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Abstract

By the next decade, spacecraft will be highly
miniaturized and automated to realize much lower life-
cycle costs in comparison to todays counterparts. These
small spacccraft will have highly autonomous control
systems for spacecra ft attitude, maneuver, and orbit
control. They will have the capability to sense
disturbance environments , accept goal level commands,
and make implementation decisions. Highlighted in this
paper are the key enabling technologies of intelligent
control, inducting ncural-fuzzy control, and model-
based robust reconfigurable control.

Introduction

“1'0 achicve future low-cost missions will require a
radical change from the current dependence on real-
time, trends-on ground supporl in Mission opcerations.
Low operational costs can be realized through greatly
increased onboard autonomy and reliance on the
adaptability built into control systems. Missions to
explore plancts, comets, and asteroids will emphasize
fast-fly ing, agile. spacecrafl that arc capable. of insuring
mission success in the face of a wide range of
uncerlaintics, both on-board and in the external
cnvironment.'?

Technology development of ncw methods>
architectures, agorithms, and modular flight software
that will enable the autonomous on-board functionality
of anintegrated spacecraft Guidance and Control
subsystem, as well as the monitoring and management
of spacecraft health, power, fuel, and computation
resources is underway for future deep space missions.
Immportant ncw capabilities for On-Board Task Planning
and Command Scquence Generation to autonomously
carry-out the bascline missionare also incorporated.

* AIAA senior member

This is shown in Figure 1in compariso n with the past
traditional approach.

In contrast to conventional feedback control, where the
crror signal is the main way to assure control stability
and performance, Intelligent Control offers autonomy
through self learning, self reconfigurability,

ap proximate reasoning, planning and decision making,
and the ability to extract the most valuable information
fromunstructured and noisy data. These attributes may
be realized by the merger of neural networks and fuzzy
logic in support of uncertainty-tolerant robust control
systems. The autonomous intelligent spacecraft control
systems of the near future will integrate these
techniques to achicve robust reduced cost operability.

Yuzzy 1.ogic for Autonomous S/C Functions

Piresently, on-board computers usc floating point
variables, integer variables, Boolean variables, (and
sometimes complex variables). While suchi data types
arc inherently precise, they restrict the spacecrafl to
putely preprograunned actions. This lack of real
autonomy has linked past spacecraft closely to ground
operations.

The next generation of spacecraft will have linguistic
variables in the. flight software. This enhancement is
essential forinfusing intelligence and approximate
reasoning capabilitics . The fundamentalknowledge
representation unit in the theory of approximate
reasoning is the notion ofa linguistic variable.** The
formal definition of a linguistic variable involves set-
theoretic issues. ” There isagreat dca) to be gained from
using linguistic representations, while at the same time
ensuring that no previou s capability is compromised
since Boolean logic is a special case o f Fuzzy logic.
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Figure 1. Future Autonomous SpacecraftFlight Operations

Certainspecial attributes of Fyzzy logic make it ideal
fordeveloping such autonomous spacecraft control and
arc depicted in Figure 2 keyed to the autonomous
functions which they best support.

1. Yuzzy Inference provides a well established basis
for Expert System Diagnosis and Decision
Making.”

?. Liuzzyrepresentations allow smoothed/in terpolated
switching among several candidate models,
contiollers, estimators, ete. *

3. Fuzzy parameteriz ations arc. Universal
Approximators useful for modeling nonlinearities,
and can be adapted in real time for improved
performance 101

4. Fuzzy models and representations simultancously
handle both numerica 1 data and linguistic
knowledge.”

Auloaiioi)ous Control Architecture

A candidate functional architecture for an autonomous
spacecraft control system is depicted in Figure 3.
Specific roles for Fuzzy logic to support the Planning,
Modeling, Executor and Monitor functions arc outlined
below.

Planner
As a specific example, consider aplan for an attitude
maneuver. In this case, y, represents the desired
quaternion, rate, and acceleration profiles. The
calculation of y,may involve constraints such as
maximum S/C rates, maximum allowable  torques,
thruster profiles, and in addition, gecometric constraints
may be imposed which forbid science instruments,
cameras, €tc. to lic within certain cone angles of the

sun, ot restrict such excursions 10 be of limited time
duration. lathe case of orbit correctionmancuvers, y, is
aspecified sequence of attitude maneuvers and thrust
vector profiles 10 achicve adesired Delta-V. laasimilar
manner, most other spacecraft control systems require
planned profiles.
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Figure 2. Fuzzy Logic Attributes for Autonomous Microspacecraft

The determination of the optimal plan typically
involves solving an optimization problc.in, where the
goal is introduced through the choice of objective
function, and inequality constrains arc impose.ci based
on spacecraft dynamics, hardware limitations, and othet
desired or competing physical constraints.

