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ABSTRACT

The star tracker is an essential sensor for precision pointing and tracking in most 3-axis
stabilized spacecraft. In the interest improving pointing performance by taking advantage of
dramatic increases in flight computer power and memory anticipated over the next decade,
this paper investigates the use of a neural net for adaptive in-flight calibration of the star
tracker. Estimation strategies are given for cases when the spacecraft attitude is both known
and unknown. As an example, a simulation study is given for which low spatial frequency
distortions on the order of .1 pixel, are reduced to .034 pixel using the proposed method.
Improvement in measurement quality obtained by such star tracker corrections are important
since they translate directly into improved on-board estimates of position and rate, and to
improved pointing and tracking capability.

1 INTRODUCTION

The star tracker unit (STU) is a key sensor for determining the overall pointing and tracking
performance of most 3-axis stabilized spacecraft [4][5][9][11]. Any improvement in star tracker
measurement quality translates directly into improved position and rate estimation, and hence
improved pointing knowledge. Tracker sensing becomes even more important in the absence
of accurate gyros, since the body rate must be reconstructed analytically. Such gyroless
configurations are becoming popular in NASA and in commercial space industry to save
power, weight, and overall cost [1]. This means that the design of future planetary flyby
missions such as the Pluto Express [3], will be particularly challenging since accurate rate
knowledge is essential for image motion compensation during flyby, but must be reconstructed
accurately without the benefit of quality gyros.

The emergence of smaller, lighter, and cheaper spacecraft in planetary exploration calls
for intelligent adaptive control systems that will maintain and improve upon the quality
of science which is already possible with larger spacecraft. Fortunately, flight computer
memory and power will be increasing at a dramatic rate over the next decade. This added



computational capability will enable the implementation of more sophisticated algorithms
and software, which in turn will help to overcome the performance penalties associated with
miniaturization and reduced mass/power configurations.

In the interest of improving performance by leveraging emerging computational power,
this paper will investigate the use of a neural net for in-flight calibration of the star tracker.
Specifically, a nonlinear distortion profile will be estimated autonomously based on in-flight
measurements. The star tracker distortion is then corrected using the estimated profile.
Preliminary results indicate that low spatial frequency distortions on the order of .1 pixel,
can be reduced to .034 pixel using the proposed method.

2 STAR TRACKER MODEL

The star tracker, sometimes conveniently referred to as a Star Tracker Unit (STU), is an
instrument which determines attitude by,

e Acquiring images of stars on a charge coupled device (CCD)
e Performing a pattern recognition of star constellations in the image

e Using an on-board star catalogue to provide the location of the identified stars with
respect to an inertial frame of reference.

The location of 2 or more star images on the CCD along with their star locations in
inertial coordinates is sufficient to determine the attitude of the STU camera with respect to
an inertial frame of reference. The spacecraft attitude can then be calculated from knowledge
of how the STU camera is mounted on the spacecraft body. These relationships will be
developed in more detail in this section.

The standard vector érossproduct operator v x, where v = [vy,v3,v3]7 € R® will often be
represented as v* using the equivalent matrix notation,

0 —v3 (%)
vi=1| v3 0 - (1)
—7V2 (%1 0

Typically, the STU images several stars simultaneously in the same exposure. Let sg, £ =
1,...,nx denote the collection of stars imaged on the CCD during the exposure at time .
Let the unit vector v, denote the location of star s, in inertial coordinates. The vector vy,
is rotated into the STU frame using the sequence of transformations,

2kt = TAk’Uke (2)



Here, Ay is the attitude matrix at time ¢, which acts to rotate a vector from inertial coor-
dinates into the body frame; T is a matrix which rotates a vector from the body frame into
the STU frame; and the unit vector zj, is the location of star sg, in STU coordinates.

The attitude matrix Ay is time dependent since the spacecraft body rotates with respect
to the inertial frame. Nominally, the transformation matrix 7" is not time dependent since it
is assumed that the Star tracker is bolted down to the spacecraft. However, slow variations
are to be expected in T' due to thermal effects, mechanical stability, etc., so that the time
invariance assumption is only a convenient approximation.

