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Ab:tract

We demonstrate a class of suppressed carsier synchronization loops that are
motivated by MAP estimation theory and in the presence of 1S1 outperform the
conventional 1-Q loop which is desigiied on the basis of zero 181 (wideband
assumption.) The measure of comparison used is the so-called “squaring loss” (the
reduction in loop SNR relative to that of & phasc-locked loop (I'11) of the same loop
bandwidth). Equivalently, comparisons vill be made on the basis of mean-squared
phasc jitter for equal loop bandwidth- und signal power to noise power spectral
density ratios. Although the specific results presented in this paper are derived for
binary phase-shift-keying (BPSK), the paper begins by considering a more general 1-Q
form of modulation which allows for sucl techniques as quaternary phase-shift-
keying (QPSK) and quadrature amplitude modulation (QAM). Detailed extensions
to these more general modulation formes are straightforward and readily obtained in

view of results previously presented in the literature,
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1. Introduction

The problem of suppressed carrier synchronization (sync) in digital coherent
communicant ion systems has received widispread attention over the years both from
a theoretical as well as a praclical pointof view. I reality, these two points of view
are not separale from each otherinthatthe carrier sync structures that are
commonly employed in the design of cohirent receivers are those that are
molivated by the application of the mexitum a posteriori (MAP) estimation theory.
Although evidence of such a relation ¢ be found in many of the literature
citations, a recent expose of the subjoct|1] ddcarly points out this association between
the teachings of the theory and whatis connnonly ac ceptedastoday ‘s practice while
at the same time providing furtherinwight Indecd, it was pointedoutin [1] that
the purpose of documenting the results wes not to reinvent the wheel but rather to
add some new spokes to it.

Common to [1] and the myriad of papers on the subject that preceded it is the
fact that carrier synchronization was viewoed as a problem to be solved independent
of any bandwidth limitations imposcd on the system. In particular, the carrier sync
structures (open and closed loop) that have been derived and classified as being
“optimum” inthe sense of being motnatc.iby MAP estimation theory are
IThe authors arc '\«'/ith th_e JetPropulsion | abunatory, Pasadena, CA. The work was performed

both at the University of Southern Californic andunder @ contract to the National Aeronautics and
Space Administration.




wideband structures and ignore the presence of intersymbol interference (IS1), the
latter being handled independently it the receiver by the inclusion of some form of
equalization. In fact, much of the work or suppressed carrier closed loop
synchronization that has appeared in the technical jouwrnals and textbooks and is
described in terms of the well known Costas loop or Inphase Quadrature (1-Q) loop
[2,3] assumes a rectangular signaling pulse of duration equal to one symbol interval
which appears undistorted at the inpat of the receiver.

In this paper, we revisit the carrier synce problem with emphasis on finding
“optimum” (in the sense of being molivated by MAP estimation theory) closed loop
structures when 1S1 is presentatthercoererinput. Tothe authors” knowledge,
very little has been reported onthis sunje.tother than the treatment presented in [4]
(which was heretofore not publishied). 1°riorto that, the only other work that the
authors are aware of that deat wit | )SIeficcts on suppressed carrier synchronization
appeared in [5,6]. The primary puipose ofthispaper isto reexamine the work
performed in [4] in the light 01" removing certainrestrictions that were placed on the
problem thereby allowing impiovedjustitication for some of the assumptions made
therein as well for the results obtained ‘Lra-cd ont hese assumptions. in particular,
we shall derive and analyze the performance of a class (depending on the time
duration of the observable) of carricisyn structures that outperform the
conventional (zero 1S1) 1-Q Costasloopw)enlSlis present in the receiver input
signal. Emphasis will be placed on t Ihweeise of implementation and low cost of these
loops. The amount by which these © 15]- compensated 1-Q loops’ outperform the
conventional 1-Qloop will be assessed by comparing the so-called “squaring 10ss”
(the reduction in loop SNR relativet,rthat of a p)~ase-locked loop (PLI) of the same
loop bandwidth) of the various configurations of the former with that of the latter.
Equivalently, comparisons will bemade onthe basis of mean-squared phase jitter

for equal loop bandwidths and signeipowertonoise power spectral density ratios.




