An Environment for Incremental Development of Distributed Extensible
Asynchronous Real-time Systems

Charles K. Ames, Scott Burleigh, Hugh C. Briggs

Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA 91109

Abstract

Incremental, parallel development of distributed real-
time systems is difficult. Architectural techniques and
sofiware tools developed at the Jet Propulsion
Laboratory's (JPL's) Flight System Testbed (FST) make
Jfeasible the integration of complex systems in various
stages of development. In particular, two techniques are
used: a strict layering architecture for organization of
independent subsystems, and a distributed, low overhead,
asynchronous messaging system. These techniques were
developed in a few user-months and have proven their
uscfulness in a spacecrafl infegration test and simulation
environment.

introduction

A goal of the Flight System T'estbed (1'S'1’) is to
generalize and opt imize system-level spacecraft interfaces
in support of rapid prototyping and integration testing
[EST, [194]. Using software to simulate the spacccrafl
and environment al arbitrary levels of abstraction is the
theme of this paper.

A snapshot of a spacecraft under development includes
a combination of hardware enginecring 110(CIS,
breadboards, brass boards, andsoftware simulations. The
ST development environment includes techniques for
the smooth replacement of software simulations with
hardware or flight software as it becomes avail able. This
facilitates complex hardware-in -the- loop simulations.

1 n part cular, an arch itecture was developed to support
rapid prototyping of planctary spacecraft systems. This
involves encapsulating core on-board services required of
any spacecrafl (pointing, command handling, tclemetiy
storage, cle.) and simulating a flight-like environment.
Simulating the motion of a spacecraft or the outputof a
camera in real-tiinc is a substantial task.Our approach is
to collectand integrate simulation systcms that model the
in-flight environment.

Our simulation architecture is a layered ball's-eye, or
onion pattern reminiscent of traditional uniprocessor
operating system design [Tan87]. The center is the

Brent Auernheimer

Department of Computer Science, California State
University, Fresno, CA 93740-0109

systemunder test. The first layer out is the interface driver
layer. ‘This shaded layer presents services to the core
system that will remain constant as outer layer
simulations arc replaced with real dcvices.'or example,
inFigurel the core cock linder test might be a spacecraft
attitude control system, and the first layer out might
provide the core system with a gyro_ get_state ()
function that is initially implemented as a remote
procedure cal | (RPC) to a real-time dynamics model
simulating spacecraft motion. Th is function might later
be implemented to send a message across a bus to
spacccrafl rate sensors.

Environment models

Virtual subsystems

Interface

Spacecraft drivers

system
under test

Figure 1. The layered model.

The outermost layers are virtual subsystems and
environment models being used to fool the core system.
For example, during spacecraft system test, the spacecraft
at the core sends thruster commands to turn (“torque”)
itself, and reads sensors to determine the current attitude
for comparison to its desired attitude. It then issues
another set of thrusier commands to comet remaining
error. Thruster commands arc "executed" by the
dynamics model and sensor outputs arc produced by the
dynamics mode]. Because of the inner layers insulating
the core of this architecture, the flight sofiwarc cannot

tell that it is in a test environment and not on
interplanetary cruise.

Software development within this architecture is
supported by an asynchronous messaging system
developed at JPL. This system, Tramel (lask Remote
Asynchronous Message lixchangel.ayer), is based cm thc
techniques underlying Remote objects Message Iixchange
[R OME] Tramel provides application software writtenin
C with a simple and highly portable, platform-
independent abstraction for data communication among,
UNIX processes, VxWorks tasks, and Posix threads, In
cficet, each Tramel-literate process/taskitlircad (called a
"zone") atlaches itself to an abstract network of processes
(an"application universe”) that insulates the application
from details of the actual commmunication network such
as processor architecture, operating system, and
communication protocol. In addition, Tramel
implements a publish/subscribe communication model
that further shiclds application code from having to
understand the configuration or state of the distributed
application atany time.

