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ABSTRACT

The conventional way of expressing power |o0ss in dB/meter for a nultinode
wavegui ding systemwith finite wall conductivity (such as a beam-waveguide system
with protective shroud) can be incorrect and nisleading. The power loss (in 4m)
for a nultinode waveguiding system is, in general, not linearly proportional to
the length of the waveguide. New power |oss fornmulas for nultinode systemare

derived in this paper for arbitrarily shaped conducting waveguide tubes. In

these fornulas, there are factors such as {exp(3jx)-1)/{jx),wherex={Ba. Bp) £,
with B; and Bb pei ng the propagation constants of the different propagati ng nodes
and ¢ bei ng the distance fromthe source plane to the plane of interest along the
gui de. For a large beam wavegui de supporting many propagating nodes, B5’'s are
quite close to Bp’s, thus the nmode coupling terms remain inmportant for a very long
di stance from the source plane.

The nultinpde power loss formula for a large circular conducting tube has
been verified by experiments. This fornula was also used to calculate the
addi tional noise tenperature contribution due to the presence of a protective

shroud surrounding a mllineter-wave beam-waveguide system

*The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.



I. INTRODUCTION AND THE CONSIDERATION OF A FUNDAMENTAL CONCEPT

In textbooks on electromagnetic and gui ded waves, the usual
perturbation technique is used to calculate the attenuation factor
of a given propagating node in a slightly Zlossy, highly conducting
hollow netallic waveguide. Based on this technique, the
attenuation constant for the mth node, a{™, due to conductor 1loss
in a general cylindrical hollow netallic waveguide is found to

be:1-6

Riﬁ(nz) . H(m)* de

2Re”(E(m_) X 110")*) ‘e, dA

S

o (M .8.686 (dB/m) (1)

where Rdenotes the intrinsic resistance of the nmetal walls, (™
and H{m are the unperturbed electric and magnetic fields for the
nt h propagating node in this waveguide with perfectly conducting
walls, Redenotes the real part of the integral, ez is the unit
vector in the z-propagating direction, the * denotes the conplex
conjugate of the integral, Cisthe contour around the cross-
section of the waveguide, and S is the cross—sectional area of the
wavegui de. Here, a(m expressed in dB/meter is the attenuation
constant for the nth propagating node per unit length of the

wavegui de.



A nore accurate determ nation of the attenuation constant,
alml,  can be obtained through the boundary-val ue- probl em approach.

Here, the fields in different regions (i.e., the netal region

characterized by (€u,0) and the vacuum regi on characterized by

(EO’“O)) of the waveguide are matched at the boundary, yielding a

di spersion relation from which the conpl ex propagati on constant
for each node may be determned. For this approach, in general

all field conponents nmust be assuned to be present. In ot her

words, for a hollow circular netal pipe, the field conponents, (Ez,
Ey, Eq, Hz, Hr, Hy) » Wl all be present, when circular symretry of
the node is not present. Here, the circular cylindrical
coordinates (r, q, z) are assuned. This was the approach (called
hybri d- nrode approach) used by Chou and Lee to cal cul ate nodal

attenuation in nultilayered coated waveguides.!

In all of the above considerations, the power |oss has al ways

been expressed by a(m for each mth node in dB/ neter.

It is the limtation of this way of expressing power |oss that

we Wi sh to address in the follow ng.

When a single node, say the nth node, is propagating in this
hol | ow wavegui de, the follow ng expression is normally used to
represent the power carried by this node along this wavegui de

structure:

m)
P(m)(Z) - p:\)'n}_:. —~o "y - P(()m)(l _2a(m)z) (2)



wher e Iém)is the initial input power of the nmth node and z is the

di stance along the guide. That this expression is valid if and
only if a single node is propagating alone in this waveguide, is
usual ly glossed over in the textbooks. Furthernore, Egs. (1) and
(2) offer the inpression that the power loss in a given wavegui de

may be expressed by the attenuation constant a(m in nepers/neter.

From Eq. (2), for small attenuation, the power loss Pﬁ”’) is

Pg") = P(()"‘)(Powcr Input) — P™(z) (Power Output) ~ P(()m)2a('")z.

Consequently, one nmay obtain the m staken inpression that the
total loss is additive when nore than one node is present

simul taneously in the waveguide; after all, we know that the tota
power is additive. For the nultinode propagation case, the total
power | oss should not be expressed through an attenuation constant
as certain nepers/neter (or dB/m) . | ndeed, due to the
contributions of the cross-product terns in J-J, where J is the
total surface current, the total power loss in the nultinode case
is no longer a linear function of the length of the guide as in

t he single-node case.