Although the specific results presented in this paper are derived for binary phase-
shift-keying (BI’SK), we shall begin by conadering a more general 1-Q form of
modulation which allows for such fechnigaes as quaternary phase-shift-keying
(QPSK) and quadrature amplitudemedulation (QAM). Detailed extensions to these
more general modulation forms are streighiforwar d andreadily obtained in view of
the previous results presentedin|4].
2. Systemand Signs!_.MgdC!S

The general digital communication transmitter model considered here is
illustrated in Yig. 1. In this figure, ¢(1) s assumed to be a unit power rectangular
pulse of duration 7 sec (a single bavd) end /(1) is the impulse response of a pulse-
shaping filter that spreads g(1) beyond o soagle baud interval and accounts for the 151
seen at the input to the receiver. 1etting (1) = g(1) * h(1) denote the spread pulse,
then the 1-Q carrier modulated signal scer at the input to the receiver can be written
in the form

5(1,0) = Almy(1)cos(, 14 6)- m,(Hsin(w.r4 0)] )

where A is the signal amplitude and

m ()= a,p(t- kT, (1) D Xt - KT) (2)

Lt 1

with {a,} and {b,} respectively denoting the strcams of independent I and Q data
symbols. For the case of BPSK, cither i, i) o m,, (1) equals zero and the data
symbols of the remaining modulation take on values 4 1. In this case, All2="P
denotes the signal power in watls. i addition {o the signal in (1) the additive noise
n(t) present at the receiver input is cheraclerized as a bandlimited white Gaussian
noise process with single-sided power speciral density Ny watls /12,

3. The MAP Estimation of Carrier Phase

Based on an observation of the received wignal plus noise r(1) = s(1,0)+ n(r) over a

time interval 91°, we wish {0 estimate the random parameter 0 (assumed to be time




invariant over the observationinterval)so asto maximize the a posteriori
probability p(6)r()).” Since the unknowi. phase o can pe assumed uniformly
distributed in the interval (- z.x ), cquivalently we can maximize the conditional
probability yp(r(t)|9).}"0r the assumed edditive white Gauss jan noise channel model

assumed, this probability takes the well-kiownt for m

fo 1l
p(r)6) = p(rjo.{a,}, {, }) 3)

where the overbar denotes statistical nveraging over the 1 and Q data sequences and

1)(,.(1)10,{(1k},{1)k}) = chp{}i [,d( " (1)\(1,0)(1’(} X Cx]){_ Al’ L’mﬂ' 5-7‘(t,0)dt} (4)
(]

o

where C is an arbitrary constant (t hatincladest he paramet er independent term
cxp{'(l/ NO)L?M r’ (l)dtl and 7,7 (N,4&)1 (N, integer) denotes the inherent delay
introduced by the pulse-spreatiil 1 fil t ¢ i 1).3 Without any 10ss in generality, we
now assume that the pulse shape p(r: is truncated such that the significant 1S]
results only from K past symbols  FEquivaiently, the duration of the pulse p(r) is
limited to a maximum durationof (K1 A”,41)7 scc.

In the casc of zero 1S1, the second esponential factor in (4), i.e., that
corresponding to the signa cnergy, wili be constant and independent of thel and Q

data sequences {a,},{b,} and thus (4) would simplify to*

2l
1)(r(t)|0,{ak},{bk}) = chp{- 7 [ t: (1,0 ()){1’1} (5)
]\’(,s la
Unfortunately, in the 18I case the signe energy exponential factor depends on the 1

and Q data sequences and thus for eva aation of the true MAP estimate of phase it

should not be ignored.5 For the nwown 11 however, letus proceed by ignoring

2for convenience, We shall assume that ¥ i~ integot, ic., the observationinterval corresponds to
aninteger number of baud intervals. ‘Thisi, typi,11 of MA]’ estimation problems of this type

3In practice, T, would be determined by thesymol synchronizer employed in the receiver.
4H1crein we continue to use ¢ to denote em arbiltary constant despite the fact that its value may
vary from usage to usage.




this factor (as wasdone in [4]) withantaimtowardsimplicity of implementation at
the same time however, understandimyg, howeves, that the resulting Structures will
not necessarily be optimum®.

Substituting (1) togetherwith (2)irto (5) and simplifying results in

A K

p(r(l)lO,{ak},{bk}) =C 1] exple 40 0} x| Jexp{b. 1.6, 0)} (6)

iz (Ng47) i: =N 7)
where
2P 2 =
lt(i,O):Q?}[\—JZJJZ ﬂr(t)cos(w(m @)p(i 4 iT)dr
24/ OP | "
1(,0)27 1\% [ rysin(e, v )l 1 i1
0 d

Since the independent data sequences {a, 1,.{b,} are cach independent identically

distributed (i.i.d.), then averaging over these sequences results in

p{rnje)= ¢ f] cosh{/ (i,0)} » ]"] cosh{l (i,0)} (8)

iz~ (Ny+7)

SN

We refer to this as the partitioned forie of the likelihood function. As we shall see
later on, such partitioning is only possiblcinthe 1SIcase by ignoring the signal
energy dependent exponential factorinthe likelihood function, i.c., using the form

in (5) rather than that in (4).

