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ABSTIULCT

The conventional way of expressing power loss in dB/meter for a multimode

waveguiding system with finite wall conductivity (such as a beam-wave9L1ide  system

with protective shroud) can be incorrect and misleading. The power loss (in dB)

for a multimode waveguiding system is, in general, not linearly proportional to

the length of the waveguide. New power loss formulas for multimode system are

derived in this paper for arbitrarily shaped conducting waveguide  tubes. In

these formulas, there are factors such as (exp(jx)-1)/(jx), where  x = (Pa  - bb) t,

with ~a and /?b being the pr0Pa9atiOn cOnstants of the different propagating modes

and / being the distance from the source plane to the plane of interest along the

guide. For a large beam-waveguide supporting many propagating modes, ~a’s are

quite close to ~b’S, thus the mode coupling terms remain important for a very long

distance from the source plane.

The multimode power loss formula for a large circular conducting tube has

been verified by experiments. This formula was also used to calculate the

additional noise temperature contribution due to the presence of a protective

shroud surrounding a millimeter-wave beanl-waveguide system.

*The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Techrmlogy, under acontract  with the National Aeronautics and Space  Adn~inistration.
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I . INTRODUCTION

In textbooks

AND THE CONSIDERATION OF A FUNDAMENTAL CONCEPT

on electromagnetic and guided waves, the usual

perturbation technique is used to calculate the attenuation factor

of a given propagating mode in a slightly 10SSY, highly conducting

hollow metallic waveguide. Based on this technique, the

attenuation constant for the mth mode, a(nll, due to conductor 10SS

in a general cylindrical hollow metallic waveguide is found to

be:l-6

f
~ (&o . #tl)*

)d!—
#n) ~ - c —

JJ(

.8.686(dB/n~)
2Re ~ _ )

~(~I)x#~~)* .gzdA
(1)

s

where R denotes the intrinsic resistance of the metal walls, E(m)

and H(m) are the unperturbed electric and magnetic fields for the

mth propagating mode in this waveguide with perfectly conducting

walls, Re denotes the real part of the integral, ~Z is the unit

vector in the z-propagating direction, the * denotes the complex

conjugate of the integral, C is the contour around the cross-

section of the waveguide, and S is the cross–sectional area of the

waveguide. Here, a(m) expressed

constant for the mth propagating

waveguide.

in dB/meter is the attenuation

mode per unit length of the
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. A more accurate determination of the attenuation constant,

a(m) , can be obtained through the boundary-value-problem approach.

Here, the fields in different regions (i.e., the metal region

characterized by (c,P,o) and the vacuum region characterized by

(EO,P~) ) of the waveguide are matched at the boundary, yielding a

dispersion relation from which the complex propagation constant

for each mode may be determined. For this approach, in general,

all field components must be assumed to be present. In other

wc)rds, for a hollow circular metal pipe, the field components, (Ez,

E1-, Eq, Hzt Hrr Hq) t will all be present, when circular symmetry of

the mode is not present. Here, the circular cylindrical

coordinates (r, q, z) are assumed. This was the approach (called

hybrid-mode approach) used by Chou and Lee to calculate modal

attenuation in multilayered coated waveguides.1

In all of the above considerations, the power loss has always

been expressed by a(m) for each rnth mode in dB/meter.

It is the limitation of this way of expressing power loss that

we wish to address in the following.

hhen a single mode, say the mth mode, is propagating in this

hollow waveguide, the following expression is normally used to

represent the power carried by this mode along this waveguide

structure:

(m) -a(’”)z ~#“’)(~) = PO e
(

p$fn) ]_2a(J~I)z
) (2)
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where PO‘1)1) is the initial input power of the mth mode and z is the

distance along the guide. That this expression is valid if and

only if a single mode is propagating alone in this waveguide, is

usually glossed over in the textbooks. Furthermore, E;qs. (1) and

(2) offer the impression that the power loss in a given waveguide

may be expressed by the attenuation constant a(m) in nepers/meter.

From Eq. (2), for small attenuation, (rll) _.sthe power loss PI<

wza(m)z.P(”’)=Py)(Powerlnput)–P(nl)(z)  (Power Output)=  P.L

Consequently, one may obtain the mistaken impression that the

total loss is additive when more than one mode is present

simultaneously in the waveguide; after all, we know that the total

power is additive. For the multimode propagation case, the total

power loss should not be expressed through an attenuation constant

as certain nepers/meter (or dB/m) . Indeed, due to the

contributions of the cross-product terms in J.J, where J is the

total surface current, the total power loss in the multimode case

is no longer a linear function of the length of the guide as in

the single-mode case.

Assume that a given source in an infinitely long hc)llow

conducting waveguide excites two equal amplitude lowest order

propagating modes. Further assume that the waveguide can only

support these two lowest order propagating modes. The walls of

the waveguide are made with highly conducting (but not perfectly
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conducting) metal. Let us find the total power 10SS at a distance

d from the source plane.

Lncorrect Solution

According to the textbook formula (Eq. (1) of our paper), the

attenuation constant for each mode can be calculated using this

formula. Say the answer for mode 1 is al = 0.001 (nepers/meter)

and for mode 2 is az = 0.002. (Even if we use the more exact way

of calculating the attenuation constant by the boundary-value-

problem approach (or the hybrid-mode approach) described in

Ref. 1, due to the highly conducting nature of the walls, the

attenuation constants for these two modes would not deviate much

from the given values. ) Let PO be the input power for mode 1 as

well as for mode 2. so, the power of mode 1 after propagating for

a distance z in the waveguide is PO exp(–2a(l)z)  and for mode 2 is

PO exp(-2a(2)z). Since the power is additive, the total power loss

is

pT~t~l L~~~ =

= 2P0 - P~(exp(-2a(1)z)  + exp(-2a(2)z))

= 2Po(a(1) + a(2))z.