Assune that a given source in an infinitely |ong hollow
conducting wavegui de excites two equal anplitude |owest order
propagati ng nodes. Furt her assune that the wavegui de can only
support these two | owest order propagating nodes. The wal |l s of

t he wavegui de are made with highly conducting (but not perfectly



conducting) nmetal. Let us find the total power loss at a distance

d fromthe source plane.

Incorrect Solution

According to the textbook formula (Eq. (1) of our paper), the

attenuation constant for each node can be calculated using this

fornul a. Say the answer for nobde 1 is a; = 0.001 (nepers/meter)

and for node 2 is a; = 0.002. (Even if we use the nore exact way

of calculating the attenuation constant by the boundary-value-
probl em approach (or the hybrid-node approach) described in

Ref. 1, due to the highly conducting nature of the walls, the
attenuation constants for these two nodes woul d not devi ate much

fromthe given values. ) Let Py be the input power for node 1 as

wel | as for node 2. so, the power of node 1 after propagating for

a distance z in the waveguide is Py exp(-2a‘l)z) and for node 2 is

Py exp(-2al?)z). Since the power is additive, the total power |oss

i's

Protal Loss = PInput - POutput

= 2Py - Pp(exp(-2al)z) + exp(-2a(?)z)) (3)

2Po(a(1) + af2))z,

So, according to the above formula, Protal 1055 IS proportional to

z. No matter how small z or a is. This is wong!



The fundanental reason that this result is wong is that even
t hough the total power for two nodes is additive, but the total
power |oss is not additive. In other words, total power loss is
not linearly dependent on z. The correct way of calculating the

total power loss is given bel ow

rr | ion

For linear EM waves, the fields and currents are additive. So
the total induced current flowng on the walls is the sumof the
i nduced current for node 1 and that of node 2. It is the currents
flowing on the surface of an inperfect conductor that give rise to
ohmc loss or the power |oss. So, the power |oss nust be
calcul ated according to Chnmis law. Accepting this fundanenta

concept will lead to the correct answer. In this case the power

is not linearly dependent on z as shown by Eq. (16) bel ow.

This exanple shows that Eq. (2), representing the power flow
for a given node along a holl ow conducti ng wavegui de, is only
valid when there is one and only one node propagating in this

wavegui de .

Therefore, the purpose of this paper is to address the power
| oss probl em when nore than one node is present sinultaneously in
the waveguide. This effort is notivated by our desire to verify
the neasured data for a mllinmeter wave beam wavegui de with

protective shroud consisting of sections of round conducting tube



as shown in Fig. 1. Solution of this problemis of great
importance in optimzing the design to yield m ni num noi se
tenperature for the NASA/ Deep Space Network’s | ow noi se m crowave

receiving system?®

Il. FORMULATION OF THE PROBLEM AND FORMAL SOLUTION

Shown in Fig. 2 is the geometry of the canonical problem. A
uniform conducting waveguide of arbitrary cross-section with its
axis aligned in the z direction has a length ¢. Inthe z =0
plane, the transverse electric field E,(x,y) is assumed to be given.
Thus the anplitudes of all the modes (propagating and evanescent
modes) can be calculated and are assumed to be known. VW wish to
calculate the power loss of the fields due to the imperfect

conductivity of the wall with intrinsic wave resistance (surface

resistance) R.

From Chnis | aw and poynting’s vector theorem the power loss is

gi ven byl-®

1 *
P = ERJ‘J‘(JS Jy)dA., (4)
A
where
Js = n ¥ H = surface current density on the wall
n = unit vector nornmal to the wall surface

s
I

total magnetic field in the wavegui de



A= surface area of the wa11

or

P = K] [ (e t)an. (5)
A

where He is the conponent of the total nagnetic field which is
tangential to the wall surface. It is known that, in a hollow
arbitrarily shaped uniformwaveguide with a conducting wall, {phere
can exist two sets of eigenmodes:1-6 Te (Transverse Electric)
nodes and TM (Transverse Magnetic) nodes with a specific
propagati on constant for each nmode. The total fields for TE nodes

are

ETE)(x,y,2) = ZA”TE)E(YE)(X y)efﬂ(m ©)

m=1

—
—~
N

mt

- (TE),
HTE)(x,y,7) = z A(7E>[ HD(x,y)+ HTE (x,y)e ] iPn

m=]

where E(E) and(ﬂ;zf)+H;,£E)gz) are connected through the Maxwel|’s

equations and B is the propagation constant of the mthTE

ei gennode, and the total fields for 7@ nodes are

m =~ mt mz

(7M)
(TM)(x ¥,2) = ZAUM) (TM)(x y) +E(7M)(x y)e ]e iBpy (8)

m=]



