THE VALUE ADDED BY MANUFACTURING QUALITY REQUIREMENTS

by

Lissa Galbraith, Ph.D.

May 1996

JPL
Jet Propulsion Laboratory
California Institute of Technology
Abstract

A methodology for assessing the value of manufacturing quality requirements to the final product, QVAL, is presented. The prime objective of this project was to reduce the Manufacturing Quality Requirements (MQR) that the Jet Propulsion Laboratory (JPL) imposes on internal and contracted electronics assembly organizations to the minimum number of requirements of significant value to the product. Supporting this objective were several goals, to:

1. Develop a quantitative definition of value added that maybe used to distinguish between marginally useful and significant MQR.
2. Generate a definition of risk associated with reducing the priority of a MQR from mandatory to a guideline or eliminating the requirement altogether.
3. Develop a relatively generic methodology for determining the value added by an MQR.
4. Implement and evaluate this methodology using JPL, Workmanship Standards.

An MQR is said to have enough value to avoid devaluation if the following three statements are true:
1) The MQR is not redundant to another MQR.
2) The MQR is not in conflict with another MQR.
3) The MQR quality of performance was found to be adequate as measured by the ability to satisfy the defined need.

The valuation methodology includes:
1) Key Word Coding of MQRs as part of taxonomic sorting for data base entry and retrieval in addition to analysis
2) Definition of need for an MQR
3) Determination of Quality Weight, a way to emphasize specific characteristics of requirements
4) Conflict and redundancy check, where the MQR is compared to existing requirements
5) Engineering review of referred MQRs, which relies on engineering experience and judgment
6) Determination of risk associated with devaluation of an MQR, a quantitative estimate
7) Computation of a Figure of Merit Score, which may be used to rank or classify MQRs
8) Recommendation for disposition.

The FIRST STEP, Key Word Coding, provides a six field numerical description of the MQR which includes:
1) Information granularity: the level of detail addressed
2) Lifecycle stage of application: when (in the product’s life) the requirement applies
3) Rule power: the level of demand made by the requirement such as elective vs. mandatory
4) Purpose: the chief goal and emphasis of the requirement
5) Technology application: the area of science focus
6) Source: federal, military or agency source of requirement.

STEP TWO gives recommendations to the engineer analyst for defining the level of need addressed by the MQR; either a want, obligation, or necessity. STEP THREE provides guidelines to the engineer analyst for assigning a Quality Weight to the MQR. The engineer analyst performs a conflict and redundancy check in STEP FOUR by checking each MQR against all others. A database sort is used for this check. MQRs which are found to be in conflict with or are redundant to other requirements are referred for engineering review in STEP FIVE.
The determination of the risk of devaluing an MQR is determined in STEP SIX. Changing the rule power of an MQR from mandatory to elective is an example of devaluation. A Figure of Merit (FOM) score for the MQR is computed in STEP SEVEN as the product of the Need value, Quality Weight, and the sum of the Key Word Code digits. The FOM may be used to categorize MQRs into value levels or as a threshold screening level. In STEP EIGHT, the engineer analyst gives a recommendation for disposition, typically Retain Modify or Eliminate, based on the Key Word Code and FOM score.

At this time, matching contractor quality system details to JPL quality requirements can require two full time weeks of group supervisor time. Application of the QVAL methodology to quality requirements is expected to greatly reduce this time. Reduction in the overall number of manufacturing quality requirements to those of substantive value to the end product will significantly reduce the cost of quality to JPL and its contractors. The following figure shows how the method fits together.

Objectives

The prime objective of this project was to reduce the Manufacturing Quality Requirements (MQR) that JPL imposes on internal and contracted electronics assembly organizations to the minimum number of requirements of significant value to the product. Main project objectives were to:

1. Develop a quantitative definition of value added that may be used to distinguish between marginally useful and significant MQR.
2. Generate a definition of risk associated with reducing the priority of a MQR from mandatory to a guideline, or eliminating the requirement altogether.
3. Develop a relatively generic methodology for determining the value added by an MQR.
4. Implement and evaluate this methodology using JPL Workmanship Standards.

The first objective was met by offering the following definition and by the method itself. Value =

The quality of performance measured by the ability to satisfy a defined need. A general definition of value is offered here without claiming to be robust in all possible applications, but rather of immediate utility to MQRs applied to electronics assembly operations.

Value = The quality of performance measured by the ability to satisfy a defined need.