All, and only, those zoncs within a given Tramel
universe can use Ivamel to exchange messages, and no
zonc can be in two universes al the same time. To
guarantee that no dependencies on virtual subsystems and
environment models (which would compromisc fidelity)
arc built into core software, and vice versa, we partition
the FST into two application universes. The core
software clements inhabit a “flight sofiware universe” and
use Tramel only to exchange data among themselves,
‘The victual subsystems and environment models inhabit a
separate "support cquipment universe”. Thatis, we build
a firewall between the core and the outer layers of the F ST
architectural bull's eye by mapping theininto difierent
‘Tramel universes and committing 10 use Tramel for
interprocess communication. All communication between
the core and the outer layers uses non-Tramel techniques
implemented in the interface drivers layer of the
architecture.

Organization of the Paper

‘This paper is organized as follows: the next section
describes the architecture of the integration and test
environment. Within that section arc subsections onthe
primary subsystems, The penultimate section is a
discussion of the software support for the architecture
previously described. The paper concludes with a
summary of lessons lcarned and topics for future work.

System Simulation Architecture

The spacecrafl avionics arc surrounded by simulation
support equipment, ground data system software, and
consoles. Standard network interfaces and bases,
commercial real-time operating systems and widely-used
languages (C, C-11, and 1 .abView) mean that tbc FS'i
environment consists primarily of ofl-the-shelf commercial

products or JPI -developed soflware using industry -
standard techniques.

Toillustratc the plug-and-play nature o{ tbc
architecture, the initial communication medium was
cthernet. This was replaced with a M1l - S'1'1)- 1553 bus
without affecting spacecraft or simulation subsystems.

The emphasis on modularity and the low cost of
nc[work-ready embedded processors bas resulted ina
distributed, mLlIlti-processor FST.The avionics and
support simulation processes themselves typically use
multiple processors.

The ¥ST builds on)Pl /'s efforts since 1992 to build
prototype spacecraft. A specific example is the Asteroid
Comet Moon 1 ‘xplorer (A CMIY) spacecraft studies
performed in 1993. ACMI! is a small, rigid body
spacecrafl stabilized in three axis wusing six reaction
cont ml system (RCS) thrusters. ACMY: differs from more
complex spacecraflin that hardware redundancy is
minimized, for example, attitude control, command
processing, and data handing reside on a single processor.
This is representative of the smaller spacecraft in JPI,’s
future.,

The FST simulation environment provides sofiware
and test-cquipment support for attitude control, command
and data communication, power, telccommunication,
instrument, and data recording subsystems. Realistic
factional interfaces have heen defined and implemented to
allow subsystems to be replaced, This results in a testbed
with low inter-subsystem coupling and high intra-
subsystem cohesion. Subsystemsimulat ions are replaced
by breadboards, engincering models, and flight hardware
as they become available.

Attitude ConirolSubsystem(ACS).

‘1 he design of the at tit ude control subsystem was
based onthe Cassin i spacecraft’'s software object
architecture. The resulting architecture is a collection of
disjoint objects communicating via standard data paths
[ABIS]. Thisresults in an extensible systemin which
changes resulting from the incorporation of new
technology or growthin capabilities are localized in a fow
objects. Yor example, switching from one type of
Im 1’) another impacts only the Gyro Manager

.

SN wwvam & %
Tnider (DARTS) Spaced hon
Comnands Outouts
\\ V' -
R " Avion BN, po A

(REU)

Spacecraft
Prototype m
Insty! tuotype Pory
roen sk 1
hsy@ @
n

Figure 2. Attitude Control Subsystem Test

Figure 2 isan instantiation of the onion-layer
architecturc of the previous figure. In the center is the
spacecrafl prototype. The enclosing box represents the
interface drivers. Simulation subsystems and test
equipment arc the outer layer of the diagram, The
cmboldened arcs represent comm an i cat ion triggered by a
“point” command i nit iated from the ground data system.

Fvolutionary bus implementations are being
cvaluated. A MIL-STD-1553 bus has been used as the
ACS engineering bus and will be replaced by MIL.-STD-
1773 (fiber) without impacting the ACS software. The
Controller Area Network (CAN) developed by the
automotive industry, is being planned as analtcrnative
communication medium. Inscrtion of these ncw media
was facilitated by the connection-oriented interface drivers
layer chosen to hide the details of tbc underlying network
hardware.