“In [4], for the purpose of simplicity of impleierfation (and aso analysis), this signal encrgy
dependent factor was ignored in deriving, the MAP estimate. Thus the MAY estimate of carrier
phase derived there and the closed stractures motwvated by it are not strictly speaking “optimum”
(in the MAP estimation sense). Nevertheless, we shall show later on that these practical
implementable structures do indeed achicve excelicnt performance despite their inherent
suboptimality when compared to the conventiona’ schemes that completely ignore ISI in their
design.

bt 1erein, when describing a structure,we vee the word optinium withoul quotation marks to mean a
closed loop structure that is motivated by the MAT eslimation approach in that the error signal in
the loop is derived from the derivative of the Jikelihood function (or 8 monotonic function of it)
with respect to the unknown parameter, (. This i~ consistent with similar usage in the literature

regarding the derivation of tracking, Joops derved from open loop MAY parameter estimation.
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In view of the partitioned fornm of the likelihood function in (8), it is

advantageous to take the logarithon of this function before maximizing it with

respect to the unknown phase parameter. 0. Doing so gives

K 1
Inp(r()}0)=InC+ );]n cosh{l (1.0 44 >:ln cosh{J, (i,O)}:A inC+AO) (9

== (Ny47) i (Ng4y)

Differentiating, (9) with respect to ¢ provides Lthe error signal (actually the negative
of the error signal) for the closed loop phise  acking structure motivated by the

approximate MAP approach described above Thus,

,.(?_lp g(f(ﬂ@ée(g) = \k J (s 6nanh)| )((i,())} I, (i,()')tanh{ls(i,())} (o)
0" e T
“‘(Aa*7)

The interpretation of (9) is that & dosedloop structure using (9) to characterize its
error signal is the superposition of K4 N, -ty 41 1-Q loops cach operating over a
different portion of the pulse respon«e 1,(f). Also, the composite loop is assumed to
update itself every T sec as is the case forthe conventional (zero 1S1) 1-Q loop. Yor
the specia case of BPSK module tion. t hetermsinthe second1-Q summation in (1 O)
are all zero. One implementation of a 51 K loop based on (1 O) is illustrated in 1iig.2
where the hyperbolic tangent functionha-been omitted which is valid for small
values of its argument.” In kceping with pirevious nomenclat ure, such a loop will
be referred to in this paper as aniSi-cornpersated 1Q loop.

3. Performance of the BPSK 1S1-Compenseted. 1-Q 1,00p

3.1 The Stochastic Differential Hquation ol Operation

in this section, we first derive the ctochastic differential equation of operation of the
| SJ-compensated 1-Q loop of }49g.? andthen compute its mean-squared phase jitter.
As previously mentioned, the sigislri) ot the input to the receiver is composed of

the sum of the signal s(r, 0) and a bandlimited white Ga ussian noise process which

In practice, when designing closed loop styuctines based on the above, it is customary o
approximate the hyperbolic tangent nonlineerity Ly its sinall and large argument approximations,
namely, tanhx = x for small x and tanh x = spna for large x. Such approximations, respectively,
lead to small and large signal-to-noise 1atio (SNR) tracking structures.




can be expressed in the form

n(t) = \/2[Nc(t)cos((uct 46)- N (nsin{er g4 ())] (11)
where N (1),N (1) are independent low pass white Gaussian noise processes with
single-sided power spectral density N, watts/11z. For BPSK we can express the signal
as §(1,0)= N2Pm(0)sin(w,14 6). Demodulaling r(r) with the quadrature reference
signals 7 (1) = /2 cos(wct + é) and r.(1): 2 .‘v.in((t)rt + 0) produces (ignoring second order
harmonics of the carrier) the quadiatine phase detector outputs

€.(1)= [«/ﬁrn(t) = N,(t)]singfr 4 N (1)cosd (12)

£,(1) = [NPm(t)- N(D]cosg - N i1)sing
where ¢£60- 6 denotes the phase ciror in the loop. Weighting these signals by
p(t+iT) and integrating over the obwer vation time interval gives the pair of signals
z,,(1),2,;(1) which when multiplied resolt m the component of the total error signal
contributed by the ith loop. Assuming a modulation m(1) of the form of m, (1) in

(2), these signals take the form®

d

L ) & _ )
2., (f)= L e (OpQ - i1)dt=1r1| a1, |sing- N, sing4 N, cos¢
T

IS 417 I (]3)
1,47 L .
z, (1) = J,,. l e,(Opt - i1)de=PT >4(1» A, [cos@-N, cosgp-N_; sSn@
d 1= NgAY) ‘
where N, N, ; are zero mean Gaussian random variables defined by
1497 . Ty4 47 R
N”:L. N,OpG+iT)dr, N_, L N_(Dplr 4 i)t (14)
and the 1, s are ISI parameters defined by
ALY (T .
lu:%Lk pl+ ip(t e 1, (15)
The variances of N, N, ; arc casily computed as
NI
variN . r==vardN_.p=--9 | (16)
{ ,l} { C,l} ? it

The noise samples from different Joops a ¢ correlated with correlation coefficients

8We can ignhore the weighting of the inteprators by the factor 2«/?1’/]\’0 since for this
implementation this gain will eventoally be absorbed in the total loop gain.