A method for resolving this conflict is use of Fuzzy
objective functions. * Fuzzy Objective Functions have
been considered in Zak. “This approach gives weighted
considerationto al important factors, emulating the
approach previously taken by Human experts on the
ground. Other examples include rc.source allocation
(i.e., fuel for maneuvering, fuel for orbital corrections,
memory for data storage, power, computational
resources, etc. ) for which competing needs must be
priotitized and met.

Once an objective function is clarified, an optimization
problem must be solved. Severa aternative approaches
exist based on Expert Systemis, Al methods, anti
Mathematical Programming approaches. A conceptual
example of this approach is shown in Figure 4, which
depicts the situation involved in planning a spacecraft

3

mancuver. Here, one is working on the celestial sphere,
(i.e., 3-axis rotations) where constraints (i.e.,
instruments which should not point into the sun, ctc.)
atc shown as darkened regions on the surface of the
sphere. An important advantage of using Fuzzy logic
here isthat heuristies for solving the problem can be
cmbedded systematically into the scarch agorithms.

Modeler

The Modeler is supported by models contained in the
Knowledge base, and is essentially a
simulation/prediction function which can play out
“what-if’ scenarios by propagating differential
equations, algebraic relations, sequential logic, etc. to
assess the quality of a candidate plan. In particular,
Fuzzy modeling ismost advantageous when

1. Complexities or uncertaintics arc beyond what can
be modeled easily or- precisely with mathematical
models atone.

2.The model can benefit from including linguistic
in for mation, obtained from experts
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4. The model has nonlinearitics which are not easily
characterized using standard modeling methods,
but which can be systematically represented by the
Universal Approximation properties of Yuzzy basis
functions [10][11][12].

5. in-fli~,h[ learning is required to improve model
fidelity duc to cither the time-varying dynamics, or
performance sensitivitics to model uncertainty.

‘T'wo fuzzy modeling concepts supportthe Modeler
function. The first conceptis Fuzzy Human Inference

0 . : L
X Models, and is motivated by situations 1and 2 above..
The second concept is Fuzzy Switched-Interpolated
Models, and is motivated by situations 3,4,5 above.

0, ‘The basic concept behind Fuzzy Human Inference
Models iSt0 incot porate linguistic information into the
models using a Fuzzy 1 .ogic formalism, Three types of
1 ‘uzzy modeling can be defined based on the amount

Iigure 4. Spacecraft Autonomous Mancuvering and nature of the information:
Problem L )
Expert Based: Uses linguistic informat ion
3. The model has widely varying dynamic exclusively o
characteristics and is best modeled by several » Model Based: Integrates both linguistic rules and
models, each optimized for aparticular operating numerical data. )
range, In this case, switching and interpolation «  Model Free: Generates model from “watching’” the
between models can be done smoothly and phenomena over aperiod of time and learning the
systematically using luzzy logic. observed input-output mapping.

4
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Expert Based Approach

Here models are composed exclusively from linguistic
information supplied as sets of Fuzzy rules obtained by
polling experts. Expert based models stored in the.
spacecraft Know] cdge Base. would be essential for
handling emergencies, anomalous behavior, as well as
reacting to specid situations. For example, when

1 c.sent spacecraft get into trouble they switchinto
safing modes such as. find Sun--find Earth--call Home,

in contrast, an autonomous spacccraft must solve
problems by itself. In this case, it is essential for
knowledge obtained from cxperts on the ground to be
stored anti maintained onboard. These models would be
particularly useful 10 support the following autonomous
space.cmft functions:

¢ laultDetection, Isolation and Recovery

+  Resource Management (fuel, powes/battery,
therimal, momentum, data storage, etc.)
Target Selection rules for Optical Nav igation
+  Screndipitous Science/Fargets

Model Based Approach

T this approach, ebjective information is incorposated
using mathematical models, whereas subjective
imformation iSincorporated using linguistic statements,
The linguistic statements arc converted to rules which
arc. quantificd using, the¥uzzy 1.ogic formulation, and
integrated with the mathematical models.

