
An Element-Based Concurrent Partitioned for Unstructured
Finite Element Meshes

Hong Q. Ding and Robert D. Ferraro
Jet Propulsion Laboratory, MS 168-522, Pasadena, CA 91109

Abstract. A concurrent partilionerforpartitioning
Unstructured finite element meshes on distributed memory
architectures is developed. The partitioned uses an ele-
ment-based partitioning strategy 1[s main advantage over
the more conventional node-based partitioning strategy is
its modular programing approach to the development of
parallel applications. The partitionerfirst partitions ele-
ment centroids ioing a recursive inertial bisection algo-
rithm. Elements and nodes then migrate according to the
pw-titioned centroids, using a data request communication
template for unpredictable incoming messages. Our scal-
able implementation is contrasted to a non-scalable
implementation which is a straightforward parallelization
of a sequential partitioned. 1’Yw algorithms adopted in the
partitioned scale logarithmically, as confirmed by actual
timing measurements on the Intel Delta on up to 512 pro-
cessorsfor scaled size problems..

1. Introduction
Finite element analysis is used in broad and diverse areas,
such as structural analysis, fluid dynamics, elcetromagnet-
ics, etc. Ever-increasingly larger and more complex mesh
geometries used in practical applications can only be dealt
with by the distributed memory parallel supereomputcrs
because of their ability to scale to large number of proecs-
sor without losing reasonable perfbrrnance.

Partitioning a finite element mesh among the processors of
a paral M supercomputer sets the stage for the finite ele-
ment anal ysis problem, TIN domain partition achieves
load balance, preserves proper data locality and rcxluees
communications during the solution of the problcm.

Partitioning algorithms, especially for simple grids, have
been studiwt in considerable details (see [1,2] for sumn~a-
rics of rcamt related works). Most of these works study
the grid mesh problem, and the number of edges being cut
by the processor subdomain boundary is used as the mea-
sure of quality of the partitioncr. However, partitioning a
finite element mesh involves additional complexities duc
to presence of the elements. ”

2. Node-based partitioning strategy

In a node-based partitioning strategy, one simply partitions
the nodes (grids on the mesh that forms the elements).
ITmreforc, each node belongs uniquely to a processor. Eie-
ments are then msigncd to the nodes. Some elements will
not be uniquely assigned because they have nodes which
msi& in different processors. If we simply assign onc such
element to one of the relevant processors, that element has
to remember that it hag some nodes residing on other pr~
cessors. This is inconvenient, kause in finite element anal-
ysis, computations are done bad on the elements, not the
nodes. For thew elements which have nodes on other pro-
cessors, computations have to be carefully designed to get
relevant nodal information from other processors. If adap-
tive refinement is required, nodes on other processors must
be brought in so that all elements on the processor have all
their nodes locally available before further refinements can
proceed. Notice here that the number of edges being cut
dircctty relates to the number of nodes needed to be brought
in for element related calculations. This partitioning strat-
egy has been used in [3].

3. Element-based partitioning strategy

Because finite element analysis is fundamentally element
bawl we prefer an element-based partition where an ele-
ment in its entirety belongs to a processor uniquely (SCC Fig, “
1). This implies that atl the nodes of an element must be on
the processor, We partition the finite element mc,sh by assoc-
iating each element to its center of mass (centroid) and par-
titioning the resulting collection of centroids via a recursive
inertial bisection atgorithm. Once the elements are peti-
tioned, nodes are migrated to the processor where their
related elcmenLs are. Now, processor subdomain boundaries
go along the edges, instead of cutting across the edges in a
node-based partitioning, A node on processor subdomain
boundaries is replicated on all proeesots which share it. A
brief description of the element-based partitioncr has bum
previously published in [4,5].