IC{NC,.'NCJ} = [’:{N.HN-\‘I} - N())l

L (16)
However, the N /s and the N s are independent for all iand j.
Multiplying z,,(t) and 2z, (1) produces the error signal in the ith loop, namely,

- ?
A ) P’ L . rs N.r2i Nc?i
z;(D=z,,()z, (1) = sin2¢) - 5 [ >¥(1>1/_,) - «,/I’I'Ns_,.(. >_4(I-)jlj.i]'* —th B
iz

{(Ag47 (No+y 2 2

[ / A
-icos2gp 1T a1 1= N N
LJ (';d" v
(17)
Finally, the dynamic error signal of the corposite of all loops is
K
z2() = Y ) (18)
i=- {Ng47)

and (assuming d0/dt = 0) the stochattic di ferential equation of loop operat on is

given by

K { A ’
2p¢4 PT?KE(p)sin2¢| L M d j_,) = KF(p)N,(1,2¢) (19)
i (N )\ (N

where p denotes the Heaviside operator, 1 is the total open loop gain, F(p) is the

loop filter transfer function, and N_(1,7¢) is the equivalent additive noise defined b
3 . ]

£ _g '
N (1,2¢) = sin 2¢ D NI N, |2 IPTN, Y, a..,lj_,,l]l

2

i==(Nyt7) ji-(Naty)
l : . (20)
5 Q
1 Ccos2¢ L IN LN AT 2,(1_]./].“.]
i==(Nat7) [0 we) ).

and is a piecewise constant (ovetintervals of T'sec) random process. As in analyses
of BPSK 1-Q and Costas loops without 1S1 we 1ewrite the second term on the left
hand side of (19) in terms of its statisticalynean and the varjation around this mean.
The statistical mean represents the so-called loop S-curve and variation around the
mean is the loop self noise. Since thevarience of tile zero mean self noise is

proportional (for the BPSK case concidercd here) to sin”2¢, it yields a negligible
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contribution to the overall mean-sguared phase jitter in the SNR region of typical
interest. Thus, as has been done in previous analyses of this type, we shall ignore its
presence and replace the second term on the right hand side of (19) by simply its
statistical mean. Doing this and al the same time lincarizing the loop (i.e., replacing

sin2¢ by 2¢) gives the linear loop equation of operation, namely,?

KE(ON (1,0 A N t,()
e KEONGD )
S #
p+ PT?KE(PE Y ( Ya 'IMJ Prie L La 'y
(N g (Mg s (Ng4y)\j= - (Ng+7)

(21)
where 11,,(p) is the closed loop fransfer fanction for the BPSK ISI-compensated 1-Q
1 oop.
3.2 The Mcan-Squared Phase Jitler I'etformance
Following the approach taken in ]2 3], the mean-squared phase jitter is easily

derived from (23) as

. o (22)
K K
P27l g >_4 ( 2_((1 A l
i=-(NgAY)\ s {Na47)

where B, denotes the loop bandwidth (obtained from the magnitude of the closed
loop transfer function) and N, isthe flat:ingle-sided power spectral densit y of the
equivalent noise process N, (z,0) wliich canibemodeled asa delta-correlated process
[2,3] with autocorrelation funclionk, (1) 1&'{A7€(1,())Ne(l -1 1,())}. “1’bus,
N, =2 j 0 Ry, (T)dT (23)
The squared expectation in the denominator of (22) represents the signal x
signal (S xS) term in the loop ¢rror sipnal It can be evaluated as

5 i ( Ya,l )7 J: | 3 )Iil{’.,-

1?2

(24)

is~ (N4 p)\ j=- Nﬂr) (Resyl oo (Nyay)

%For the cquivalent noise term we may et ¢ (0 without any loss in generality.




Substituting (24) into (22) gives

0= ot ®
) K\ 7 ’ I :’1
1”'1"‘[ 22l
= (NgAy)j=-(Ngty)
where
X K ’ |
A " O N
sy 12 x[» , ,f,,.,] (26)
iz (NgAy)j=-(Ng47y) 4]]\('/

is the so-called squaring loss associated withthe loop. We now proceed to evaluate
the denominator of (2.6).
From (20), we have 11v31

