows the data row transpose performed aft cr the row
redist ribution shown in Figure 2. The actual F1¢1' filtering is performed on data rows after the data
transpose, which is then followed by inverse data movements to restore the data layout which
existed prior to the filtering.

ue 10 the generalit y required for t he load-balancing and parallel 117" module, some non-
trivial set-up code is needed to construct information which guides the data movements for the load-
balancing and load-balanced parallel 1T at each time step of hydrodynamics calculation. The set-
up involves substantial bookkeeping and interprocessor communications. Its cost is not an issue for
along AGCM simulation since it is done only once, and its cost is aso nearly independent of
AGCM problem size.

3.4) Loadbalancing the physics component

The physics parameterization component in the AGCM code consists of a large amount of
local computations with little interprocessor communication required under a horizontal partition of
the grid. The measured parallel efficiency of the physics component with a2 x 2.5 x 9 grid resolu-
tion is about 61% on 240 nodes on Cray 13D. Since there is no communication cogt, it is only the
load-imbalance in the column physics processing that drags down the parallel efficiency. The distri-
bution of computational load in the physics component varies dynamically with space and limein
the AGCM simulation. ‘J he amount of computation required al each grid point is dctermined by
several factors, including being whether day or night, cloud distribution, and the amount of cumulus
convection determined by the so-called conditional stability of the atmosphere. Adding to the diffi-
culty of physicsload-balancing is the unpredictability of the cloud distribution and the distribution
for cumulus convection, which implics an csti mation of computation load in each processor is
requ i red before any efficient load-balancing scheme can proceed.

Several possibilitics of achieving load-balancing have been considered, One way to
achieve a balanced load distribution isto perform a cyclic data shuffling among alt processors. Sup-
posc t he total number of processors is N, each processor divides its local data to be processed into N
pieces, sends (N - 1) pieces of the data to other processors, and receives (N - 1) picces of data
from other processors. ¥igure 4 shows such a data shuffling among four processors. The complete
data shuffling as shown in Yigure 4 guarantees a balanced load distribution as long as the load distri-

3| 4} 3| 4 Figure 4. Schoaa 3 Fuclic data shuf-

T R flinginamongg processorssif ‘f_n_ch.icvc a

ballealaadeddedd distribution Fach data

3|41 3 4 piccesig indexedwillithaeddaf the pro-
1l 21l 2 cessor where it iis to processed.,

bution within each processor is closc to uniform in space, a reasonable assumption when N is large.
"The main drawback of this approach is the cost of performing al-to-all communications with a
complexity of O(N?), and the division of each local datainto N cqual picces for N processors docs
not seem to be computationally efficient when N is large.

An alternative to acomplete data shuffling for load balancing, but also guaranteeing a
good load distribution, isto use an approach similar to the one discussed in the previous section for
filtering operations. First, the computation load for each processor needs to be computed or esti-
mated by some means. 1 .etus look at a specific example for the ease of our discussion. 1 igure 5
illustrates the steps needed to balance the load among four processors, [n 1 ‘igure 5A, the computing
load in each processor has been figured out in some way, and an integer weight is assigned for each
local load. All the nodes are then assigned a new id through a sorting of all local loads. The sorting
of nodeids is performed to simplify subsequent data movement which attempts to minimize the
amount Of interprocessor communication. With the ncw node ids and weights of local load avail-
able, the required data moves can be carried out in away similar to that for balancing the filtering
load, as shown in Yigure 511. Figure 5C shows the ncw load distribution afier the data movement. It

Nodeid =1
l.oad= 65

Node id= 2
L.oad =24

Node id =3
1.oad =50

Nodeid =4
l.oad=15

A initial load distribution with original node id.

New node id = 1 New node id=3 New nodeid =2 New node id =4
lL.oad = 65 load =24 Load =S0 Load =15

14 ‘ | Bl 4 4

l . L s T 12|

B: No(1c idsaresorfed according 10 local data loads.
Required data moves are shown.

Nodeid=1
1.oad=39

Nodeid =2
l.oad = 24+14

Node id =3
l.oad=39

Nodeid =4
Load = 15411412

C: load distribution after load-balancing.