The Model-llascd approach alows a hybrid
methodology which incorporates linguistic information
while retaining full use of available physical modcls.
This isimportant in spacecs aft applications where
critical information must be retained in the form of
rigid-body dynamics, orbital mechanics, celestial body
ephemerides, environmental disturbance models, etc.
The Fuzzy 1.ogic approach allows onc to blend fuzzy
notions of Smoothness, Closeness, Correlatedness,
Coincidence, etc. into models and knowledge base.s,
Specific spacecraft applications would include models
for

«  Attitude Ddetermination and Contr ol

«  Otbit I Yetermination and Coriection Mancuvers

«  Autonomous Target Tracking

«  Autonomous star/planet 11>

«  Imaging Sequence Design

« Actuators and Sensors

+  Fxternal Torques and Disturbances

« In-Flight Calibration of Instruments and Sensors
«  thermal Control

Maodel Free Approach

In the Madel Free approach, rules are determined
directly by analyzing data, and then enhancing this
information with linguistic rules and intuiti ve guidance
typically obtainedfromcexperts. Both steps arc
quantified and integrated intrralearning process using a
Liuzzy | ogic paradigm.

Typically, the Model-I'ree approach is used for
characterizing behavior which is so complex and
elusive, that mathematical representations arc either
unavailab le or infeasible. Using this approach, itis
possibleto develop anew class of spacccraft controller
from input-outp ut mappin gs of the Human operators.
Specific spacecraft applications would include models
for

. Propellant Slosh, Fluid/Cryogen motion

«  Gas Thrusters, Momentum Pulse Calibrations
Calibration of Instrument Nonlincaritics

«  Environmental Torque and Disturbance Sources

. Comet Outgassing Disturbances

An important property of Fuzzy Basis Functions is their
ability to approximate arbitrary nonlinear functions. For
instance, a curvilincar function can be approximated by
awcighted sum-of-products of Gaussian type pulses.
For each pulse, the placement o f the pulse, the pulse
width, and the pulse height are determined by a lincar
parameter sct which is tuned on the ground using both
experimental data and expert linguistic information.
Oncein flight, the. lincar parameters can be updated
using standardrecursive least squares algorithms.In
this manner, the ground based informatio n is used to
provide, a foundation for tuning in-flight, and the
required adaptation laws for in-flight learning are kept
simple and lincar in the parameters.

Fuzzy Switch ed-Interpolated Models

The Fuzzy Switched-Interpo lated Modeling concept is
depicted in Figure 6. The basic idea is to switch
smoothly between several alternati ve models, each
designed to be optimal for a different operating regime.
This concept is useful for phenomena whose parameters
vary in time and for which no single model will suffice.
In addition, cxpert knowledge, and fecdfor ward
information {c.g., a gain scheduling variable) can be
included to improve modeli ng performance. Specific
spacecraft applications would include models for:

«  Propellant Slosh and Fluid/Cryogen Motion
«  Gas Thrusters

«  Spacecraft Distortion Under Therimal 1.oads
«  Huler Equations/Attitude Dynamics

«  Flexible Body Dynamics

American Institute of Aeronautics and Astronautics
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‘The modeling of propellant and cryogen slosh is
particularly challenging since its dynamics and
disturbance to the spacecraft can vary widely over a
mission as a function of fuel mass fraction, g-level
from thrusters or rapid mancuvers, and tank fill ratio.

Exccutor

‘The Iixecutor function executes the final plan of action
determined by the  Planner, All space.c[af ( control loops
arc in the domain of the Executor, which is responsible
for driving the hardware. The Executor utilizes
feedback information from the Monitor in the form of
processed  sensor  information |, or estimates  of the
dynamic state, to best accomplish its goals.

There are two fuzzy control design concepts which are
appropriate for supporting the Executor function. The
first concept is the Multi- Window Fuzzy Control design.
The second concept is Fuzzy Switched Control design.
These designs arc. de.scribed bricfly below.

Multi- Window Fuzzy Control

Multi- Window Fuzzy Control isarecent concept which
has demonstrated breakthrough improvements over
conventional Fuzzy control designs. In order to
appreciate the ncw approach, it is necessary to give a
bricf review of previous conventional Fuzzy designs.

Most conventional Fuzzy logic control designs to date.
have been based on phase-plane partitions. Such
controllers are designed using phase-planc (time-
domain) analysis, passivity theory, or proportional,
integrative, and derivative (PID) controller
modifications. It is scen that the.sccrmiro]lersarc
implemented by partitioning the phase planc into
regions having different feedback gains. This is smply

6

agencralization (to "soft" partitions) of classical
methods which use hard partitions of theJ)llasc-plane
(i.c., switching lines, surfaccs, €tc.).

lacontrast, the new Multi- Window Fuzzy Controller is
based on magnitude -frequency plane partitions as
shown in Ifi%mg 7 which or-tray ys linguistic variables in
agraphical IF-1TH ;N statemen relationships, where,
NB= Negative Big, NM= Negative Medium,

NS= Negative. Small, 7= Zero,PS=Positive Small,

PM= Positive Medium, and PB=Positive Big . Then the
fuzzy controller operation can be desciibed as follows.