X €2
N1, 0) = 2 ) AEC;{,NM PN, b T ST A AT (27)
i=—(Ng+7) l \ (o) 1.
with a variance (sce Appendix A) givenby:
K" N K'\ - A’\
S SN S T ET TR SN @9
i:-(Nd+y}y)j:~(Nd-c7:) k:-(Ny47) _

which is independent of £. To compute the autocorrelation of N,(1,0) we must
model this piecewise constant 1andoin process in an arbitrary T-sec time interval,

cg., T+ (y—l m)'l‘ St<T 4+ (YA mA+A NI with m integer. In particular,

K-m o K-m A
N(60) = 2 3 N O\ N O PT Sa il (m) ||+ Nm) (29)
i=- (Ns4y+m) Ji=(Ngryam) i

where

7 m)7T 1, +m)l s
N, (m)‘/J'TJj (’; "N @pl iy N L) [ (’I "N Opl i)t
: ‘ (30)

7,4 (y+m)1

Al ) . . _
l..’j(m)—rjl‘—J'7 pQ+ iypQ i Hdr Ij".(m)

Since for a piccewise constant random process, the autocorrelation function will be

atm

piccewise linear (sce Fig. 3), it is sufficient to compute the values of Ry (1) at integer
A
multiples of T, namely, Ry (n1): F{NIO)V(n)}: R(n) where R(0):: IZ{N2(())} =0y, as

previously given in (31). Furthennore, ssnce Ry (1) extends only from -y to 7',
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then from (23) we have

-1
N,=2T [}<(0)+ 23:1\’(_)1)

y-l
210 Gy, R(n) (31)
: ]

The evaluation of {R(n); n= 12, v ] }icartiedoutin Appendix A with the result

Ko Ko , Ao
Ry = Y AN =00y 4 2PN (1) D (0N, (n) (32)
is - {Ngy)j= - (Ng+7r4n) ke (Ng4y)
where
e
.li'j(m)i\—-‘—]-[; L PUF D) (33)

Note that J, (m) differs from1 () of (30) in that the upperlimit is 7, + 91" rather
than 7,4 (y+4 m)I'. Also notc that 1,0y J, (0)=1;,and 1, (m)= 1,,, where I,; was
previously defined in (15). Making these substitutions in (32) we sce that for n = 0
this equation reducesto (28) as it should. Finally, substituting (28) and (33) in (31)
and then dividing by 4PN,7* we pet

N o, Gy

where R, = PT /N, denotes the SNR and

k. K, k. Y k K-n K-n
o= ).4 L y >.,f]i,tl.u ' )) >, >u4 () Lli.klﬂn.m
i==(Ngay)j=-(Ngay) k= {Ngsa) e Ny} g (Nadyan) k= {Nay)
K y 1 I3 bon
_ ~ Rl N " 2
13" L >_4 ¥ ?>.1 >./ >l J.’,,(n)
i=- (Ng1y)j=-(Ng+y+n) nolis (N (A rdn)

(35)
The quantity “a in (35) representst hesiynalxnoise (§ x A’) term in the loop error
signal whereas the quantity “ /3/2R,” reprosents the noise >xnoise (N X N) term in
this same signal. Substituting?, (34) inio(20)gives the final desired form for the
squaring loss, namely,
K1
12 S
g, =L

== (Nad7)j==(Na+7) |

R ﬁ

a4 -
2R,

For zero 1S], e.g., p(1) a rectangula pulse, we have that y = 1, N, = 0, K = 0 and

(36)
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1,0, i#j, 1,=1J,=0i%i, J .- . Thus, a:: F=1and (39) simplifies to

) 0

2R,

Sp= s (37
142k, )

which is a well-known result for the conventional (wideband) 1-Q loop with zero 1S]

[2]. By analogy, for a onesymbolobsery tionin te ISIenvironment, ie, y =1, (36)
simplifies to

K I

R P t
Li:-(Nl 11 ] I (‘\4’ il [1%]

A
S,' e —— - ' Y (38)
N\ )2
o )
(

K K K w7

2‘4 2 }_‘l ]“-’/"l,r.* : (fv:,».)?f;; o)

iz (Ny41) j=—(Ng4 1) k=~ (N 41) d
To assess the benefit obtainedbyuaing theISl-compensated 1-Q loop rather
than the conventional (wideband) 1-Q), we must now determine the performance of
the latier in the ISI environment.
4. Mecan-Squared Phase Jitter Perfarmance of the Conventional 1-Q 1.oop in_an 15]
Environment
The conventional 1-Q loop is illustrated in Fig. 4. The performance of this

loop in an 1SI environment such as that niodeled in this paper has been previously

oblained [4,7]. in particular, the squaringlossis given by ()

hl_ 2
£
s, fo bl (39)

3 1
PER
ey 2R,

147
= La p(t+ jT)dt (40)

We observe that the ISI-contaminated pul-c shape has no bearing on the NxN term

in the denominator of (39) as onewouldenticipate. (Note from (26) that this is not