This definition is given with the assumptions that 1) Quality can be designed into a product, thereby adding value to the product, but cannot be inspected into the product, and 2) inspection may not detect all defects. The associated quantitative assessment of value is discussed in the next section. Value may also be defined in terms of the Taguchi Loss Function. Using the value definition given above, value would be decreased as the satisfaction of need is reduced with associated cost. The inverse of the Figure of Merit (h’OM), Step 7, score gives an initial estimate for the Taguchi Loss Function constant.
Figure 1. MQR Valuation
Methodology

The Valuation Methodology may be outlined as follows:

1. **Key word coding**
2. Definition of need
3. **Determinination** of quality weight
4. Conflict and redundancy check
5. Engineering review of referred MQRs
6. **Determinination** of risk associated with devaluation of referred MQRs
7. Figure of Merit (FOM) scoring
8. **Recommendation** for disposition

1.0 **Key Word Coding**

Key word coding is used to assist database integration, for entering MQRs into a database, and as a form of classification for taxonometric purposes. The coding has no influence on MQR valuation other than by helping to identify redundant and conflicting MQRs. The usefulness of the key word codes depends on precise (repeatable) and accurate MQR coding which is upgraded with MQR revision. A key word coding assignment of 0 indicates that the key code does not apply to a given MQR. A comma is used as a field (code) delimiter. The “Other” code should rarely be selected and should be further specified if selected. If the “Other” code is selected routinely, this is an indication that the code designations are not adequately inclusive and that the QVA1 Key Word Coding recommendations need to be reevaluated.

1. **Information granularity**: corresponds to product Kit List or As Built List
 1.1 All levels
 1.2 Program
 1.3 Project
 1.4 **System**
 1.5 **Subsystem**
 1.6 Assembly
 1.7 Subassembly
 1.8 Part
 1.9 Other (specify)

2. **Lifecycle** stage of application: Choose predominant stage if more than one is involved.
 2.1 All levels
 2.2 Concept
 2.3 Design
 2.4 **Procurement**
 2.5 Packaging and shipping
 2.6 Validation
 2.6.1 inspection
 2.6.2 **Test**
 2.7 Production process (other than inspection or test)
 2.8 Other (specify)
3.0 **Rule**: Power: authority to require that an MQR is followed, i.e. the level of flexibility in applying the MQR.

3.1 **Elcitve**

3.2 **Recommendation**

3.3 **Mandate**

3.4 **Class**

3.4.1 **Class A**: All requirements of a given document

3.4.2 **Class B**: Level I requirements of a given document

3.4.2.1 Level II Requirement: project manager signature **needed** to waive requirement

3.4.3 **Class C**: Level II requirements of given **document** or other specified documents

3.4.4 **Class D**: Project option

3.4.4.1 Not a requirement but an option to mitigate technical risk. Project may accept or reject guidelines without a waiver

3.5 **Other** (specify)

4.0 **Purpose**: Levels may not be mutually independent, however the MQR should emphasize a particular level.

4.1 Emphasis on more than one level

4.2 Refer to another requirement

4.3 **Define** words or phrases

4.4 State assumptions

4.5 Exemplify computations

4.6 Specify **quantitative tolerance**

4.7 Stipulate order or activity

4.8 Specify a given activity

4.9 **Other** (specify)

5.0 **Technology Application Granularity**: requires how a process is to be carried out

5.1 Applies to all technologies

5.2 Granularity is **specified** in a referral document

5.3 **Specific type** of equipment

5.3.1 **Specific type** of material

5.3.1.1 Brand and product identity

5.3.2 **Specific type** of equipment

5.3.2.1 Brand and model number or other identity

5.3.3 **Specific material** and equipment

5.4 Not **applicable**

5.5 **Other** (specify)

The key word code “source” is used for tracking and historical continuity, but is not required for redundancy and/or conflict checking.
2.0 Definition of Need

Value can be measured by performance quality, i.e., the ability to satisfy a need. Need can then be categorized as either a 1) Necessity, 2) Obligation, or 3) Want. A necessity is a need that is considered to be integral to the basic functioning of the system or a critical overall requirement such as safety. Necessity needs are essential fundamentals that usually do not generate many disparate views, arguments, or demand compromises. Obligation needs originate from the customer. These needs are typically only partially questioned, with most requirements accepted as contractual. Needs may also be categorized as wants or requirements which would be nice to have, but are not essential. Wants needs often inspire debate.

Whether the results of an MQR inspection or test is utilized directly impacts the level of need for that MQR. If the results are not used for downstream decision making or as input to a computation, the MQR is not a necessity for the quality system. Necessity needs may call out tolerances for significant differences between customer goals and actual performance of the component or system. Identifying this variance is probably the primary function of most quality systems. To be considered a necessity need, MQRs must test what was intended using measurable criteria with solid proof that product performance is sensitive to those inspection or test criteria. The match between critical process parameters and the current MQR may also be an element of necessity needs. Consistency between standards, references, and criteria metrics is very critical to a viable quality system and therefore is characterized as a necessity. Another essential need is that MQRs provide information to assist in discriminating among decision alternatives. The lack of any necessity need MQRs substantially undermines the effective application of quality assurance.