The ACS provides core services such as “point and
bold” and main engine burn. These services are tbc
foundation for higher level mancuver sequences or data
acquisition,

Command and Data Handling Subsystem (C&DH)

The C&DI1 1 subsystem consists of a telemetry
management system and a command sequence manager for
exceution of sequences of commands stored on-board.
‘These sequences can be either time or event-driven.
Sequences ¢ a n be paramcterized, allowing the
implementation of higher level spacecrafl functions as
macros. ‘lbis is particularly cflective in a prototyping
enviconment where mission scenarios can be
accomplished by past ing together core services using
scripts.

Dynamics Subsystem.

The spacecrafl dynamics simulation is based on the
Dynamics Algorithms for Real-Time Simulations
|DARTS] software developed at IPL. D ART'S provides a
library of sensor and actuator modules that emulate the
physics of a given sensor or actuator (such as thruster rise
times and gyroscope tick counts). The DARTS shell
(Dshell) accepts thruster commands as input, calls the
appropriate actuator modules to produce a resultant force
vector, calls DARTS to advance the collations of motion
by onc time step, then calls the appropriate sensor modcls
to producc sensor readings based cm the ncw orientation of
the spacecraft.

in addition to physical modelsof sensors and
actuators, a hardware simulation models the electronic
interfaces to specific sensors and actuators, e.g. valve drive
electronics, inertial reference units or a MII.-STI>- 1553
remote terminal. Thesec hardwarc simulations make it
possible to substitute various bus implementat ions with
little or no impact on the rest of the system. For

example, TCP/I> Sockets over FKthernet can be
transparently substituted f o r bus hardware during
development.

instrument Simulation,

It is common that after the power, data, and command
interfaces to a scientific instrument are determined,
development of the instrument proceeds in parallel with
spacecraft development. To decouple tbc development of
the instrument and spacecraft, tbc ¥ST provides a two
partinstrument simulation. Spacecrafl simulation and
test can proceed without the instrument present, Figure 3
is tbc onion-layer model witb emphasis on
communication between subsystems during test of a
simulated or prototypc instrument.

p
@ Am
(DARTS)
Avionic: e
Rfmm @\ A
1 (REU)

ositon & e awleny
Spacecraft
Prototype

sround Sysfem

Figure 3. Instrument Simulation

The two parls of the simulation arc an instrument
simulation and a simulated environment. These Iwo
parts are elaborated in Figure 4. The instrument, possibly
simulated in software, communicates through the same
command-data interface and produces the same power load
as tbc physical instrument will. in addition, tbc
simulated environment takes observational parameters
output from thc instrument and creates plausible data
(images, in some cases) delivered back to the inst rument
subsystem. The simulated environment canbe simple or
complex, thelatter incorporating position and attitude
data from the D ARTS simulation, rendered images,
background stars derived from star catalogs, typical scene
blur provided by an optics model, and simulated detector
noise.

{from DBARTS)

st ument Prototype strument SE

Qbservation Fosition &
L ararmotars A(hmde
> Ve
Image > <
| — p Rend “spice
feuire < °”"9 World Model |
)nslmmenlllf 1

[a hots wcmﬁr) @Ca\a\o@
Imado Qutput - -

ackchlahon Dala Image J
K @e B!uv> vA—Efmcs Mode!
Compmssei - - =

Imago Dala

Betector |
Board .

£
{to PDU)

Figure 4. Instrument simulation and environment.