105, [51the delay of the filter was notexphoitly sicounted for. 1lowever, it is a simple matter to
modify the results obtained there to include this parameter.
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true for the ISl-compensated loop with y 1) Also, the $x S term (the numerator
of (40)) is equal to the square of the S x N term.
5. Numerical Examples
To illustrate the behavior of the 1S] compensated 1-Q loop, we consider an N-
pole Butterworth filter for the pulse «preeding filter A(r). This results in the pulse

response p(t) = g(1)* h(t) (g(1) a unit powes rectangular pulse) given by

- sinafl’ imw
p() = 2Re “0 T -_7(]-']'_- H, (e 17 (If} (41)
where
N
Hy(f) :'][-i‘ chj"(f /1y - ‘ ; N (42)
n=1

with f; the 3 dB frequency. For a given value of N, the filter coefficients {c,} can be
found in any standard textbook on filter theory. An abbreviated table of these
values for N = 1,2,3,4, and 5 is given in Table 1. Fig. 5 is a plot of the response for
JoI'==1land N == 5. Figs. 6a,b arc plotc of 5 as determined from (38) versus K, in dB
for obscrvations y = 1,2, and 3 baud intervals and two different values of 17, namely,
T,= 025(N,=0,6I'=0.25) and 7, : 0.50 (N, = 0,61 = 0.50). The first of the two values
of 7, is indicative of the delay of the pulse p(1) whereas the second is indicative of a
value that places the peak of the pulse in the middle of the observation interval for
Y =1. For comparison, the peirformances of the conventional loop with zero 151 and
in the above ISI environment as determired from (37) and (39), respectively, are
also illustrated. In both casecs, we observe that a reasonable iimprovement in
performance is obtained by using the 15)-compensated 1-Q loop as opposed to the

conventional 1-Q loop, particularly, as ¥ spproaches K, i.c., the observation interval
extends over all the 1SI.

6. The MAP Estimation of Carrier Phase Revisited

We return to the initial problem of findirg the MADP estimate of carrier phase in an
s, 1

ISI environment, now, however, mainlaining the dependence of the likelihood



function on the ISI-dependent signal ence: gy term that was heretofore ignored.

Substituting (1) and(2) into now (4) Gather than (5)) gives after simplification !

p(r(l)IO,{a,‘},{b,L}):tC ]AJ expla 1 (i 0)} ]AI ]J u\p{—-‘N ‘a;ja,‘l,k}

iz (N1 SNy k=- (N41)
K K
x | Jexple 2,611x ] II expy- - b bl
iz (Ny4D) L N AT ks (N ]\
(43)

We note that that because the signal eneypy exponential factor involves the square
of the transmitted signal s(7, ¢)as aninteyy and there exists pairwise dependence on
on the clements of the data sequences. This prevents the averaging over the data
sequences from producing a partitioned jorm of the likelihood function as was
obtained in (8). Thus, it will not be convenient to take the logarithm of the
likelihood ratio prior todiffcrentiating itwithrespect to the unknown parameter 6
instead we proceed as follows

Restricting our attention to the BPPSK case, we arrange the ith data sequence
{a,i=1,2,..,2%%*?} and scquence of tanslated pulse shapes {p(z--i1)}in the form

of vectors, and describe the pairwisc intersymbolinter ferern ins by a matrix, namely,

’ (n) 3 f‘l),a((,'),(l,(')v -“;\‘:~““'\“}‘11
p(1)1 - [])(t n KT),..-, I’(l 4 ']')‘/,(1 ;.,/,(j “1),..., [1(1 - (Nd +4 1)’1’))] (44)

]= [1,._j]

Then, corresponding to the i th data scqguence, define the ith effective pulse shape
pi(),i=12,...,25"N*2 py
Py =2 p() (45)

In terms of this vector and matrix 1¢presentation, we can write the average of (47)

“I()r qnmphcrty, we shall consider only the case of a single baud interval observation (Y == 1) since

as we shall sce this is sufficient to justify the poists that need to be made.



over the data sequence {(h} as

?KANJAZ
p(r@l) = C Y exp(- 2k, w,) > cxp(/10,0)) (46)
i=1
where
/) )
wea® 109 L@ 2T @y cos(wa 1 0)p(1)ds (47)

'O w g
Note the difference between 7(6,6) of (511 and 1_(i,0) of (7), namely, the former folds
all the ISI for the ith sequence into the irtegration interval in terms of p,(1)

whereas the latter only involves only the ISI for a single translate, e.g., p(1+iT’), of
the pulse response. We refer 1o (46) as the unpartitioned form of the likelihood
function. Differentiating (46) with yespedi to 0 provides an error signal (actually the

negative of the error signal) for a closed Joop tracking structure motivated by the

true MAY approach described above  In particular,

okibg
- ”7’(;((;)10) e0)=C 2 exp(- 200 - 16,0 exp(.G,0) (48)
where by analogy with (51)
(i O)f‘gt/l ) ‘r(t)sin((n{l 2 &) (0 (4Q)
0 d

An implementation of a BPSK tracking loop with an crror signal based on (48) is
illustrated in Fig. 7. Note that the complexity of this iinplementation in terms of
the number of superimposed Joops needed to form the composite error signal is
exponentially dependent on the lengl of the sequence i.e., 29*%'? ag opposed to
being linearly dependent on sequence length for the structure based on the
partitioned form of the likelihood fiunclion (sec Fig. 2).