The most important feature of this partitioning strategy is
that the local mesh resulting from the partitioned is a simply

Ding &Fcrraro 1

.

connected mesh, and all element-based calculations pm
teed as in the sequential case, without reference to any
non-local information. As a result, most complicated
sequential finite element analysis algorithms can be used
without change. In Fig. 1, calculations of triangular ele-
ments A 124, A234 etc., and their contribution to stiffness
matrix elements proceed exactly as in the sequential cme.
Further local adaptive refinements and multi-level solution
mcthock could be also applied caily because all relevant
information is locally available. Some of the boundary
nodes of the local mesh are true boundary nodes subject to
boundary conditions. Other boundary nodes are actually
interior nodes, but on the processor subdomain bound-
aries. I%e finite element analysis treaw these processor
boundary nodes simply as interior nodes which are no dif-
ferent than other interior nodes, It is the parallel solver
which connects the local meshes into a global mesh, con-
structs the global stiffness equation and solves it (see [7]
for more details). This separation allows those in the appli-
cation area to concentrate on the finite element analysis.
This achieves much better modularity, and it is much eas-
ier to implement compared with node-based partitioning
strategies.

In the following, we describe more details of our elcmcnt-
based concurrent partitioncr which contains two major
stages. First, the centroids are partitioned. Second, nodes
and elements migrate according to c.entroids. We empha-

size that algorithms used in both stages are scalable, i.e.., no
worse than a logarithmic scaling. Finally we present several
example applications and the timing measurements.

4. Recursive Inertial Bisection

The collection of element cxxtroids form a mesh dual to the
original node mesh. Partitioning of the czntroids proceeds
cxaclly as partitioning of grids. The edges in the centroid
mesh does not correspond directly to anything in the origi-
nal node mesh, but the cut of an edge in the centroid mesh
directly corresponds to an edge in the original element
mesh. Thcxefore, the number of edges Ming cut during the
recursive partitioning of the centroid mesh equals the num-
ber of edges on the boundaries of the partitioned element
mesh.

Although recursive spectral bisection is generally consid-
ered to give the best partitions, its parallel implementation
involves solving large eigenvaluc-eigenvector problems
which are di~lcult to implement efflcientty on parallel com-
puters. Recursive incrtiat bisection (RIB)[6Z] usuatly leads
to reasonable partitions with reasonable aspwt ratio,
because in each recursive step, the remaining mesh subdo
main is always cut into two across its current longest exten-
sion; this avoids long and thin subdomains often occurring
in the standard recursive cmrdinate bisection. The RI B can
be implemented in parallel with high et%ciency. Our parti-
tioned uses the RIB algorithm,

2proc 1

1 * L

proc3 proc3

pmc 1 proc 2 pmc 3

r A .A—

A124+KA145 ‘ + “
A

A 2 3 4 A 3 4 7 ’ ~- ~A476 A 4 6 5 ’
’44 = ’44 44 ’ 4 4 + ’ 4 4 44 + K4 4

A124 + A234
’ 2 4 = ’ 2 4 K 2 4 + o

Fig. 1. Element-based partitioning, Thick lines indicate prwssor boundaries. BJodc 4 is replicated on procs 1,2 and 3,
Node 2 is replicated on procs 1 and 2, Conkibutions to stiffn~%s matrix elemen~ K4 and KM from triangular elements

Al 24, A234 etc. are also indicatwl.

Ding &Fcrraro 2

Theoretically, the RIB algorithm completes in log2(P)
recursive steps, where P is the desired number of partitions
(which is equal to the nttmbw of processors). However,
log2@) steps does not imply a CPU time proportional to
log2(P), given the total problem size fixed. First, let us
look at the basic sleps in the RIB algtiithm, A brief
description follows. Each centroid has a flag indicating
which region it belongs to. In the first step, there is only
onc region and all centroids belong to this region, We wish
to divide this region into two. The inertial tensor is calcu-
lated, diagonalized, and the principle axis (which points to
the longest extension) is found. All centroids arc projected
onto this axis, which forms a onedimensional array of
floating point numbers. The median value of this array of
numbers is calculated. Depending on whether its pro@-
tion is lower or higher than the median, each centroid
knows to which of the two regions it belongs. In the sec-
ond recursive step, this process is repeated on the two
regions independently to produce 4 regions. In the third
recursive step, the 4 regions are divided into 8 regions.
And finally, in the log2(P)-th recursive step, P/2 regions
arc divided into P regions. From this description, wc sce