Software Support for the FST Environment

The I'ST software development environment provides

several mechanisms that supporl incremental
development, smooth integration, and extensibility, The
common foundation of these mechanisms is Tramel, the
media-independent message passing system described
briefly above. Tramecl cnables subsystem modules to
produce output by publishing messages without knowing
what other modules will receive them, and to consume
input by subscribing to messages without knowing what
other modules will produce them. Ilach message has a
subject, which is an application-se lected integer that
functions somewhat like a method selector inan object-
oriented programming language such as Smal ltalk, and
may also optionally have content, an arbitrarily long array
of bytes. A task joinsan application universe by
registering (basically, declaring some ASCllstring to be
its name) and after having registered may subscribe to any
number of message subjects; different message handlers
(callback functions) may be declared for each subject. A
task publishes a message by specifying to ‘tramelits
subject, content, and content length; Tramel handles
delivery of the message 1o every subscriber, whether cm
the same processor or on other processors, using sockets,
messages qucucs, pipes (I°'11°'0Os), or whatever other
communication channels arc available; the publishing, task
is never awarec of thelocation of the recipient(s) orthe
t ransport mechan ism(s) used. In this way, the
implementation of onc module is wholly decoupled from
that of any other. The Appendix contains a sample C
program that uses Tramel to publish analarm message
every sixty scconds.

Onc helpful extension of Tramel is Tcl tramel, a ‘I'cl
[Ous94] application programming interface to Tramel
functionality. This library provides ‘I'cl commands that
record subscriptions andunsubscriptions and publish
Tramel messages. Subscribing to a given subject from
within a T'cl script automatically links that subjcct to a
callback function that passes the content of each message
10 a ‘I'cl interpreter. This enables applications written in
Tclcan participate fully in a Trame] application universe.

o 1)(). TURN_Q
{sacs point0.280.28 0.69
DO_SNAP. 0}
o1 1)0. SNAY. O
{camera snap
DO, TURN_ 1}
o1 1) C). TURN. 1
(sacs point 0.20 0.19 0.72
DO, SNAP_ 1)
01, DO _SNAP 3
{camerasnap -mosaicida 3 3 0 1
DO_TURN. 2}

-0.59

~mosatcid 3 3 0 0 announce

arnourice

on DO TURN. 9 "announce MOSAIC COMPLETE"
announce DO_TURN_ 0

Figure 5. Command sequence for 3x3 Image Mosaic

"fstshell”, which is built on Tcl tramel, is another
useful mechanism for encapsulating modules. By linking,
W ith fstshell and invoking its fststarl() function, ST
application codc automatically acquires the ability to
interact with other modules in the same application
universe and also to be commandable via Tcl. Figure 5
contains an example of a high-level fstshell command
sequence. Subsystems canexchange commands by
publishing messages containing Tcl commands and
subscribing to the commands published by other
subsystems, This makes integration of new, higher level
functionality simple.

For example, an optical pointing module can be added
simply by having it subscribe to image messages from the
camera and publish “point” commands. Fncapsulating
subsystems behind fstshell facilitates distribution of
functionalily over processors -- an instrument pointing
module can be transparentl y moved to another processor.

[conclusion

The FS'T employs several mechanisms which facilitate
Spacecraft subsystem integration and test and als o
provides anenvironment for demonstration of new
technology inan end-to-cad system context. The ST
provides core services under a layer of higher level
functions that enable integration of new technologies.

These technologies might include new hardware as
well a s more abstract functionality implemented in
software. Hardware such as instrument interfaces, data
compression engines, or ACS devices canbe quickly
integrated using commercial hardware while breadboards
are being implementedin programmable gate arrays.
Complex software entities, such as rok-based logic
engines, can belayered quickly behind the reusable
subsystem interfaces and demonstrated interacting with
other softwarc components.

Future work includes forma] specification of the
Tramel messaging functions. Reverse engincering of
formal specifications from existing spacecraft code has
been demonstrated [CA93], and distributed asynchronous
messaging schemes similar to Tramel have been formally
specifiecd [AK86].

The techniques described in this paper were developed

-announce

-0.62 -announce

by an eight person team inabout six months, The
resulting architect ure is used as demonstration of
spacecrafl technology in a flight-like environment,
Experience with extending the architecture and using it
for integration of new technology support the conclusion
that these techniques arc robust and suited for incremental
development of large, complex, distributed real-time
systems,

Acknowledgments

The work describedin th is paper was performed at the
Jet Propulsion | .aboratory, California Institwte of
Technology, under a contract with the National
Acronautics and Space Administration. Dr. Auernheimer's
work was supported through a NASA/A SI:E Summer
Faculty Research Fellowship and a sabbatical provided by
California State University, Fresno.