Figure S. Scheme 2: An alternative which optfimizes communication cost.

can be seen that the communication complexity of this load-balancing approach is O(N), a signifi-
cant improvement over the complete data shuffling in scheme 1. Large overhead, however, is
incurred in making the optimized data moves possible which involve @ number of global communi -
cat ions and a substantial amount of local bookkeeping.’|” his overhead cost was not a serious perfor-
mance issue in the load-balancing for filtering because it is the cost from a preprocessing step that is
done only once during the entire execution of the AGCM code, but the overhead for physics load-
balancing may not be overlooked because it is associated with the cost of each physics |oad-balanc-
ing. In addition, a decomposition of a local data load into many parts with different weights may not
be a convenient thing to do.

The analysis on load-balancing scheme 2 and 3 leads us to thi nk that it may be mom prac-
tical in our case to devise aload-balancing strategy that may be less robust (if it is applied only

Nodeid= 1
L.oad = 6S

Nodeid =2
lLoad=24

Node id =3
Load =30

Nodeid =4
Load= 1s

A: Initialload distribution in each processor.

Nodeid= 1 Nodeid=2 Node id =3 Nodeid =4
Rank=1 Rank =3 Rank =2 Rank=4
Load = 65 lL.oad =24 load =30 Load=1S

A

B: Nodes are assigned ranks. First pairwise data moves are shown.

Nodeid=1 Nodeid =2 Nodeid =3 Node id =4
Rank=1 Rank=3 Rank =4 Rank = 2
Load = 40 Load =27 Load =27 1.0ad =40

L

)

F ¢

C: Nodes are assigned ranks. Second pairwise data moves are shown,

Nodeid=1
load =34

Nodeid =2
lL.oad = 27+6

Nodeid =3
Load=2746

Nodeid 0 4
Load = 34

D:load distribution after second data movement,

Iigure 6. Scheme 3: Load-balancing with pairwise data exchanges.

once) but more cost-efficient and easier to implement. The approach that wc currently decide to
adopt requites only pairwise interprocessor communications ford at amovement and a small amount
of bookkeeping. The steps for this scheme can still be illustrated by using the previous example for
four processors, as shown in Figure 6.7he scheme aso begins with an evaluation of the local load in

each processor, as shown in Figure 6A ‘I"he data load is sorted and a rank is assigned to each proces-
sor as aresult of the sorting, and a pairwise data exchange between processors with rank i and rank
N -i+ lisinitiated, as shown in Figure 6B, Due to the limitation of pairwise data exchange, the
resulted load distribution from the first data move may not be satisfactory. If thisis the case, the
load sorting and pairwise data exchange can be repeated once as shown in Figure 6C. 1 dgure 61D
shows the load distribution after the second data move. Since each load-balancing cycle (sorting and
pairwisc data moves) is relatively low in cost, the cost of performing it a fcw times could still be Icss
than that of the previous two schemes.

The number of times needed for sorting and pairwise communication in scheme 3 to
achieve a satisfactory load-distribution clearly depends on theinitial load distribution, To evaluate
the effectiveness of scheme 3 for load-balancing the actual physics component code, wc first imple-
mented the load-sorting part in scheme 3, and usc it as atool to perform load-balancing on the phys-
ics component and to evaluate t he result without actually moving the data arrays around. 'to
esti mate local computing load in each processor, a timing on the previous pass of physics compo -
nent was performed at each processor and the result was used as an estimate for the current physics
computing load. 1ables 1 -3 show the simulation results on 64, 126 and 252 nodes on Cray T3D.

With P processors, the percentage of load-imbalance shown in the last column of the tables is
defined as

P
Average] .oad= [Z I,ocall,oadi]/l’
=

_ (Maxi.oad - Averagel.oad)

PercentageOfl.oadImbalance
£ Averagel.oad

Table 1. Load-balancing simulation for physics witha 2 x 2,Sx 29 grid
resolution on a8 x 8 node array on Cray T3

oo | Maet | Ml | ol
Beforeloadbalancing | 1100 | 490 _J”_Z|
After first load-balancing 7.1(1 \ 6.20 \ 9% \
After second load-balancing 7.10 1/26(’86 ol % .

