RADIAL COMPONENT OF THE MAGNETIC FIELD: ULYSSES

F.J. Smith,* A. Balogh,** M. Burton,* and R. Forsyth,**
*Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109,
**The Blackett Laboratory, Imperial College, London SW7 2BZ.

The Ulysses magnetic field investigation has revealed little, if any, dependence of B_r on latitude. The global field can be accounted for by the heliospheric current sheet only with B_r the same above and below the current sheet except for the reversal in polarity. The strong polar cap fields near the Sun (estimated to be -7 Gauss) imply a divergence of the magnetic field and solar wind leading to a redistribution of the field. The existence of a uniform field beyond a few solar radii appears to be at variance with earlier reports of a “flux deficit” in outer heliosphere and of a north-south asymmetry in B_r. Recent observations of B_r as Ulysses returns to -30° latitude from the north polar passage will be presented and compared with previous results. In addition, reconciliation of the Ulysses results with the earlier contradictory-appearing conclusions will be attempted.

Edward J. Smith
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, M/S 169-506
Pasadena, CA 91109-8099
Tel: 818-354-2248
Fax: 818-354-8895
SPAN: jplsp::esmith

12.2 The Sun and its Role in the Heliosphere
MSOs - E. Antonucci and D.E. Page
oral presentation