Because of uncertainty in the attitude, the matrix Ay is more conveniently decomposed
as,

Ay = §A(¢r) Ax (3)

where Ay is a known estimate of the attitude at time tx, and § A(¢x) is the error parametrized
by three Euler angles ¢) = [¢', ¢?, ¢°]T, nominally taken to be in a 1-2-3 rotation sequence.
Since the error § Ay is typically a small rotation, it can be expanded to first order as,

SA(dr) = I — ¢f (4)

Similarly, only a nominal estimate T of the transformation 7' is usually known, so that one
can write,

T = 6T(6)T (5)
where 6T'(6) is the error parametrized by three Euler angles 6 = [6*,62,6%]7. Since the error
8T(0) is typically a small rotation, it can be expanded to first order as,

§T(6) = I — 6% (6)

Substituting (3)(4) and (5)(6) into (2) and eliminating terms of second order gives (see
Appendix A), B
zke = Zre + 239(0 + Tx) (7)

where,
20 2 T Apvre (8)

At this point, the vector 2z, denotes the unit vector in the STU frame pointing to star sge.
Let the components of vector zx, be denoted as,

Zke = [zkll, zklZa zklalT (9)

Then the projection of zx, onto the STU image plane places the image of star si, at location
(zke, yke) on the CCD where,
The = 2ke' [ 2k (10)

Yt = 2ke° ) 200" (11)



Implicit in (10)(11) is the standard assumption that the star location has been normalized to
unit focal length (i.e., given the true star location (X,Y’) one defines ¢ = X/f and y =Y/ f
where f is the camera focal length).

The star image is recorded on a CCD and the star location is determined by a centroiding
algorithm applied to a pixel readout. To improve centroiding accuracy, the star image is
typically defocused to spread photons over several pixels of the CCD. Due to sensor errors,
the star is observed at perturbed location (z},, y;,) where,

w;cl = (Ekl+Fl($k£,yklapkl) +77111 (12)

Yee = Ykt + Fo( ke, Yre, Pre) + 71131 (13)

The quantities n},, 77, are additive white measurement noise terms which model the contri-
bution of random errors in the determination of star locations. These are typically described
in terms of a noise equivalent angle (NEA) in units of radians, which is typically a function of
the noise-to-signal (N/S) ratio at starlit pixel locations. The N/S ratio is dependent on star
magnitude, quantum efficiency, optical efficiency, integration time and system temporal noise
levels. Sources of temporal noise include CCD noise (on-chip), electronics noise (off-chip),
quantization noise, background noise, and dark current.

The quantities Fy, F, in (12)(13) are distortion functions which model the contribution
of bias errors associated with determining star locations. These bias errors can be roughly
divided into two groups, depending upon whether the distortion is of low or high spatial
frequency.

Low spatial frequency error sources typically include,

Optical distortion
e Chromatic distortion

Mechanical stability/shifts

Thermal expansion of materials
e Thermal sensitivity of refractive index

e Ground calibration accuracy

High spatial frequency error sources typically include,

e CCD photo response nonuniformity
e CCD dark current nonuniformity

e CCD charge transfer efficiency



o Centroiding algorithm error

These dependencies have been captured in the distortion model (12)(13) by letting the
functions F}, F, also depend on a “covariate” vector prs = [phy, Pies Pie|T € R® whose compo-
nents are given as follows,

pi,: temperature (or color) of star sy
pi;s CCD temperature at time tx

ph,: optics temperature at time ¢

Star temperature (or color) is known from the star catalogue, while CCD and optics temper-
atures must be measured physically using temperature sensing devices.

3 AUTONOMOUS CALIBRATION

The specific approach to calibration depends on whether the spacecraft attitude is known or
unknown.

3.1 Case 1: Attitude Known (i.e., ¢ ~ 0)

In some cases, an estimate Ai of the spacecraft attitude Ay is available from alternative
sources which is sufficiently accurate for star tracker calibration purposes. This includes
cases where there are other sensors on board which provide attitude information, or when
there are sufficient numbers of stars being observed in each STU exposure to provide accurate
attitude information despite individual star location errors. (Star locations typically have a 2-
D Poisson distribution across the field-of-view which acts to randomize the bias contributions
from individual stars and hence average out as the number of stars gets large).

In this case, errors due to attitude knowledge are removed and the STU alignment error
is estimated as part of the overall distortion profile.

3.2 Case 2: Bootstrapped Attitude Estimate

Often the attitude matrix Ax must be estimated at each time ¢, from the same data that is
being used to calibrate the star tracker. This problem is much more difficult than Case 1,
since the STU frame alignment error §7'(6) is not generally distinguishable from the attitude
error 6 A(¢x). This issue has been addressed in Shuster and Lopes [7]. Their resolution of the
problem is to use a parametrization of Fy and F; which explicitly enforces a zero rotation.



Hence in the single star tracker case, the STU frame alignment error 6 is defined to be zero,
and the actual physical rotation associated with the STU misalignment is absorbed into the
attitude estimation error.