, o """\'l)
HTM (x ) 5y = Z ATM) TV (TP ©)

m mt
m=1

wher e Lif,,T,M) and L*;fnT,M) + E,(,?;M) e, are connected through Maxwel |’s

Z)
equations and B(TM) is the propagation constant of the nth 1M

ei gennode. A,(HTE)andA,("TM) are arbitrary amplitude coefficients for

TE and TM nodes. The subscript t indicates the transverse

conponents of the field (transverse to the z direction) . The

index mis used to tally the nodes—+t does not necessarily
correspond to node order. (One notes that b, may take on negative

val ues, indicating nodes propagating in the opposite direction.

Substituting Egs. (6)-(9) into (5) vyields

nc mz nz

M M
_1 TE) ((TE)* TE) ,,(TE)* (TE)_p(TE)
L DI )i[H,(ﬂc IuE) +H(7F)H<TE>*]df A0 ~5)e,

m=1 n=1

m’ m'e nc

M
M’ )
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m’=1 n=1
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n‘c
m’=1n’=1 0

1 1 g
(TM) _ n(TM)
2 ZA(TM)A(TM)*§ [H(”“H(TM)* ‘dcjef P By ) dz . (10)



Here, c¢ is the contour around the inner surface of the wavegui de,
which is also normal to the z-axis (see Fig. 2) . The subscript c
represents the conponent of the transverse field that is
tangential to the contour ¢, M is the nunber of TE propagating
nodes, and M¢ is the nunber of TM propagating nodes. Simplifying

Eq. (10) gives

Py, ° [part 1] + [Part 2] (11)

with

AT

m n

m’

1
[Part 1] =~ R 2

m=] m’=1

J(ﬂﬂ[‘)__p'('?E))g
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m=1 n=1 J m "

n<m
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’
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n’#m’

> i (TM) 4(TE)* ((TM)(TE) ej(ﬂ’("”” B) -1
+ ALTM) A(TE)
T. TE
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’
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Mo i)
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wher e

E 2 12
1'(" )—§C(Hr(nc W+ Hl(nz ) )dc
10 =if> H{TM) " dc
c
(TE) _ 18y (7Ey + HIE) TEM 4
2§z - P

(TM) _ ( TM) 1 (TM)?
1 "i[h’m TH) (M

TM)TE) — ™ TE)*
I§n’n X )—i[HF(W@ )Hr(zc ) }dc

TEXTM) — (TE) 13 (TM )*
IG5 Li[lime HERD e (14)
It should be noted that P, is always purely real

Equation (11) shows that power |osses or attenuations of

di fferent sinultaneously existing nodes are not just additive, as

given by the first bracketed term [Part 1]. The correct
expression nust include the second bracketed term [Part 2] , which
shows the cross—product terns. I ndeed, the use of an attenuation

constant to describe power |loss in a wavegui de should be limted
to the single-node uni-directional propagation case only, because
only for this case is the power loss linearly dependent on the
l ength of the guide. For the multi node propagation case, the

power | oss varies with the Iength of the guide in a rather

11



complicated manner as shown in Egq. (11) . Equation (11) vividly
denonstrates the inportance of the nodal coupling term Si nce the

factor

f@x) = (q(p)- D/ () (15)

(where x = (b1 - b)¥¢,b; and by are the propagation constants for
the coupling modes, and ¢ is the distance from the entrance of the
waveguide to the point of interest along the guide) determnes the
i mportance of the coupling term let us now exam ne this factor
closely. The function |f(x)] is |argest when x—0 and begins to

di m ni sh and approaches zero when X increases. This nmeans that
the cross-product ternms in Eq. (11), i.e., [Part 2], are important
when the difference between the propagation constants of the

propagating nodes that are excited in the waveguide is snall

and/or when ¢ is small, such that the product (b — P2) ¢ is small.
This condition is particularly true when the transverse di nensi ons
of the waveguide are very large, such as the beam wavegui de case

t hat we consi der ed.