Bibliography

[ABIS] C. K. Ames and 1. C. Briggs. Experimental attitude control
simulation architecture for system development and integration. Papes
presented at AAS'9S (American Astronautical Society). Keystone
Colorado, I ‘cbruary 199S.

|AK86] B. Aucrnheimer and R. A. Kemmerer. RT-ASHLAN: a
specification language for real-time systems. 1EEE Transactions on
Software 1 ingincering, September 1986. Also reprinted in the 1HEL
tutorial Hard Real-lime Systems, 1988,

{Bur93) s, Burleigh, ROME: Distributed [;-t+ object systems. IELLS
Paralicl and Distributed Technology Systems and Applications, May
1993. Pp 21-32.

[CAY3] B. Cheng and B. Aucrnhetmer. Applying formal icthods and
object- oriented design o existing flight software. Proceedings of the
NASA Goddard Softwarc 1 ingincering Workshop, December 1993,
[CT94] 1, K. Casaniand N. W. Thomas. The J))], night System
Testbed. Proceedings of the Spring 1994 S1'11 ¢ Con ference. Orlando,
1994,

IDARTS]hitpi//robotics.jpl.nasa. gov/tasks/dshell/

(ST hup/istjp Lnasa.gov/

[0us94] J. K. Ousterhout. Tcland the Tk Toolkit, Acidisoa-Wesley,
1994,

|'Tan87] A. S. Tancnbaum. Opcrating systems: Design and
implementation. Prentice-Hall, 1987,

['Tramel] file://tsunami.jpl.nasa.gov/home/scott/tramel/ian/tramel.3

Dear Author,

Congratulations on the acceptance of your paper for publication in the proceedings of
the Workshop on Parallel and Distributed Real-Time Systems, being held April 15-16,
1996, in Honolulu, Hawaii. PLEASE READ THE FOLLOWING COMPLETELY BEFORE
FORMATTING YOUR PAPER - THIS LETTER CONTAINS IMPORTANT INFORMATION!

Attached to this message is a set of electronic instructions for formatting your
paper. If you have any formatting/publication questions, please feel free to contact
me (numbers below). For registration, program, or other questions, please contact
either Lonnie Welch at Ph: + Intl. 540-653-2193 or e-mail: welch@homer. njit. edu; or
David Andrcws at Ph: + Intl. 501-575-5090 or e-mail: dla@engr.uark.edu.

o GUIDELINES/FORMATTING - These instructions have been updated. Please see the
attachment: INSTRUCT.TXT. You should be able to format your paper successfully if you
use the measurements in the attachment.

0 PAGE LIMIT - Short papers: 4 pages. Extra pages are allowed, at a cost of $100,00
US EACH. Please make your check payable to: WPDRTS 96 and include it with your
paper. [Do NOT meke it out to any other name. The conference “does not accept credit
card payments and extra pages not paid for will not be published.] If you need a
receipt, complete the receipt request form and include it with your check and the
original manuscript that you send to me. See attachment: RECEIPT.TXT

0 COPYRIGHT release - print out the form, fill it out COMPLETELY -- BE SURE TO
INCLUDE THE TITL E OF YOUR PAPER, THE AUTHORS’ NAMES, etc. -- Just signing it is
NOT enough! Send it in with your paper -- we cannot publish your paper without it. See
attachment: COPYRGHT.TXT

0 MANUSCRIPT - [ease submit an *ORIGINAL* of your paper. We must have the best
guality possible. We will accept PostScript copies of your paper with the provision
that they are not encapsulated, that you send them to me with the subject referenced
as WPDRTS paper, and that you send them in promptly. If you send a PostScript paper,
you still *MUST* send in your copyright form (fax it to me first, then send the
original to my atlcntion), plus your check for any extra pages. If you use LaTeX
formatting macros, we have an updated set available and ask that you use it and not
any older versions you may have. Please request it by sending “me an e-mail.

0 ELECTRONIC ADSTRACT of your paper - Only E-mailed abstracts will be accepted.
Send your abstracl to: WPD96-abs @ computer. org.