In the present paper, a different approach will be taken compared to [7]. Here, it will be
assumed that Fi(z,y,p) ~ 0 and Fi(z,y,p) ~ 0 in some neighborhood of the CCD origin
No(z,y) = {{(z,y)} : 2 + y? < +?}. Hence, any star whose predicted location on the CCD
is in neighborhood Ny(z,y) is assumed to be completely undistorted. For such stars, any
discrepancy between the predicted star location and actual measured star location will be
understood to be pure attitude error and used to update the attitude estimate Aj. This
provides essentially two-axis attitude information, with the STU boresight axis still largely
unresolved. After correcting all stars on the FOV at ¢, by the two-axis attitude rotation, a
pure boresight axis rotation can be fit to the corrected star locations and used to update the
attitude estimate further. The star locations are corrected one last time for this boresight
rotation, and the remaining errors are used for estimating the distortion profiles F; and
F,. This complete procedure is applied at each time t; for which there are stars within
neighborhood Ny(z,y).

Over time, a sufficient amount of data of the desired form can be collected to provide
estimates of the distortion profiles. Of course, the data collection process can always be made
more efficient by using special preplanned attitude maneuver sequences which maintain stars

in No.

4 NEURAL NET ARCHITECTURE

An important property of neural networks is their capability for function approximation.
While many different neural net architectures can be applied to the present problem, a
particularly simple method denoted as the General Regression Neural Network (GRNN) due
to Specht (8] will be used. :

4.1 General Regression Neural Network (GRNN)

The GRNN approach of Specht [8] will be discussed here and motivated for the calibration
application. The main advantage of the GRNN is that it converges asymptotically to the
conditional mean estimate of the distortion surface as the number of data samples becomes
large. This convergence property is essential when working with noisy data.

Let X € RP, and y € R! be random variables. Given X it is desired to estimate y. The
best estimate of y in the sense of minimizing the mean-square estimation error is known to
be the conditional mean,

ElyiX) = [~ yfu1x)dy (14)



Unfortunately, in many applications such as the star tracker calibration problem the condi-
tional probability density f(y|X) in (14) is not known. However, if the joint density function
f(X,y) is known, the conditional mean (14) can be equivalently calculated from,

Joo yf(X,y)dy
J2% F(X,y)dy

where use has been made of the relation f(y|X) = f(X,y)/f(X).

The joint density f(X,y) in (15) can be estimated from sample values {X*, Y}, of
the random variables z and y using any one of a large number of approaches [10]. This
discussion will focus on a class of consistent estimators proposed by Parzen [6], extended to
the multivariate case by Cacoullos (2], and made into a neural network by Specht [8]. The
form of the joint density estimator is given as follows,

Ely|X] =

(15)

» _ 1 1 & [| X — X¥||? Y — Y?|?
JXY) = Goemmmm " 5 2P (_T () (19

The large sample behavior of this estimator is of interest. It is known that the estimator
f(X,Y) will provide an asymptotically unbiased and consistent estimate of f(X,y) if f(X,y)
is continuous, and if the variance parameter o2 of the Gaussian pulses in (16) is chosen as a

decreasing function of the data length n such that [2][10](8],

Jim 0, =0 (17)
nlgg) no? = oo (18)

As an example, one suitable choice is,
Op = n-# (19)

for any ¢ > 0.

Substituting the joint density estimate (16) into the expression for the conditional mean
(15) and performing the integrations analytically gives the simplified expression (8],

General Regression Neural Network (GRNN)
(X) = S w(X)Y (20)

where the weights are calculated from,

exp (:u-"%;g—xlm)

- 2i1 €Xp (:U%fﬂlﬁ)

7i(X)

(21)



If y is a vector, a similar estimator can be used for each component of y.

For a finite sample size, the choice of o determines the smoothness of the GRNN estimator
(20)(21). As o becomes very large, Y (X) simply becomes the sample mean 7 Y. As
o goes to zero, Y(X) takes the value of Y associated with the observation closest to X.
For intermediate values of o, Y(X) is a weighted average of all values of Y* with particular
emphasis on those having points lying closest to X.

Advantages of the GRNN relative to other neural network approaches are summarized as

follows (8],

e Since I, 7 = 1 the estimate is a convex combination of all measurements Y;, implying
that the estimate is bounded to the range of the observed samples.

e Equation (21) provides an analytic expression for weights. Local minima are avoided
since the neural net does not have to be tuned using gradient type methods.

o As the size of the data set n becomes large and o, is chosen according the rules (17)(18),
the neural net provides an asymptotically unbiased and consistent estimate of the con-
ditional mean distortion surface.