Table 2: 1.oad-balancing Ssmulation for physics witha 2 x 2.5 x 29
grid resolution on a 9 x 14 node array on Cray ‘1’ 31)

codosams | Maxload | Mintoad | %oflond-
(second) {second) imbalance
N Before load-balancing B 5.20 o 25_0 JWW 35% B
. After first load-balancing | 400 | 314 | 12%
""" Aft@rscsenonshdlbadrbalancing 352 32 | %

Table 3: Load-balancing simulation for physics witha 2 x 2.5 x 29
grid resolution on a 14x 18 node avray on Cray ‘1'31)

Code status ‘ Max load Min | oad % of |oad-
(ScCo1L(y) (second) imbalance

Before load-balancing | 3334 | LU2 | 48%
Afierfirst loadkbalancing | 220 1.70 125%
After second Ioad-blal__agnizing__]1 1.92 o ‘-7-“--1.80 I 6‘?_-

Scheme 3 can be Seen as an iterative scheme that converges to a load-balanced state from a given
initial load-distribution state. The “convergence rate” of the scheme clearly depends on the initial
state as the resultsin Tables | - 3 indicate. On 126 and 252 nodes, it can be seen from "Table 2 and 3
that application of the scheme twice to the physics component can reduce the percentage of load-
imbalance to a reasonable level. One advantage of scheme 3 isits flexibility of making a compro-
mi sc between the cost and accuracy of load-balance. A pairwisc data exchange is only needed when
the load difference in the pair of nodes exceeds some tolerance, and the iteration can stop as soon as
t hc percent age of load -imbal ance falls within t he tolerance.

3.4) Single node performance optimization

With the use of the load-balanced 1 411" filtering module, we have been able to reduce the
cost of filtering significantly in the parallel AGCM code (see Scction 4). Withthe 2 x 2.5 X 9 res-
olution on 240 nodes, for example, the filtering cost dropped from 49% of the cost doing hydrody -
namics part to about 21%. Our timing of the code indicates the cost of communication for
exchanging values at ghost grid points for the finite-ctiffcrencing is relatively insignificant, usualty
around 10% of the cost of the hydrod ynamics component on 240 nodes. With a load-balanced phys-
ics component, wc expect the overall exccut ion time of the AGCM code be reduced by 10-15% on
240 nodes. We now turn our discussion to the issue of single-node performance optimization for the
AGCM code. Asistypical for areal-world application, the overall performance of the paratic)
AGCM code is well below the peak performances on both Intel Paragon and Cray 131> nodes,
which is usually an indication that the cache efficiency of the code is poor. Our main goa isto
i mprove the single-node performance of the code - minimize the exccution time of the code on a
single processor - with a machine-ind ependent and problem-size robust approach (i .e. wit bout
resorting to any assembly coding). We selected a dry-convection routine from the hydrodynamics
component and a cu mulus connection routi Nc from the ph ysics component as the represent at ive
candidates for single-node performance analysis and optimization because of the heavy local com-
puting involved in these routines and their cost weights in their respective components. Our optimi-
zation cffor(started from improving some of the more obvious code segments, such as eliminating
or minimizing redundant calculations in nested loops, replacing some loops by Basic Lincar Alge-
bra Subroutines (31.AS) library calls for vector copying, scaling or saxpy opcrat ions. We also tried
to break down some very large loops involving many data arrays in hoping to reduce the cache miss
rate. When applying these strategies to the dry-convection routine, wc were able to cut down its exe-
cut ion time on asingle Cray ' 131) node by about 20%.

10

BI.AS routines are usually faster than programmer’ s hand-coded loopsin a high-level pro-
gramming language for matrix-vector data processing because they were opti mized for pipelining
computing and cache efficiency with assembly coding. It seems, however, difficult for us to utilize
the BI.AS library beyond some 10W-1CVCI routines in a few places of our code. 1 n a code based on
finite-diffcrencing schemes as the AGCM code, it isusually hard to cast mgjor parts of computation
into matrix-vector t ype operations. Instead, we found that a large part of the computations in our
selected routines can be converted into what we call “‘pointwise vector-multiply”, which, for exam-
ple, has the form in a two-dimensional nested |oop:

DOj=1,N
DOi=I, M
C(i, j) = AG,)) X B(i,)
ENDDO
ENDDO
where the subscripts can be either a constant or equal to j. 'Ihe computation in the above loop is not
one of the operations defined in the current BI.AS library (c.g. on Cray '13D). Wc think one possi-
bility 1o achieve good performance for such aloop is to develop an optimized library routine in
assembl y 1 angu age which can recursive] y perform the fol lowi ng operat ion on two vectors
a =Aap, a,..,ayandh={b.b, ...b,}

(1®b={(]1/)], 02])2’ P ,(Im]) ,7',(1',1+]])|, e _azmhm’ e } 4)

where it is assumed that # is divisible by m. The interface of the routine can be such that it takes as
input a set of data arrays and returns the result array. If some optimization on such a pointwise vec-
tor-multiply operation is possible in terms of cache and pipelining, there is a good chance for us to
i mprove single-node performance for the AGCM code in a portable and robust fashion.