The result in (52) can be slightly sirplified by noting in (50) that for any given
data sequence the weight w, will be identical for both the data sequence and its
complement. On the other hand, for this «ame pair of sequences, the second
exponential factor in (50) has equal and opposite exponents.  Thus, for a given data

sequence and its complement, these two terms can be combined into a hyperbolic



6

cosine function of 7.(i,8) with the <ignal nergy dependent exponential factor
exp(- 2R,w;) as a weighting coefficient. When this is done, then differentiation with
respect 1o € gives the alternate form

PLRLI
- ()”(;gﬂok @) =C } exp( 28w} - LG 0)sinh(1.G,0)) (50)

where the sum ranges over (mly those sequences with a, = 1, i.e., half the total
number of sequences.

Suppose now that analogous to wlat was done previously in this paper, one
linearizes the loop in Kig. 7, i.c., remove <he hyperbolic sine nonlinearity which is
vaid for small SNR. Then, (50) 1educes {o

Kabgo
CPIDO) 2 0y &N enpl- 2 ) GOV (0,6) (51)

0 i
which suggests an ISI-compensaled 1-Q loop in the form of a superposition of
weighted low SNR 1-Q loops. The stochaste differential equation of operation and
performance of such a loop can be ohtaincd in a manner analogous to the approach
taken in Section 3. In particular, it is straiphtforward to show that analogous to (19),
the loop equation of operation is given by

1=

(N;41)

2pg+ PT?KE(p)sin2¢ >{ exp(c 20 w( La . } = KF(p)N,(1,2¢) (52)

where somewhat analogous to (15)

LAY T . o, ,
If":}J;;, pl+ jr)p,(Hdr+ 1, (53)
and
. 2 | Koo
N,(1,2¢)=sin2¢ 3 exp( :z./cdw,)l N2 NZ42JPIN,| D T,
i=1 J - (Ng41)

(54)

i1 == (Ny41)

In (54), N,, and N,; are zero mean Gaussien random variables defined by

2K¢Ndol K
1cos2¢ Y, 2exp(- 2R NN \//’7{ >_‘,(I_J]'}_iﬂ
} -

= f.mNs(t)p,.(t)dt, N, ,: JVI"“ N (Op,(Ddt (55)
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with second order correlation properties

. T NT L o Yo el a1 NI
var{N, } = var{N, } = Sl NN Y= BN N, e i (56)
where
AT preT
T, L p;Opdi= J (57)
Ignoring self noise, the mean-squared phase jitter is given by
N1
OFg = == e N B, e (58)
2K Ng i ; I3 2
PITES S exp(- 280 ) D ,l;i,j
i=1 wE (N“ I)

where N, is defined analogous to (23) in terms of the autocorrelation function of
the noise N.(1, 0) obtained from (51) with ¢ = 0. Following steps analogous to

(25)-(34), we arrive at the desired result for the squaring loss, namely,

phenan

?
K
. N
.y . LA
>__{ (.,\.p( 2R > 1
3 jo (Ng4)

QXANG T KK T T (59)

> 2 Cxp{' 2R,(w; + w")}J'?'j
P P -

[
A)

R

?KiNdﬂ ?th’dol

z Ychp{-QRd(wﬁ wj)}‘]i,i é'/

i=1 it 1 i

2K .4

The numerical results for the squaring loss as computed from (59) corresponding to
the same pulse-spreading filter as considered in Section 5 are superimposed on the
results already illustrated in Jig. 6. We observe that at Jow SNR, the squaring loss
obtained from Fig. 7 which is motivated by the true MAY phase estimate is virtually
identical to that obtained from FYig. 2 which was motivated by the MAP phase
estimate ignoring the ISI-dependent signel energy term in the likelihood function.
At the same time we observe thatatl dyph ©NR, the squaring 10ss Of the loopin Fig. 7
actually degrades and in fact in the limit of infinite SNR, we would find that 5, -» 0.
This is mathematically justificd by (6:4) sinceinthe limit of large SNR the
numerator of this equation behaves as exp(- 4f3,.R,) whereas in the same limit the