The next lower level of need is obligation need, which should be directly mappable to customer requirements. Any MQRs mandated by the customer are obligation needs. Often these include a mandate that quality data be compatible with the customer’s analysis system. Other examples of obligation needs may involve:

- Correlation of lifecycle inspection data to previous process data, i.e., feedback to previous processes
- Inspection and test at earliest possible lifecycle stage. By inspecting at the earliest stage possible, defective assemblies may be separated out before any additional process value can be added
- Diagnosis of process ills in addition to identifying product defects.
- Identification of environmental noise, to be included in Taguchi loss function computations.

The third level of need is want. Wants are needs that would be nice to have, but are not directly required by the customer and are not essential for product operation. Although casing
manufacturability may be considered essential from some viewpoints, this MQR want is probably not absolutely needed for product function. The quality system evaluation being performed in real time is another attribute which is highly desirable, but not fundamental. Another example of a want type of need is technology flexibility. Increasing flexibility will increase process capability indices and possibly widen the range of customer types, but again, is not of primary need for product operation. Want needs can be eliminated without significantly impacting product operation.

3.0 Determination of Quality Weight
The Quality Weight (QWt) assigned should be based on the impact that the requirement is expected to have on the final product quality. Proper Quality Weight assignment depends on experience, the Key Word Code, and engineering judgment. Suggestions for choosing quality weights are given below.

<table>
<thead>
<tr>
<th>Key Word Code</th>
<th>Quality Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All levels have equal impact,</td>
</tr>
<tr>
<td>2</td>
<td>All levels have equal impact.</td>
</tr>
</tbody>
</table>
| 3 | If code == 1 then QWt \leq 3
If code = 2, 2, 4, 4, or 4, then QWt = 7 or 8
If code = 3 or 4, then QWt = 9 or 10 |

The higher the 4.0 Key Code value, the higher the QWt.

Requirements showing the greatest impact on product quality would be given the 3 designation with the appropriate material and/or equipment granularity being specified. It is assumed that if material and/or equipment is specified, this supports optimal quality for that particular product. If the material and/or equipment are not specified and are therefore assumed to be generic, this is less specific to the product and assumed to be less important to product quality. If the MQR applies to all technologies and therefore is not specific to the product, its impact on quality will be marginal. Thus,

<table>
<thead>
<tr>
<th>Key Word Code</th>
<th>Quality Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>All levels have equal impact,</td>
</tr>
</tbody>
</table>

The following matrix summarizes these recommendations, with the row headings showing the Code 3 choices and the column headings representing the Code 5 choices. Cell contents give the suggested Quality Weight assignment. For example, when Code 3 is 4.1 and Code 5 is 3, the recommended Quality Weight is in the range of eight to ten. The Quality Weight should be selected using more information than just the Code 3 and 5 values.
4.0 Conflict and Redundancy Check
The same one-time check can catch redundancy and/or conflict problems. Conflicts or redundancy may be indicated by the complete match of two key word codes. In some cases, MQRs will match in all key word codes, but specify different referral documents, which may lead to a conflict. The conflict would then be assessed during an Engineering Review. The match is performed using a database sort.

Redundant is used here to indicate a duplicated requirement and therefore an unnecessary MQR. MQRs are first compared for redundancy or conflict. Once the key code is found to match, the rule power of the two MQRs is compared. An engineer will then review the two matching MQRs. In some cases, MQRs will match in all key word codes except Rule Power. This is one example of possibly conflicting MQRs which will require an engineering decision.

5.0 Engineering Review
Engineering review of referred MQRs relies primarily on engineering experience and judgment. After the computation of the Quality Weight, the engineer determines whether the MQR will need further assessment, i.e., is:

- Redundant
- In conflict with another MQR
- Referring to another requirement which is no longer valid
- Technologically obsolete
- Too vague to be useful
- Confusing

The engineer reviewer also addresses any other rewording issues.

6.0 Determination of Devaluation Risk
The definition and application of the risk determination is a continuation of the Engineering Review step. In the second report we discussed the assumption that the Bayesian consumer’s risk, \(\beta^* \) or (Type II error), correlates to the risk associated with accepting product that contains more than a designated level of defects. Suppose the set of outcomes of an experiment are defined to be set \(B \) and event \(A \) is one of the outcomes in set \(B \). Bayes’ formula is:

\[
P(B \mid A) = \frac{P(B \cap A)}{P(A)},
\]
meaning the probability \(y \) of all of the outcomes in set \(B \) happening, given that event \(A \) is known to have already occurred, is equal to the probability of the events in the intersection of set \(B \) and event \(A \) occurring, divided by the probability of event \(A \) occurring alone. Bayes' formula takes into account a known level of probability to which questionable event occurrence probabilities are compared. The traditional consumer's risk, \(\beta \), correlates to the risk of accepting bad product with no level of defect being specified.