A disadvantage of the GRNN is that the complexity of the expressions (20)(21) increases
with n. However, methods to overcome this using clustering algorithms have been investi-
gated in Specht [8]. Alternatively, special purpose hardware architectures can be developed
for efficient implementation.

4.2 Application to Tracker Calibration

Consider the GRNN applied to the star tracker calibration problem. Since it is desired to
“invert” the distortion profile, the neural net must be set up to learn the appropriate inverse
mapping. For this purpose, the GRNN input is chosen as the STU output,

th = [x;cby;cbpibpszil]’r (22)

In addition to (2}, yk,), the covariate vector pi, has been included in (22) to capture depen-
dencies on star, CCD and optics temperatures.

While in principle the STU input Zx, can be taken as the neural net output, a better choice
is to first project it into the STU image plane as follows,

Bre = Bhof 23, - (23)
ﬁkl - éze/fze (24)

The use of the vector [Ze, ﬁkg]T € R? rather than 2;, € R® reduces the dimension by one.
Furthermore, it is best to estimate the small error profile (z' — ,y’ — §) which is typically a



fraction of a pixel, rather than the larger quantity (%, ) which can vary hundreds of pixels
across the entire FOV. This is because in the latter approach, the error profile would have
to be reconstructed by subtracting two large numbers, which is generally undesirable using
finite precision arithmetic. For this reason, the neural net output is defined in terms of the

error profile,
V¥ =k — dre (25)

Y5 =y — ke (26)

Since there are two outputs, and the GRNN methodology must be applied to each output Y;
and Y, separately.

At any point in time the neural net learning can be frozen, and the STU distortion
corrected by inverting the mapping as follows,

&re = hy — B[V} X*) (27)

ke = Ype — B[V XH) (28)

where the GRNN is used to produce the required conditional mean estimates.

5 NUMERICAL EXAMPLE

A numerical example is given to demonstrate the neural net approach. For this example, the
star tracker is chosen with an 8 degree FOV, and a CCD with a 512x512 pixel array. It is
assumed that the attitude is known perfectly at each time instant, that there are 15 stars per
exposure frame (as would be consistent with a full frame device), and there are 300 frames.
Assuming a frame rate of 1 second, this would involve 300 seconds of data. This gives a
total of 4500 stars for calibration purposes. The stars from each exposure are assumed to be
Poisson distributed across the FOV.

The STU distortion pattern (in the x direction, F}) is shown in Figure 1. This distortion
is spatially oscillatory and attains a maximum magnitude of .1 pixels. This shape is typical
of optical distortion patterns remaining after initial ground calibration and captures the low
spatial frequency behavior of the error. High frequency distortions are also important but
are ignored in this study. Also, the dependencies on covariates p¢ (i.e., star temperature,
CCD temperature and optics temperature) are ignored for simplicity.

Given the star location data, the neural net (20)(21) with input vector (22) and output
(25) (26) is used to estimate the distortion surface. The result is shown in Figure 2, using a
value of o = .042 rad. The smoothness of the estimate is clearly seen from Figure 2, as is its
resemblance to the true surface of Figure 1. The residual distortion after correction is shown
in Figure 3, and has a worst-case error of .051 pixels. Hence, the effect of the neural net in
this example is to reduce the the worst-case error from .1 pixels to .051 pixels.
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Figure 1: STU distortion pattern of .1 pixels (worst case) for x-axis

As mentioned in Section 4, the neural net performance is sensitive to the choice of o. This
sensitivity is briefly studied by changing the value to ¢ = .021 and repeating the previous run.
The resulting neural net estimate is shown in Figure 4. As expected, there is less smoothing
and the estimate is more “ragged” than the earlier estimate of Figure 2. The residual error
distortion after correction is shown in Figure 5, and has a worst-case error of .034 pixels
compared to the initial error of .1 pixels. Comparing .034 pixels error with the previous run
having .051 pixels error, indicates that the estimation process has been improved by using
less smoothing.