tha[thcrcare 1 +2+4+... + ~ = P -1 regions being cal-

culated during the log2(P) recursive steps, although the
number of points in each region is reduced by half during
each recursive step.

A straightforward corivcrsion of the above sequential RIB
algorithm to a paral M parthioner is not scalable. In that
imp1cmcntation[8], nodes and elements are read in from
disk and arc distributed evenly among processors in some
fashion. The ba..ic RIB steps are performed without mov-
ing any data around. At the end, nodes and elements
migrate to their final destination processor (or processors)
according to the region flag, All the calculations of cle-
ment ccntroids, the region inertial tensor, eigenvector and
median tinding arc carried out in a synchronous way, with
every proczssor participated in all the calculations. The net
cffwt is that each processor does work proportional to P.

A scalable implementation wses a processor group con-
c@, a feature nicely supported by the Message Passing
Interface (MPI) standard (although we have written a
library [9] to implement partial operations on groups of
processors in the Intel Paragon NX environment). Here,
once the entire ccntroid mesh is divided in two regions, the
centroids are physically moved to the relevant processors.
For example, on 64 processors, all centroids with projec-
tion smaller than median go to processors O-31, and all
other centroids to processors 32-63. In the next recursive
step, the two partitioning processes proceed independently

on the two processor groups to produce 4 subdomains on 4
processor groups. This process repeats until we have 64
subdomains on 64 prwssors. In this implementation, each
processor does logJP) calculations of region inertial tensor,
cigenvtxtor, and median finding calculations. Although this
is still more than the theoretical limit of (P- 1)/f = 1, it
grows much slower than the linear scaling in the above non-
scatablc implementation.

5. Migration and Load-Balance

In the node-based partition strategy, once the nodes arc par-
titioned, elements ned to be migrated according to the par-
titioned nodes. When the relevant nodes of an element are
distributed on different procm.sors, a deeision has to be
rnadc as to which processor to assign the e]cmcnt

In the element-based partition strategy, once the elements
arc partitioned, only nodes have to migrate accordingly. In
our clement-bawl partition, nodes on subdomain bound-
aries are identifiwl and replicated on relevmt processors. A
list containing these relevant processors’ ids is replicated
together with the node itself.

Our implementation of the element-based partitioned
involves an extra stage, which simplifies the programming
efforts. In principle we can let the elements go together with
the centroids during the recursive biseetion prcw.ss, so that
when recursive bkection finishes, elements are in the right
processors. However, elements are “heavy” --- they contain
additional information beyond the simple coordinates, and
thus add an extra burden during the centroid redistribution
following each recursive bisection. We prefer to move the
elements only once at the end of the process. Another rea-
son for migrating elements after centroids are partitioned is
that an element has to inform its nodes to which processor
they must migrate. If the element leaves the processor whc.re
iLs nodes reside, it hm to have a mechanism to know in
which processor these nodes are and send relevant informa-
tion to this processor. These extra complexities are all
absent if the element remains in the precessor during the
rccursivc partitioning of the element centroids and then
migrate after it has informed its nodes about their destina-
tion processors.

Among the identically replicated nodes, only one is consid-
ered the original node owned by a processor, and others are
considcrul copies of the original node (not owned by the
processor), This ownership may be important to the later
solution of the stiffness equation, For example, in our conju-
gate gradient salver implementation, node ownership is
used to load balance computation, and arbitrate contribu -
tiOfIS to dot products[7].

