The main result of the Tsurutani et al. (1995a) paper is that corotating streams emanating from coronal holes during the descending phase of the solar cycle (1973-1975) do not cause major ($D_{st} \leq -100$ nT) magnetic storms, but only moderate, weak, or even no (significant) storm activity, where storms are defined by $D_{st}$ decreases (Gonzalez et al., 1994).

Although, there are typically large $20-30$ nT magnetic field amplitudes created by the fast stream-slow stream (heliospheric current sheet plasma sheet) interactions, the $B_z$ directionality is typically highly fluctuating within the high field corotating interaction region (CI R), and thus the empirical criteria for intense storms (during solarmaximum) of $B_z > +10$ nT and <$3$ hours (Gonzalez, and Tsurutani, 1987) is not satisfied. A mechanism explaining these highly fluctuating fields has been presented in Tsurutani et al. (1995b). These fluctuations may be (reverse) shock-compressed or simply stream compressed (without a shock) Alfvén waves from the high-speed streams (Figure 1). A second result from the T1995 paper is that the $B_z$ fluctuations associated with Alfvén waves in the corotating streams can cause continuous auroral activity called $H$ ii, 1 (‘A As. The presence of two high-speed streams during 1974 led to a extremely high yearly average of $AE$ (283 nT), even higher than the following solarmaximum, e.g., 1979 and 1981 (221 nT and 237 nT, respectively).

The issue that Cliver raises is tertiary in the 'T1 995 paper, but is very important one and very worthy of discussion. We commend ‘T1' for delving into this in depth. The three intense magnetic storms during 1974 were associated with small streams led by fast forward shocks (and not corotating streams). These impulsive streams occurred very close to the corotating (coronal hole) streams and the heliospheric current sheet (HCS). In ‘T1' 995 we speculate that these interplanetary events may be associated with expansions of the coronal holes.

One mechanism for the opening (and closing) of coronal hole magnetic field lines is through the interconnection of fields between different magnetic active regions and interconnection between fields from magnetic active regions and open coronal hole fields (Harvey et al., 1986; Sheeley et al., 1989; Wang and Sheeley, 1990; Wang et al., 1996 and references therein) Respectively. Recently, Gonzalez et al. (1996) and Br~nzer et al. (1996) have postulated that coronal hole streams and embedded fields interact with active region fields. HCS fields to create coronal mass ejections (CMEs) during solar maximum. One should note, however, that if the magnetic active regions contain an equal amount of "positively" and "negatively" directed fluxes, the mechanisms discussed above do not lead to a reconnection of magnetic field lines, but only to a reconfiguration of the magnetic topology. What is needed to expand coronal holes is the
emergence of net flux of the same polarity as that in the coronal hole, and contraction must be accomplished by the emergence of net flux of the opposite polarity. Whether this occurs in or near magnetic active regions or not is presently unknown. Also, the overall global picture should be taken into account as well. As more flux opens on one hemisphere, equal flux should open in the other solar hemisphere. How this overall balance is maintained and what the corresponding photospheric processes/signatures are, are interesting questions and should be addressed by specialists in the field.

For coronal hole streams in interplanetary space the interaction with the slow speed streams does not form forward shocks by 1 AU because the stream–stream interaction is a glancing one (Smith and Wolfe, 1976; Pizzo, 1985, T1995; however, T1 1995 did indicate that during 1974 some [-20%] reverse shocks were detected at 1 AU). The velocity of the high-speed streams is ~750-800 km s\(^{-1}\) (Phillips et al., 1995), whereas the velocity of slow-speed streams is ~300–350 km s\(^{-1}\). In the case of coronal hole expansions plasma associated with the newly opened flux will interact with the upstream (slow) plasma in a more direct way. Since the upstream speed differential (assuming there are only two basic solar winds) is much greater than the magnetosonic wave speed (\(V_{ms} \approx 70 \text{ km s}^{-1}\)), a forward shock is created by 1 AU. This is indicated in Figure 1. Note that the presence of the forward shock is independent of the particular mechanism for opening the coronal hole magnetic flux.

However, the nature of the solar ejecta inward of the shock is not known, and therefore T1995 did not speculate on it. The ejecta could be the same as those during solar maxima (note the magnetic cloud in the C. event), or they could be different at times. A systematic study should be performed to address this important topic.

As pointed out in T1995, solar ejecta/magnetic clouds (Burlaga et al., 1981) were not detected for the A and B events (the two largest magnetic storms), but was for the C event. The meaning of these observations is not clear at this time. It is possible that for the first two cases, the solar ejecta were relatively small in scale and did not cross the spacecraft trajectory. Thus, they may have been present, but were unfortunate] y missed.

Regarding the possible flare association to the three storm events, we have the following specific comments:

4/20/96
Event A:

In T1995 (page 21730, line 3), the second small flare should have been listed as occurring at 0801-0840-0928 UT on day 184 and not 185. With this error corrected, an acceptable speed for the July 6 (day 186) shock would be obtained.

We agree that by applying the Cliver et al. (1990) empirical relationship for the deceleration of plasma from the Sun to 1 AU, more flares may be considered as possible sources for the shocks. However, it is also true that none of these flares have the characteristic long duration signature that are statistically associated with solar ejecta. The X-ray long duration events also have the unique Hα signature of post-flare loops.

A second, long-standing problem is the correlation. In Figure 1 from Cliver (1996), there are three large X-ray flares on July 5 and 6 produced by the same active region at W26°, 35° and 40°, respectively. An important unanswered question is, why don't all of these flares produce detectable interplanetary events? The discrepancy in the present lack of understanding of why so few solar events have corresponding interplanetary/geomagnetic analogs.

Event B:

The Hα flare of September 13 was nearly 12 hours long. The soft X-ray plot does show a characteristic long duration signature. Using the Cliver et al. solar wind deceleration assumption, this flare fits the event quite well.

We find that the Cliver comment has clarified one of the apparent lack of obvious solar sources for the 1995 interplanetary A, B, C events, and we thank him for it. However, even with this improvement, there is still the event which remains unidentified.

In closing, we would also encourage solar scientists to examine coronal hole data to try to determine the mechanism(s) for coronal hole expansions and contractions. This is an important scientific topic yet to be addressed in any depth. It is probable that the process is relevant to geomagnetic activity at the Earth.

Acknowledgments. We thank N. R. Sheeley, Jr. and J. Axford for very helpful scientific discussions. Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA.

4/20/96
References


Cliver, E. W., Comment on “Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle” by B. T. Tsurutani etal., this issue, 1996.


Figure Caption

Figure 1. A solar ejecta event associated with newly opened coronal magnetic fields (coronal hole expansion) headed towards the Earth. The configuration of the solar eject fields is not well understood at this time. A CIR bounded by forward shock (FS) and reverse shock (RS) is denoted by shading. The fast stream/slow stream interface (IS) is indicated. The $B_z$ fluctuations within the trailing portion of a CIR are believed to be compressed Alfvén waves.