The general idea of cache efficiency optimization is to explore data locality of an applica-
t ion so that the data existing in the cache can be reused as much as possible. In afinite-d ifference
application such as the AGCM code, amajor part of the local computations lic in the evaluations of
finite-difference equations which involve a number of discrete fields corresponding to physical vari-
ables defined on computational grids. At each grid point indexed by (i, j, &), the following type of
code frequentl Y occurs

r(i, k) =D, f,G, K +...+ D, f,0.],K), (5)

where f; (i=1,.... myarediscretefieldsand D; (i = 1 .,. m) arc stencil operators. Although it seems
natural, as done in the AGCM code, to alocate storage corresponding to discrete ficlds in (5) assep-
arate data arrays, the cache efficiency in computing (5) on those separate arrays is usual t y rat her
poor when the typical array size 1S much larger than the cache size or when data stored in a large
number Of arrays are referenced in a statement of form (5), because in such cases the cache-miss
rate can be very high. One alternative to allocating separate data arrays is to declare a single array
for storing all the discrete fields in (5). In aFortran code, one can thus define an “block-ori-
ented”array of the form

f(m,idim, jdim, kdim). (6)

1

‘1 he usc of adata array of the form (6) to evauate (5) could, in principle, reduce the cache-miss rate,

because grid variables in the neighborhood of a certain cell arc stored closer to each other in mem-

ory than the case when separate arrays are uses. When data arrays of the size 32 x 32 x 32 in form

(4) arc used, our test code evaluating a seven-point | .aplace stencil applied to several discrete fields
showed a speed-up afactor of 5 over the usc of separate arrays on the Intel Paragon, and a speed-up
factor of 2.6 was achieved on Cray’ 131Jfort he same size data arrays. Kncouraged by this result, we
tried the usc of block array in the dry-convection routine, where a about a dozen of threc-dimen-
sional arrays were combined into onc single array. A performance comparison between the code
with block array and the code with separate arrays did not show any advantage of using the block
array. Yor somesizes of dat a array, the code with the block array underperformed the code with sep-

arate arrays. A more careful examination of the dry-convection routine revealed some conflicting
factors regarding the selection of a good data structure for cache efficiency. A basic fact is that the
dry-convection routine cent ains many different t ypcs of array-processing loops which reference a
varying number of data arrays. The block array may be abetter data structure for cache efficiency in
aloop referencing al the grid variables in the block array, but it could be a worse data structure
(than the separate arrays) for code in other loops which only reference a small subset of grid vari-
ables inthe bl ock array. Itistherefore Not easy to predict the overall effect on the cache perfor-
mance for anon-trivial code when a block array or separate arrays arc used. A side-effect of using
block array isthe poor readability y of the code, which makesit error-prone and harder to debug.

Table 4: AGCM 1 imings (seconds/simulated day) with old filtering module on Intel Paragon
grid resolution: 2 X 2.5x 9

DPynamics Jotal time
Node mesh Dynamics Syeed- U (Dynamics and
peec-p Physics)

I x I 8702 | 1.0 14010 ¢
4x4 8485 10.3 1177
——— —

8x8 366 23.8 4435

8x30 186 46.8 216

Table 5: AGCM timings (seconds/simulated day) withnew filtering module on Intel Paragon
grid resolution: 2 x 25 x 9

. — N
Dynamics Total time
Nodc mesh Dynamics g; ccd-up (Dynamics and
’ Physics)
11X1 Tsos | 1o | us
 44x4 639.0 © 1 » - 26 | 992.6
88x8 207.5 | 389 306.0
88x30 87.2 R 03.6_» » 11-9.0

12

show that the scaling of load-balanced 1 I filtering for the 9-layer model is about 4.74 running on
240 nodes versus running on 16 nodes with a parallel efficiency of 32%, and the scaling of load-bal-
anced filtering for the 15-layer model is about 5.87 with a paral lcl efficiency of 39%. The improved
efficiency for the 1 S-layer model reflects the higher ratio of local computational load over interpro-
cessor communication cost when more vertical layers are added to the AGCM model. Although not
shown here, we found the scaling of the whole AGCM code for the 1 S-layer model is about the
same as the 9-layer model. ‘I’ his could be the result of the fact that in the 1 S-layer model, some addi-
tional load-imbalance is introduced in other parts of the AGCM code. We would even expect better
scaling be achieved for the parallel filtering as well as for the overall AGCM code when a 1x1.25
by 15-layer version is used. The execution times also consistently show that the parallel AGCM
code runs about 2.5 times faster on Cray 31> than on Intcl Paragon.