Ding &Ferraro 3

6. Template for Unpredictable
Incoming Messages

A data request protocol frequently occurs in the migration
of elements and nodes. For example, the partitioned cen-
troids request that the element structures migrate to cen-
troids’ processors. The requesting processor knows to
which processor to send requests, but the receiving proces-
sor does not know how many messages it should expect
and how long each message will be, This is the problem of
unpredictable incoming messages.

We have designed a scalable (no worse than the logarithm
of’ number of processors) communication template to
msolvc this problem. It proceeds as followx

(a) sort data requests on sending processor by destina-
tion processor (this information is siorcd in two
arrays);

(b) call a global-sumo on one array to obtain the # of
messages each processor should receive, and call a
global-maxo on tic other array to obtain the nlaxi-
mum length of each message;

(c) make the correct number of calls to rcceivc the
requcsL$ with the maximum message length it
expects.

Once data requests arc rczeivcd, each processor sends the
requested data back to the requesting prcwssors. Element
and node migration is implemented using this communica-
tion template. Minor modifications to the template codes
are made to handle the complications duc to the variable
number of nodes each finite element could have and due to
the variable number of processors among which a node is
shared .

7. Connection to a Sparse Matrix
Solvers Package
The linear equations arising from finite element analysis is
usually very large and sparse; its solution on a parallel
architecture is also a main consideration. Fortunately, as
mentioned above, constructing the local sparse coefficient
matrix from local mesh partitions is a straightforward
sequential process, which can be done by the user with
their existing sequential algorithms.

The task of integrating local sparse matrices into the glo-
bal sparse matrix (in fact, interpreting them as appropriate
matrix blocks in the global matrix) and solving the global
equation can be carried out by invoking an existing sparse
matrix parallel solvers package[7] that wc have developed
in connection with the partitioned. The solver suite deals
with symmetric comp]cx matrix problems. A prczondi-

Ding &Ferraro

tioncd hi-conjugate gradient method, a tw~stage Cholesky
factorization method, and a hybrid method combining both
methods have been implemented. All thrcx.? solvers use a
unified data intcrfacz so that users can switch to anyone of
thcm at link time. This is quite convenient for those prob-
lems which are not positive definite. Furltm-more, the local
sparse matrix construction based on the local mesh parti-
tions produced in our partitioned is well defind and is there-
fore standardimt into subroutine calls in the solvers
package. The user doc.s not need to worry about the global
sparse matrix organization at all; instead he/she concen-
trates on the ph ysics problem itself. We emphasize that this
modular programing approach to paral Iel tmmputing is
made possible by our element-bawd mesh partitioning strat-
egy,

8. Performance Characteristics

Wc measured two performance characteristics of the con-
current partitiorter on the Intel Delta withupto512 proces-
sors. The data is either a 32,768 hexagonal element m~~h
(squares in Fig. 2) or a 24264 tetrahedral element sphcrc-
cylinder (circles in Fig. 2). ‘Ihc fixed problem size perfor-
mance (spcdup) is shown in Fig. 2. In the region from
small to medium number of processors (up to 128 proces-
sors), the total time reduces as the number of partitions
increases. However, as the number of processors becomes
larger than 128 (i.e., the resulting number of partitions
becomes larger than 128), the total time hit the plateau. This
is expcctui, since various overheads in the parallel algo
Iithm remain fixed or incrcae slightly with the number of
processors and thus eventually ~rne dominant.

—

..—

4 8 16 128 X6 512
Numt% of Pm%s.wrs

Fig.2. Execution time for two problems with fixed sixes

4

J

‘IIIc scaled problem behavior was also studied (see Fig.3).
On 4-processors, the partitioned takes 0.21 sec to partition
the 512 element problem (each element is 8-node hexa-
gon). The 4096-element problem on 32-processor takes
0.51 sm. while the 32,768-element problem on 256-pro-
cessor takes 0.93 sec. If we take 4-processors as the mini-
mum processor size where a partitioning algorithm make
senses and normalim all timing accordingly, a logarithmic
scaling is clearly followed for this scaled problcm SCL

T(P)fl(4) = 0.8 log2 (P/4).

