DEVELOPMENT OF MICROSEISMOMETERS FOR SPACE APPLICATIONS

W. T. Pike, R. D. Martin, W. J. Kaiser and W. B. Banerdt (Center for Space Microelectronic Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA)

The National Aeronautics and Space Administration is developing a suite of miniature seismometers and accelerometers for planetary and microgravity science. The Center for Space Microelectronics at the Jet Propulsion Laboratory is using a combination of micromachining and novel transducer electronics to produce an ultra-sensitive instrument in a robust, compact, and low-power package. Prototype instruments have been built incorporating a bulk micromachined single-crystalline silicon spring. An extremely sensitive symmetric ultra-high-frequency capacitive transducer is used to measure the displacement of the proof mass. The present generation of JPL seismometers based on this technology have been field tested, and have shown excellent performance compared to high-quality terrestrial instruments. Further development will incorporate a fully integrated silicon suspension and proof mass to maximize the stability of the structure and electrostatic feedback for recentering of the proof mass. The fully packaged instrument will contain four sensor heads for overdeterminant ion of the acceleration vector at the nano-g level.