Table 8: Totalfiltering limes (seconds/simulated day) on Intel
Paragonfor the 2 x 2.5 x 9 grid resolution

Node mesh Convolution }:;:1 ;Valll :;);2 1 ‘"]l;:;j:lilclcoad
4x4 05 | 114 | 817
4x8 240.0 88.0 53.7
"""" 8x8 | 1895 664 | 32
4X30 99.6 43.7 22.2
8x30 |1 ----- 90.0 ’%75 | iéﬁ

Table 9: Total filtering t imes (seconds/simulated day) on Cray ‘1'31)
for the 2 x 2.5 x 9 grid resolution

o v | it | it
Node mesh Convolution | oaii vt\)ll';\lagge ! b\élv;nceo
[4x4 1235 | 446 | 350
4X8 1. ew» 960. . k. 32 | 25
8 x8 758 264 15.3
4x30 | 396 | 175 8.9
| 8x30 | 30 | 150 | 74

S. Software design issues for GCM simulations

Since GCM simulation codes are typicaly large software packages containing tens of
thousands lines of code, another goal of our work is to develop portable and reusable library mod-
ules and extensible template codes which will be useful for GCM type applications. The original
parallel AGCM wde was implemented in 1977 with a generic message-passing interface, The porta-
bilit y of the code was achieved by using macros for message-passing protocols and memory aloca

14

Table 6: AGCM timings (seconds/simulated day) with old filtering module on Cray 13D
grid resolution: 2x 2.5x 9

. Dynamics lotal Fimc
Nodc mesh Dynamics Spocd-up (])y}x:}z:m‘!cs‘ and
ysics)
I 1 T a0 | 10 | se0
4x4 3 | nu3 | 40 |
8x8 16 | 23 | M
8 x 30 4 | s1o | 815

Table 7: AGCM timings (seconds/simulated day) with old filtering module on Cray 13D
grid resolution: 2x 25x9

Dynamics Total time

Node mesh Hydrodynamics Spect-up (Dynamics and
Physics)

X1 | 230 | 716 T 000
4X4 256 ke .6 397

8x8 83] a0 | m

8x30 35 923 T w

4. Performance studies

Timings have been performed on the Intel Paragon and Cray 13D (Some timing on IBM
SP-2 were also performed, but arc not shown here) for the parallel AGCM code with the new filier-
ing module and the results were compared to those from the original code. The message-passing
portability of the filtering module was achicved by using MI’] protocols in the code. Since the
UCI.A AGCM code uses a NETCDY input history file and wc do not have a NETCDY library
usable on Paragon, we had to develop a byte-order reversal routine to convert the history data to usc
on Int c1 Paragon. We here only discusst iming results obt ained on Intel Paragon, which qualit ativel y
applies to Cray 13D and 1BM SP-2 as well. Tables 4-7 show comparisons of exccut ion time for the
hydrodynamics part and for the entire AGCM code (including physics part) using the 9-layer model
onInt c1 Paragon and Cray 13D. Tables 8 and 9 show a comparison of costs for doing the filtering
using different versions of filtering module with the 9-la ycr model, and Tables 10- 11 show the
costs of filtering in the 15-layer model on Paragon and '13111/or all the timing runs, a2 x 2.5 hori-
zontal grid resolution is used. In comparison to the old AGCM code, the hydrod ynamics component
in the new code is a little more than twice as fast on 240 nodes. The scaling (or speed-up) of the
entire code also improved significantly, which is clearly aresult of the load-balanced filtering. The
load-balanced ¥¥¢1 filtering module runs about five times faster than the old convolution filtering
module on 240 nodes for both the 9-layer model and the 1 S-layer model, Tables 8-9 and 10- 11

13

’ T P P S S i~ LYY FRR I TRPUA | § JRUREReN £
Table *Pulioariliicring tiines (GeconussSTinula Gl Gayj ol e i aragon o

the 2 x 2.5 x 15 grid resolution

odemes | cmalution 1 wkbou | 't withlose
[4xA4 802 s | 21
4%88 566 o208 | om0
& | 42 1w | 8
4%30 217 w(| 4
8x30 | 188 “ 1 | 3

Table 11: Total filtering times (seconds/simulated day) on Cray 1'31) for
the 2 x 2.5 x 15 grid resolution