Wien |x|>>1, then f(x)—> 0, and the coupling terms in Eq. (11)
[Part 2] approach zero. This nmeans that, when ¢—» e, [Part 2] & O
t he usual decoupled result given by [Part 1] in Eq. (11) becones
valid. So, as ¢—e, the power |oss for each node in the nultinode

wavegui de is additive.



(I THE SPECIAL TWO-MODE CASE

When two propagating nodes exist sinmultaneously in a nultinode
cylindrical waveguide, the power |oss due to inperfection of the

wavegui de wal l's can be expressed as follows (from Egq. (11))

1 1 .
L=y R€(|A1 P 1+ |4y 12) +> R@[AIAQIIZ F(0)+ Al Ay, f(—x)] , (16)

where f(x)is given by Eq. (15)

Here A; and A2 represent the anplitude coefficients for the two
propagati ng nodes, and b; and b, represent the propagation
constants for these nodes. It is clearly seen that the term
containing f(x) with x = (b-bp)flisthe coupling term which
approaches zero as x ZE.. |If by is near by, the distance ¢ nust be
very large in order that x may be large, inplying that the
coupling termremains inportant for a very |long distance. So
expressing the power |oss in dB/m, even for a two-node case, is

m sl eadi ng at best.
IV. LOSS CALCULATION BASED ON NUMERICAL MODAL FIELD DATA

For many practical situations, the conplex nodal fields,
obt ai ned nunerically and expressed in conplex nunbers and
vectorial directions, can not be obtained analytically. In other
words, the line integrals in Eq. (14) must be evaluated

nurneri cal | y. This is a task that can easily be acconplished

I3



t hrough appropriate summati ons of the nunerical data. Thi's

approach was used in the beam wavegui de case which we shall

di scuss | ater.

The followi ng nornalizations were used:’

mt =nt

.U(E(TE) F(TE)*) dA=1m=n

(17)
S
=0 m#n
(T™) | (TM)* dA=I =
JJ (S50 £7)dm=t en=n (18)
S
=0 m#n
HTE) (TE)* -
Jj( 1 H )dA 1 rn=n (19)
S
=0 m#n
™ (TM)* _ —
”(ﬁf,,, ) -H, )dA 1 m=n 20)
S
=0 m#n
TE (TM)* 21
J-J(ant) —E—nt )dA 0 (21)
A
TE (TM)* _ 22
JJ‘(HSM ) Hy, )dA'—O (22)

N

The integration, which may be done numerically, 1S carried over

) TE).(TM) 5 (TE)(TM)
the cross-sectional area s. Here, (F%,)( l# ) are the

transverse fields.

14



V. APPLICATION TO BEAM-WAVEGUIDE NOISE TEMPERATURE COMPUTATIONS

We shall now apply the above theory to cal culate the
conductivity loss (power loss) in a | arge beam wavegui de (BWG)
t ube. The noi se tenperature contributed by the conductivity |oss
in a BWc can then be easily conputed. Conputed results are
conpared with neasured data from an experinent, validating the

t heory.

Lar ge beam wavegui de-type ground station antennas are generally
designed with netallic tubes enclosing the beam wavegui de mrrors.
The scattered field froma beamwaveguide mrror is obtained by
the use of a physical optics integration procedure with a Geen’s
function appropriate to the circular wavegui de geonetry.9 In this

manner, the coefficients, AYEMIM)  ofihecircular wavegui de nodes

mn

that are propagating in the oversized wavegui des are determ ned.

Knowi ng the coefficients ATEXIM) one may calculate the

tangential nmagnetic fields for the TE and TM nodes from Egs. (7)
and (9). The total tangential magnetic field is the sum of these
tangential magnetic fields. Substituting the total tangenti al
magnetic field into Eq. (5) and carrying out the integral in Eq.
(5) numerically, one may readily obtain the total power |oss py.
This nunerical technique is quite general; it can be applied to a

met al tube wavegui de of arbitrary shape. Another way nay al so be
used:  knowi ng AEMIM) for the modes in a circular nmetal tube