ERROR
MAG

le]

Yigure 7. Multi-Window Fuzzy Control Based on
Magnitude-Frequency Partition

Whenlel islarge, the system is in a transient phase,
where the actuator is typically saturated. Here, we
predominately usc avelocity-lypc feedback gain to
promote switching and hence approximate the time-
optimal response which would be of the bang-bang
type. In contrast, when lel is small, the transient
1esponse iSnear complet ion and wc increase the.
contribution of theintegral gain to improve steady-state
performance. The moderate gain values at intermediate
frequencies and also for moderate size lel, arc used to
help smooth the transitions between the operating
regimes, which might otherwise be too abrupt to ensure
smooth and efficient operation.

Thie Multi- Window Fuzzy Control approach has been
applied successfully to Mats Global Surveyor despin
control for s/c booster separation. This hasimportant
implications for future microspacecraft Since it supports
the use of launch vehicles with a spinning orbit
injection stage. It also provides fast despin, and is
robust (safe) for awide range of possible initial
conditions.

American Institute of Aeronautics and Astronautics




Fuzzy Switched Control

Inthe 1 wzzy Switched Controller, one switches
snmoothly between severa alternative controllers, cach
designed 1o be optimal for a slightly different operating
regime. The basic cone.cpt is summarized in Figure 8.
Switching is done in a smooth manner, by combining
information gathered based on performance feedback,
feedforward disturbance information, externally
measured signals, as well as expert knowledge which
has been embedded in the choice of operating rules.

EXPERT
KNOWLEDGE

¢

Ya

.
>

_— J\rumy conTROG

The application of this approach to the precision
pointing of imaging cameras using thrusters is of high
interest. There is precedence for this approach on the
Cassini spacecraft where scparate low and high rate
thruster controllers must be switched back and forth to
achicve adequate performance over the range of
conditions during the Titan flyby. '* The improvements
offered by this Fuzzy Control method arc most relevant
10 futwr ¢ spacecraft for which thrusters arc the primary
attitude control actuator.

FEEDFORWARD

4+ NFORMAT; O N

SWITCH ng‘

PLANT

Figure 8. Architecture for FYuzzy Switched Control

Monitor

The Monitor accepts and processes measurement

in formation from the sensors. The Monitor contains the
Kalman filter for attitude determination, sensor fusion
functions, and detection algorithms for fault protection
and health monitoring. In the control system block
diagram of Figure 3, the Monitor would be the state
observer (for deterministic systems) or state estimator
(for stochastic systems) which produces the state
cstimalte.

The fuzzy estimation design example for supporting the

Monitor function is the Multip le Model Fuzzy Estimator

which can be tuned and incor porates expert knowledge.
This conceptis described below. A similar approach
can aso bc applied to Fuzzy Health Monitoring 1o
improve spacecraft Error Detection and Fault Analysis.

Fuzzy Multiple Model Estimator

The Fuzzy Multiple Mode] Estimator concept is shown
in Figure 9. In this design, a bank of Kalman filters is
propagated in paraliel. The performance of each
estimator in the bank is judged based on the prediction
cirors (i.e., how wc]] each model predicts the actual
sensor measureme nts). A Fuzzy  figure-of-mcri(isuscd
to choose the estimator. Such measures arc typically
some measure of correlation or magnitude of the
prediction error. However, the fuzzy approach allows
one toinclude other information about correlations,
nonidealities, expected disturbances, etc., which can be
described linguistically. in addition, each of the
separale estimators can be Fuzzy, and can bc
parametrized by coefficients which themselves can be
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Estimator

Autonomous Intelligent Robust Control Synthesis

Automated Modeling and Robust Control

The three generic design issues for any control system
arc stability, robustness to modeling uncertainties and
performance. An new automated design method of
Modeling and Control Synthesis (MACSYN) addresses
these issues directly via a deterministic model-hascd
approach. '™ Figure 10 shows the basic concept of
MACSYN. This provides the technology for the inner
loop (o1 first layer) of an Intelligent Robust Control
architecture discussed later.