Node mesh Convolution ig;(li ﬁm 1"1’1;;\Yh;tl:lcioad
4x4 T30 | @ | 8
4x8 | »w | & | a1
gx8 | 18 | 60 | 34
4%30 | 86 8 | 19
8x30 75. 32”7 o ”EA o

t ion protocols. This macro approach unfortunatel y also introduced some complications to the code
maintenance and modifications. ¥rst the code needs to go through two macro preprocessors before
astandard Yortran compiler can be applied, which can cause problems when porting the code to a
new machi nc becau Se macro preprocessors may behave d ifferent 1y. 1 imbedding macros in the code
also make changes to the code error-prone if one is not familiar with how macros arc to be
expanded. We think the portability of the AGCM code can be achieved in a simpler and more reli-
able way. Our approach also defines generic interfaces for possibly machine-dependent operations
such as message-passing protocols and memory allocation, but the implementation of the interfaces
iswrapped in a small number of subroutines. These subroutines arc selectively compiled depending
on the specific machine where the code is to run. We believe our approach can reduce the machine-
dependent portion of the code to a minimum and thus make maintenance and modification of the
code easier, We are also ident if ying common algorithms and operation components from GCM
applications, and develop code modules which are reusable and extensible (as application tem-
plates) in different GCM applications. in our view, candidate components for GCM applications
i nclude efficient finite-diffcrence kernels, parallel spect ral filters, commu nicat ion mod ules for
exchanging ghost-point values at domain-partition boundarics, enforcing (physical) periodic bound-
ary condition, load-balance modules, and fast (parallel) linear system solvers for implicit time-dif-
ferencing schemes. We believe, within the scope of GCM applications, these code components can

15

be developed in a unified, highly modular and efficient manner, and wc think an objected-oriented
approach (at least for building the infrastructure of agencric GCM application) implemented in an
advanced scientific computing language like Hortran 90 can be used in the code development. With
these code components available, the prototyping and implementation of a new, portable and effi-
cient GCM code package for distributed memory parallel machines will be alot easier.

6. conclusion and future work

We have shown our analysis and optimization strategies to improve the overal 1perfor-
mance of t he paralel UCI.A AGCM code on massive] y parallel computers by implementing a load-
balanced HIFT" filtering module for the hydrodynamics component, and a load-balancing module for
the physics component. Performance comparisons Of the AGCM codes with old and new spectral
filtering modules show that a speed-up of afactor 2 is achieved as a result of our work on 240
nodes, and our anal ysis shows that aload-bal anced physics component could improve the AGCM
code performance by an additional 1 0~15%. We discussed our effort on the single-node perfor-
mance optimization for selected subroutines from the AGCM code, including the lessons wc
learned from our attempt to improve the cache efficiency, and a possibility to achieve better single-
node performance for t he AGCM code by developing an opti mized point wise vect or-multipl y rou -
tine. We also addressed our views on making better software design for GCM applications through
developing efficient and reusable code components. A complete implementation of the load -balanc-
ing module for the physics component is being developed. Single-node performance-tuning is still
one of our main on-going efforts in the performance optimization on the AGCM code.

Acknowledgments

This work was supporled in part by the NASA 1 ligh Performance Computing and Com-
munication for Farth and Space Sciences Project under Grant NAG 5-2224. The investigations
reported here were conducted on a Int ¢l Paragon operat cd by the Concurrent Supercomput i ng Con-
sortium at Caltech and a Paragon located at Jet |’ repulsion 1.aboratory, on a Cray 1313 system oper-
ated by the Jet Propulsion 1.aboratory, and on 1 BM S1°2 operated by NASA Ames Research Center.

References:

1. A. Arakawa and V. | .amb, “Computational Design of the Basic Dynamical Processes of the
UCLA General Circulation Model .“, Methods in Comp. Phys. 17 (1977) 173-265.

2. M.}, Wehner, A A, Mirin, P.G. Eligroth, W.]]. Dannevik, C.R. Mcchoso, J. Varrara, J.A. spahr, “
Performance of a Distributed Memory Finite-Difference At mospheric General Circul at ion
Model.”, Parallel Computing 21, 1655-1675, 1995.

3. M.J. Suarez, A. Arakawa, and D.A. Randall, “The Parametcerizat ion of the planetary boundary
layer in the UCI .A General Circulation Model: 1 ‘ormulat ion and Results.”, Mon. Wea. Rev., 111,
2224-2243, 1983.

4.“ 1ntroduction to the UCI.A General Circulation Model: Its History, I'resent State and 1 wture
Direction”, UCI.A At mospheric Science 281 Course Note, Winter 1995.

16