15



(sl eeve) waveguide, one nmay use the anal ytic expression given in

t he Appendix to calculate the total power |oss p;.10.11

The above nunerical approach was used to calculate the
conductivity loss of a short |ength of beam wavegui de tube. The
experiment utilized a 3.92-neter length of 2.5-meter-diameter
structure steel tube and a very sensitive noise tenperature
measuring radiometer (see Fig. 3) . Noise tenperature conparisons
were made between several different horns radiating in free space
and radiating into the beamwavegui de tube (see Fig. 4) . The
experiment also included neasurenents with the steel tube and the
tube lined with alum num sheets. UWilizing the measured
conductivity of the alum num and steel (Table 1) , and the conputed
modes in the beam wavegui de tube, a conductivity |oss was conputed
and converted into a noise tenperature prediction. The follow ng

formula was used for the conversion

Noi se Tenmperature, K=(1-10"""7’, (23)

where Lgs i s the total insertion loss in+dB and Tg is t he ambi ent
tenperature in K (for room tenperature, Tp=293.1K) . A conparison
of the nmeasurenent with both the new theory (Eg. (11) ) and the

text book theory (Eg. (3) expanded to n nodes) is shown in Table 2,
The nost dramatic difference was with the higher gain (22.5-dB)
horn.  The explanation can be seen in Figure 5 which plots the
attenuation loss as a function of tube size. Because the high-

gain horn doesn't “illumnate” the wall until further down the

16



tube fromits aperture plane, there is only a very small |o0ss near
the aperture. This clearly denonstrates the fact that the power
loss is not linearly dependent on z and thus validates the

anal ysi s.

VI. CONCLUSIONS

The concept of expressing power |oss along a given uniform
waveguide in dB/ nmeter nust be used with caution. Thi s concept is
only generally true for single-node uni-directional propagation.
Wien nore than one node exists simultaneously, the power |oss,
expressed in dB, is no longer linearly proportional to the |length
of waveguide. Depending on the differences for the propagation
constants of the co-existing propagating modes and the length of
the waveguide, the total power loss may be more than, equal to, or
less than the proportional sum of the power losses for each Inode

propagating separately, as shown in Eq. (11)

Accurate formulas for the total power |oss, taking node
coupling into account, have been derived for an arbitrarily shaped

conducting tube, a circular conducting tube, and a rectangul ar

conducting tube. The factor f(x) (see Eq. (15) )-where X = (bg-
bp)t, with (bg-bp) being the differences between the propagation
constants of various nodes propagating simultaneously in the
conducting tube, and ¢ being the length of the waveguide fromthe
source plane to the plane of interest along the guide--appears to

be the governing factor that controls the inportance of node

17



coupling between node aand node bin affecting the total power
loss calculation. Since the factor sin Xx/x approaches zero as X
approaches infinity, the effect of the term containing this factor

approaches zero, indicating the diminishing effect of mode

coupling on the total power |oss calculation. Since x = (by —

bp) £, in order that x may approach a |large value quickly, two

possibilities exist:

(1) If bgis close to bp, as in the case of a very l|arge guide,

then ¢ nust be very long in order that x may be | arge,
i ndi cating that the node coupling effect can affect the
total loss calculation for a very long distance fromthe

source pl ane.

(2 If bsis not close to by, as in the case of asmaller
gui de, then ¢ can be relatively short for x to be |arge
enough so that the f(x)term may be negligible, indicating
that the node coupling termonly affects the total | oss
calculation for a relatively short distance fromthe source

pl ane.

When applied to the JPL millimneter-wave beam wavegui de case,
one notes that bs; is very close to bp. Thus , the total power |oss
calculation is greatly affected by the node coupling effects,
requiring the use of the newy devel oped |oss formula descri bed
here. One also notes that the concept of expressing power |0ss in

dB/nmeter is incorrect and msleading for the |Iength of waveguide

18



typically used in BWG design. The newl y devel oped | oss fornul a
for an oversized circular conducting tube was thus used to

cal cul ate the additional noise tenperature contribution due to the
presence of a protective shroud surrounding a mllineter-wave

beam wavegui de.
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Tabl e 1. El ectrical Conductivities of Shroud Material [12]

Effective Conductivity

Material mhos/meter
BWGantenna shroud 0.003 x 10’
ASTM A36 steel
0.064 in. thick 2.2 x 10
6061 aluminum sheet
0.024 in. thick 1.2 x 10
galvanized steel
High-conductivity copper 5.66x 10’

Table 2. Experimental Results

Calculated

Textbook
New Method Method
Measured, K Eq. (11),K Eqg. (3),K

22.5 dB gain horn with steel tube 0.1+0.1 0.1 2.6
14.7 dB gain horn with steel tube 25104 2.3 3.0
14.7 dB gain horn with auminum tube 0240.1 0.09 0.11
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Figure 3. Experi nmental Setup
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