This indicates the scalable nature of the algorithms imple-
mented in this partitioned.

M

32
K

16\—-—-—

k8 —— - - - - - - — - -

4

2 --- ---

1 —
4 32 256

Nmbsf of Prcemm

Fig.3 Execution time for a scaled size problem.
128 hexagon elements per prcm,ssor

In comparison, an earlier non-scalable implcmcntation[8]
results are also shown in Fig,3 as the top curve.

9. Summary
Wc have developed a concurrent partitioned for partition-
ing unstructured finite element meshes on distributed
memory architectures using an element-based partitioning
skategy. We examined the scalable implementation of the
recursive inertial bisection algorithm and discussed issues
related to migrating nodes and elements. Test runs of our
partitioned on large meshes indicate a logarithmic scaling
with problem si?,e for fixed element/processor ratio, thus
demonstrating the Statability of the algorithms imple-
mcntcxl in this partitioned, Finally, we have emphasized a
modular programing approach to separate the application
specific parts from the parallcliTation, so that users can

Ding &Ferraro

concentrate on Mlr own applications.

Acknowledgment

We thank Jim McComb for explaining the details of an old
implementation [8]. We thank the Concurrent Supercomput-
ing Consortium for the use of Intel Delta. This work was
carried out at the Jet Propulsion Laboratory, California
Institute of Twhnology, under a contract with National
Aeronautics and Space Administration.

References
1.

2.

‘1. .

4.

5.

6.

7.

8.

9.

5

H, D. Simon, Partitioning for Unstructured Problems
for Parallel Processing, Computing Systems in Engineer-
ing, v.2, p.135, 1991.

R. Leland and B. Hendrickson, An Empirical Study of
Static Luad Balancing Algorithms, Proceedings of Scal-
able IIigh Performance Computing Conference, 1994,
IEEE Computer Scxiety Press, Los Alamitos, CA, p
682.

M.T. Jones and P.E. Pkwsmann, Parallel Algorithms for
Adaptive Refinement and Partitioning of Unstructured
Meshes, Proceedings of Scalable High Performance
Computing Conference, 1994, IEEE Computer Society
Press, Los Alamitos, CA. p 478.

H.Q. Ding and R.D. Ferraro, Slices: A Scalable Parti-
tioncr for Finite Element Meshes, Proceedings of 7(h
SIAM Conference on Parallel Processing for Scientific
Computing, 1995, SIAM Press, Philadelphia, PA. p.633.

IIIC basic idea of element-based partitioning dates back
to early 80’s. A good description along with early refer-
ence is in G. Fox, M. Johnson, G. Lymmga, S. Otto, J.
Salmon and D. Walker, Solving Problems on Concurrent
Processors 1, Prentice Hall, Englewood ClitTs, NJ, 1988,
chap. 8. SW also [6,7].

B. Nour-Omid, A. Racfsky and G. Lyzenga, Solving
Finite Element Equations on Concurrent Computers, in
Proceedings of the Symposium on Parallel Computa-
tions and their lmpacl on Mechanics, Ed. A. K.NoOr,
ASME, New York, 1988, p.209.

H.Q. Ding and R.D. Ferraro, A General Purpose Sparse
Matrix Parallel Solvers Package, Proceedings of 9th
Internal Parallel Processing Sympaium,1995, lEEE
Computer Society Press, Los Alamitos, CA. p 70.

J.C, McComb, et. al., Parallel Implementation of the
Recursive Ine.rlial Partitioning Algorithm, unpublished
JPL rcporz 1993.

H.Q. Ding, PGLIB: A Library of Partial Global Opera-
tions on Parallel Architectures, SW web page at http://
olympic,jpl.nasa.gov.