A numerical example of the use of Bayes' theorem in estimating the risk associated with a Type II error (consumer's risk or the risk of accepting bad product) is given below. From the QVAL perspective, this example shows how to estimate the risk associated with accepting bad product because a particular quality specification has had its rule power reduced.

Example

From past experience with similar PCB assembly designs, a probability equivalent to one in 1,000 PCBs has one open when received in test, regardless of which firm manufactured the card. The test is such that when a card actually has one open, a positive result will occur 99% of the time, while a false positive occurs only 2% of the time. If a randomly selected card is tested and the result is positive for an open, what is the probability that the card actually has an open?

Let \(A_1 = \{ \text{card actually has an open} \} \), \(A_2 = \{ \text{card does not have an open} \} \), and \(B = \{ \text{positive test result} \} \). There are two ways to receive a positive test result, \(P(B) \): 1) Actual open \(P(A_1) \), or 2) False positive which can be restated as the chances of a positive test result given that the card does not have an open, \(P(B|A_2) \). \(A_1 \) is a given known of 0.001, which implies that the chance of not having an open, \(A_2 \) is \(1 - 0.001 = 0.999 \). We know that a positive result will occur 99% of the time when an open is actually present, in other words, \(P(B|A_1) = 0.99 \). False positive results are known to happen 2% of the time, so \(P(B|A_2) = 0.02 \).

The probability of having an open and a getting a positive test is then:

\[
P(A_1) \text{ and } P(B) = P(A_1 \cap B) = 0.001 \times 0.99 = 0.00099.
\]

The probability of not having an open and a getting a positive test is

\[
P(A_2) \text{ and } P(B) = P(A_2 \cap B) = 0.999 \times 0.02 = 0.01998.
\]

Thus, the chances of receiving a positive result is the sum:

\[
P(B) = P(A_1 \cap B) + P(A_2 \cap B) = 0.00099 + 0.01998 = 0.02097
\]

Applying Bayes' theorem to answer the original question, "If the test is positive, what are the chances that the tested card actually has an open?":

\[
P(A_1|B) = \frac{P(A_1 \cap B)}{P(B)} = \frac{0.00099}{0.02097} = 0.047
\]

This result seems to be counter-intuitive; the diagnostic test appears to be so accurate that we expect a card with a positive test for an open to be highly likely to actually have an open, whereas the computed conditional probability is only 0.047. Because the open defect is rare and the test
only moderately reliable, most positive test results arise from errors rather than from actual opens. The probability of having an open has increased by a multiplicative factor of 47 (from prior 0.001 to posterior 0.047). To further increase the posterior probability a diagnostic test with a much smaller error rates is needed. If the defect were not so rare (for example, a 25%0 incidence among all cards), then the error rate for the present test would provide good diagnoses.

Although 100% sampling is the policy for test and inspection at JPL, with only four or five cards making up the population, estimating defect rates can be difficult. Risk assessment difficulty is also increased by the fact that opens or other defects are usually very rare due to high reliability processing. The method demonstrated above will give a risk assessment as accurate as the estimates of defect rates and test accuracy used to compute the risk. The following tree diagram shows the probabilities used in the example.

```
   A1 = 0.001
   |     has defect
   |        B = 0.99, positive test
   |        B' = 0.01, negative test
   |
   A2 = 0.999
   |     does not have defect
   |        B = 0.02, positive test
   |        B' = 0.98, negative test
```

7.0 Figure of Merit Scoring
Figure of Merit Scoring is derived from the product of the Key Word Total, the Need value, and the Quality Weight. The FOM score maybe used for further database sorting, whether or not the requirement underwent engineering review, all MQRs are given a Figure of Merit score, the Seventh Step and quantitative assessment of the value adding potential of an MQR. In general, the lower the FOM score, the lower the value added to the final product by the requirement. However, there is no straight-forward linear relationship between the FOM and the Disposition. Engineering judgment must be called on to evaluate the MQR Disposition, the last and Eighth Step, given the Key Word Code, Need Determination and FOM. The following figure shows the overall database structure for the QVAL analysis.

8.0 Dispositioning
The last and eighth method step is the recommendation for disposition which is a subjective call based on engineering judgment. Any “Modify” Dispositions which completely match other requirement Key Codes and Need Definitions are examined further by review engineers. The engineer should heed the guidance offered by the Key Word Coding and the FOM score values. The following figures show the QVAL method flow.
Figure 2. MQR Conflict and Redundancy Check
Figure 3. MQR Need Determination
Figure 4. MQR Engineering Review