First, the plant input/output (1/0) data from prescribed
excitations of the system are processed by system
identifi cation (1) algorithms to generate a
mathematical model of the multivariable plant and any
disturbances. Based onsystem 1D data, additive and
multiplicative uncertainty maodels arc created 10 capture
system variations in rigid-body mass propertics,

&

flexible-body modal frequencies and damping, plant
parameter drift, nonlinearitics, noise, and disturbances.
Finally, the plant and uncertainty mode.ls are passed to
the robust control design algorithms to gencrale a
controller (either I-infinity or [.QG methods) that can
petform robustly under the defined uncer lain ticsand to
the prescribed margins. This particular approach is
referred to as a model-based design technique.
MACSYN can provide guaranteed stability and
robustness since identification and uncertainty
modeling are true for in-flight conditions. During the
mission, a fully automated onboard process would
provide. periodic non-real-time self-tunins of the control
syslem nominal design. in the event of equipment

fail ures, MACSYN could al so support autonomous
reconfiguratio n of controlloops for the best
performance using the available control channels.

DATA SYSTEM
P IDENTIFICATION [ -
* no?}L:CS): CONTROLLER
UNCE RTAINTY DESIGN
MODELING

Figure 10. Modeling and Control Synthesis
(MACSYN) Basic Concept

Autonomous Fuzzy-Neural Control

To probe more deeply into the issue of global
robustness , we examined the possibility of using the
tobust, nonlinear, and intelligent control methods to
cnhance system robustness.. The technique proposed
offers a means to integrate fuzzy logic-neural network
control with modern robust control, where global
convergence is handled by the rule-based fuzzy-necural
network control law and stability performance is
handied by the robust control law. The fuzzy -neural
nelwork merges the expert knowledge base and input-
output data into a more cffective intelligent control
configur ation. With the proposed fuzzy-ncural network
approach, qualitative knowledge can be used to enact
control policy ,'**?'

liumy-neural control adds acompletely ncw dimension
to control system capability. In combination with
deterministic input-output mappings cncoded by the.
neural network, the fuz,zy-neura network provides a
powerful technigue in support Of stab ilization,
identification, fault detection and adaptive control. This
approach is capable of providing autonomy and
precision control in the presence of disturbances,
system uncertaintics, and €On figuration changes. In
addition, faulttolerance, health monitoring and
reconfigurab le control strategies are accommodated to
cnsure stability and an optimiz.ed reconfiguration of
control andsensing channelsin the case of
malfunctions,
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However, the highly nonlinear structure of fuzxy-neura
control results ina system design that is hard to assess
for stabilit y and robustness margins. Nor is it possible
to provide arigorous guarantec of these margins.

Autonomous Intelligent Robust Control

T'o overcome the separate limitations of MACSYN and
fu7.7y-neural control, a combined hierarchica schemeis
proposed. Figurc11.shows a candidate architecture for
Autonomous Intelligent Robust Control (JRC)
technology.? 2 The three-layer control system places

DIST RUBANCES -

guaranteed convergence, robustness, and stability
within the reach of autonomous control. It also has the
real-time capability of self tuning, self organizing,and
time-critical contingency actions in dealing with
unanticipaited environiments and mission events. One of
the primary functions of control design is to ensure. the
“robustness’” of the system to uncertainty. Typically,
this requires considerable human interaction in the
modeling and 1 edesign processes. With IRC,
substantial human effort can be saved, and that isan
imiportant motivation for autonomous spacecraft design.
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Figure 11. Autonomous Intelligent Robust Spacceraft Cent rol Systems

Conclusions

NASA’s future spacecraft will need to incorporate
these advanced technologies so that scientifically
ambitious decp space missions can also be affordable.
This premise motivates the vision of small autonomous
spacecraft equipped with decision and control authority
10 perform theit mission without human intervention,
The spacecraft will autonomously sense. and interpret
itsenvironment and executc its decision tasks to satisfy

9
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its mission plan. The flight system must be
functionally 1obust and adaptable to a range of
uncertainties and even unanticipated conditions.
Advanced guidance and control functions are
fundamental to this objective. Autonomous flight
operations dictates control strategies that remain
effective in the. presence of plantmodel uncertainties,
cquipment anomalics, sensing/perception constraints,
and poorly-predicted exogenous inputs.The synthesis of
ad vanced robust control and fu zzy-neur al methods to

nautics and Astronautics




form anew generation of autonomous intelligent
spacccraft control lers is proposed in Ibis paper, and
considered essential to achieving affordable and
scientifically challenging missions in the next decade.

The authors wish to gratefully acknowledge Dr. David
S. Bayard of JP1. for hisadvice anti contributions.
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