In summary, the numerical example indicates that the neural net can be used to reduce
error from .1 pixel to between .051 and .034 pixels. This example assumes that the attitude is
known at each time. The method of bootstrapping attitude while calibrating the star tracker
discussed in Section 3, remains to be tested by simulation. It is expected that comparable
results will require larger data sets in order to “smooth” over additional attitude estimation
€rrors.
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Figure 2: Neural net estimate of X-axis distortion; n = 4500, o = .042
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Figure 3: Residual X-axis distortion of .051 pixels (worst case) after neural net calibration;
n = 4500, o = .042
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Figure 4: Neural net estimate of X-axis distortion; n = 4500, o = .021

X-axis Corrected Distortion

““.“.‘.‘o‘o XS
e A “ t‘.

pixels

3 ’ ‘\\\’4’

Figure 5: Residual X-axis distortion of .034 pixels (worst case) after neural net calibration;
= 4500, 0 = .021
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6 CONCLUSIONS

This paper demonstrates how a neural net can be used for in-flight star tracker calibration.
Specifically, a nonlinear distortion mapping is estimated autonomously by a neural net using
in-flight measurements. The star tracker distortion is then corrected by using the learned
mapping. One of the features of the approach is in the choice of neural net, which ensures a
consistent estimate of the conditional mean. This is important for calibration purposes since
many noise sources enter into the problem.

While the computation and memory requirements for implementing this approach are
excessive for most present day spacecraft, they are perfectly reasonable for future spacecraft
given the increases in flight computer capacity expected over the next decade.
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A APPENDIX A:

In this appendix, details are given behind the derivation of equation (7).

Substituting (3)(4) and (5)(6) into (2) gives,

2ke = T Ayore = 6T(0)TS A(b1) Axvie (29)
= (I == GX)T(I - ¢;: )Zkvkg (30)
Expanding (30) and neglecting second order terms gives,
zee =T Agvre — 05T Apvre — T oS Arvie (31)
= S0 — 0% 20 — TOXT 21 (32)
= 2o — 0% 20 — (T k)  2re (33)
= Zre + 25(0 + Tx) (34)

Here, equation (32) follows from (31) by using the definition of 2, from (8), and the relation
T'T = I equation (33) follows by using the relation Td),’fTT = (Téx)* which is a direct
consequence of Identity A.l below; and equation (34) follows by the crossproduct relation
u X v = —v X u interpreted in matrix notation.

Identity A.1 For any rotation matrix R (i.e., any matrix R € R®<® such that RTR =
RRT = I and det R = 1), and any vector u € R® the following equality holds,

Ru*RT = (Ru)* (35)
Proof: Give—n vectors u,v € R3\let
w=uxv2u v (36)
For any rotation vector R, one has,
Rw = R(u x v) = (Ru) x (Rv) = (Ru)*Rv (37)
or solving for w gives,
' w = RT(Ru)* Rv (38)
Equating (36) and (38) gives,
RT(Ru)*Rv = u*v (39)
Since v is arbitrary, this implies,
RT(Ru)*R = u* (40).

Rearranging (40) gives the desired result (35).

14



References

[1] M.S. Grewal and M. Shiva, “Application of Kalman Filtering to gyroless attitude deter-
mination and control system for environmental satellites,” Proc. IEEE Conference on
Decision and Control, Buena Vista, Florida, December 1995.

[2] T. Cacoullos, “Estimation of a multivariate density,” Ann. Inst. Statist. Math, (Tokyo),
vol. 18, no. 2, pp. 179-189, 1966.

[3] G.J. Kissel, “Precision pointing for the Pluto mission spacecraft,” 18th Annual AAS
Guidance and Control Conference, Paper AAS 95-065, Keystone, Colorado, February
1995.

[4] C.C. Liebe, “Pattern recognition of star constellation for spacecraft applications,” IEEE
Aerospace & Electronics Systems Magazine, pp. 31-39, Jan. 1993.

[5] C.C. Liebe, “Star trackers for attitude determination,” IEEE Aerospace & Electronics
Systems Magazine, pp. 10-16, June 1995.

[6] E. Parzen, “On estimation of a probability density function and mode,” Ann. Math.
Statist., vol. 33, pp. 1065-1076, 1962.

[7) M.D. Shuster and R.V.F. Lopes, “Parameter interference in distortion and alignment cal-
ibration,” Paper No. AAS-94-186, Proceedings, AAS Flight Mechanics Meeting, Cocoa
Beach, Florida, February, 1994.

[8] D.F. Specht, “A general regression neural network,” IEEE Trans. Neural Networks, vol.
2, no. 6, pp. 568-576, November 1991.

[9] R.H. Stanton, J.W. Alexander and E.W. Dennison, “CCD star tracker experience - Key
results from Astro 1 flight,” SPIE Vol. 1949, Space Guidance, Control and Tracking,
1993.

[10] J.R. Thompson and R.A. Tapia, Nonparametric Function Estimation, Modeling, and
Simulation. Philadelphia: SIAM Press, 1990.

[11] J.R. Wertz, (Ed.), Spacecraft Attitude Determination and Control. Kluwer Academic
Publishers, Boston, 1978.

15