denominator behaves as exp(- 2f3,8,) where B, and f, are the dominant positive
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1S1 terms, respectively, in the ninneatorand denominator. A similar behavior was
observed in [1] for the zero casc. 1npartivular, whenexamining the unpartitioned
closed loop structure motivated by the MAY estimation of phase approach, it was
found that for an observation of length? inthe limit of large R,, the sgquaring 10ss
has the asymptotic behavior exp(- 2 K, j. /Anexplanation of this somewhat
unintuitive result is given in [ 1] (atlcastforthe ISJ-free case. ) in particular, the
linearization of the exponential (01sme 1.y perbolic) nonlinear ity asisdonein
arriving at Fig. 7 from (50) is fromapciformance standpoint at high SNR quite
inferior to the linearization of the hyperbolictangentnonlinearity as is clone in
arriving at Fig.2 from the BPSKjormof (10). As afuther check on the validity of
the above, we computed the perfornanice of Fig. 7 under the assumption that we set
the weights {w, }all equal to zcro. T squaring loop performance of this stucture,
i.e., ¥Fig.7 with the exp(-2R,w,) weighis all set equal to unity, became identical to that
of Iig. 2, i.e, the performance of suboptinium structure (ignoring the signal ene -
dependent term in the likelihood forctionithat motives the structure) is
independent of whether it resultsfionthe partitioned o1 unpartitioned form of the
likelhood function.

Canclusion

We have demonstrated a class of suppressed carier synchronization loops that are
motivated by M AP estimation thceory aridinthe presence of 1S1 ou t perform the
conventional 1-Q loop which is desigriedon the basis of zero 1S1 (wideband
assumption.) Although the loops were conceived by ignoring the signal energy-
dependent 1S1 term in the likelihood funiction, thelow SNR versions of these loops,
i.e., those that which contain 110 nonlhnecanty intheirinphase ar m, perform as well
or perhaps bet ter than the low SN R version of the loop based on accounting for
these signal energy-depmdenl tciins.
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/\.])p('ndix A
Evaluation of the Autocors elation Function

of the K quivalentNoise P rocess

Starting with the definition of the equivealentnoise N (1, 0) given in (30) of the
maintext, we obtain the statisticalautocosrelation function (evaluated at integer

multiplesof n'T)

R(n) = E{ N,(,0)N,(t -1 nT 0)} ) 1-:{N[J(())Nc_,(n)NJ,,»(O)N;_.-(")
(h 1y LN ym)
. . K-n
—»\/]’Y'Nx_,(n)( 2"»/’1 ,(())J J/"//\;.,,m)% >;(1_,(lk.,(n)] (A-1)
(Nat7) k= (N4 y4n)

4 PT [ Lajlj‘(O)][ );(1‘“'1 H
(Ns47) k== (Ng474r)

To evaluate the first term in (A-1) we note that

Ay n)t

244 71 ) 14 Y !
I-‘J{NCJ.(())NC,,(n)} = E{J.;- l N (D)1 i!‘)dl'[ll - N (0)p(z - 11')(1(} = _I_V;Z J:,(n)

(A-2)
where
Al iy vy o
MO L;,m”(t +iT)ple 4 1)t (A-3)
Similarly,
E{N,;(O)N, (n >}~ ol (A-4)

Thus, the first term in (A-l) becomes

- R i K‘ K~‘n
4y Ll«{N (AON L OPEIN AN, ()= ) Y NZT? I3 (n) (A-5)
is = (NgA )= N4yt ) o iz- (NgAy)i -(Nd'4 y4n)

The second and third terms of (A-1) both evaluate 1o zero since the noise
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components N_;(0) and N_,(n) are both z10 mean. The fourth term of (A-1) also

makes use of (A-2) and is evaluated as

X ‘ It ’ Kon
arr* Y, ) 1«{ JON ool Y a }1},(0)][ }J{l»klkl,(ll)]
, ,n(}\ ) k:-(Addﬂn) (A-6)

== (Ny4y)i==(Ng4y+n) 1Y)
A4, s ‘r ) K- »n
= 2PN,I" ),, >J_J‘,.’_,(n) 41 (O);,(n)
s [Nl (N om) je (Ng47)

Finally, summing (A-5) and (A-6) gives the desiredresult, namely,

K-n
I\’(n): }J SN iy PN () )_4 i (1) (A-7)
< (Ngy)j=-(Ng4y+n) k= (Ngay)

Letting n= 0 in (A-7) gives the variance of the cquival('m NEISC Process as

X K, o
Ofv. - Z >_4 N({‘l./}f.i “ 7"’,’\’07 i/ ) ], klfk (A-S)
i-- (7)== (W) (Rex)

in arriving at (A-7) and (A-8), wchavemade use of the fact that J;; (0)= 7, ,(0)=

where 1, (m) is defined in (33) and 1, , i~ (i(fined in(15) of themain text.
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Fig.7b Block Diagram of Circuit for Generating ¢,; i = 1, 2,... ,2 **%*