~>Inpu t –  Poutput

(3)

So, according to the above formula, pT~t~l LOSS is proportional to

z. No matter how small z or a is. This is wrong!
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The fundamental reason that this result is wrong is that even

though the total power for two modes is additive, but the total

power loss is not additive. In other words, total power loss is

not linearly dependent on z. The correct way of calculating the

total power loss is given below.

Correct Solution

For linear EM waves, the fields and currents are additive. So

the total induced current flowing on the walls is the sum of the

induced current for mode 1 and that of mode 2. It is the currents

flowing on the surface of an imperfect conductor that give rise to

ohmic loss or the power loss. So, the power loss must be

calculated according to Ohm’s law. Accepting this fundamental

concept will lead to the correct answer. In this case the power

is not linearly dependent on z as shown by Eq. (16) below.

This example shows that Eq. (2), representing the power flow

for a given mode along a hollow conducting waveguide, is only

valid when there is one and only one mode propagating in this

waveguide .

Therefore, the purpose of this paper is to address the power

loss problem when more than one mode is present simultaneously in

the waveguide. This effort is motivated by our desire to verify

the measured data for a millimeter wave beam-waveguide with

protective shroud consisting of sections of round conducting tube
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as shown in Fig. 1. Solution of this problem is of great

importance in optimizing the design to yield minimum noise

temperature for the NASA/Deep Space Network’s low-noise microwave

receiving system.8

II. FORMULATION OF THE PROBLEM AND FORMAL  SOLUTION

Shown in Fig. 2 is the geometry of the canonical problem. A

uniform conducting waveguide of arbitrary cross-section with its

axis aligned in the z direction has a length /. In the z = O

plane, the transverse electric field &(x,Y) is assumed to be given.

Thus the amplitudes of all the modes (propagating and evanescent

modes) can be calculated and are assumed to be known. We wish to

calculate the power loss of the fields due to the imperfect

conductivity of the wall with intrinsic wave resistance (surface

resistance) R .

From Ohm’s law and Poynting’s vector theorem, the power loss is

given byl-6

A

where

(4)

JCJ = D Y ~ = surface current density on the wall

~. unit vector normal to the wall surface

H = total magnetic field in the waveguide
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A = surface area of the wall

or

(5)PL = ;Rj~(BT li;)dA /

A

where & is the component of the total magnetic field which is

tangential to the wall surface. It is known that, in a hollow

arbitrarily shaped uniform waveguide with a conducting wall, there

can exist two sets of eigenmodes:l-G  T E

modes and TM (Transverse Magnetic) modes

propagation constant for each mode. The

are

co

xA(TE)@~~)(x,y)e jBSE)z&9(x,y,z)= ~,—

m=]

(Transverse Electric)

with a specific

total fields for TE modes

where ~~~E)
(

and &E)+#TE)mz ~z )
are connected through the Maxwell’s

equations and ~~) is the propagation constant of the rnth TE

eigenmode, and the total fields for TM modes are

(6)

(7)

(8)
f)l=l
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IP’)(x,y, z) = x (7M)Zm p4)#Jy(x,y@~tl  ,— nl
m=l

(where ~$M) and &M) + @~M) e
-z )

are connected through Maxwell’s

equations and ~~~M) is the propagation constant of the mth 7?4

(9)

eigenmode. A(TE)andA(TM) are arbitrary amplitude coefficients form m

TE and TM modes.

components of the

index m is used to tally the modes—it does not necessarily

correspond to mode order. One notes that bm may take on negative

values, indicating modes propagating in the opposite direction.

The subscript t indicates the transverse

field (transverse to the z direction) . The

Substituting Eqs. (6)-(9) into (5) yields

exx J(B),,)“ ‘A(TM)~jTE)*

$[ IJ
( 7hf) _p:y) )@’f)#TE)*dc e+

m’ rn ‘c I/c ‘dz
crtl’=ln=l o

M M’ e

xx
A(T~)A(TM)*

$[ IJ

(W#ftf) ~j(Pnt )#~~)#~M)*&  e+
m )1 ‘ nlc H ‘c dz

cm=] n’=1 o

M’ M’ t
+
XZ

A(TM)A(TM)*
$[ IJ

j(~~~) )_pyf) z#’M)H(TM)*  & ~
m‘ n ‘ m ‘c n ‘c

!

dz . (lo)
cm’=ln ’=1 o
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Here, c is the contour around the inner surface of the waveguide,

which is also normal to the z-axis (see Fig. 2) . The subscript c

represents the component of the transverse field that is

tangential to the contour c, M is the number of TE propagating

modes, and MC is the number of TM propagating modes. Simplifying

Eq. (10) gives

PL  = [part 1] + [part 2] (11)

with

- Lrti=l m’=1 J

L tl#nl

\
11’#rrl’

,

(12)

(13)
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where

~(7M) =
m ‘ $1

#~M) 2&.
m c

c

~(7E) =
$[ k

#TfJ’)#E)*  + H:;)H:l~)*  /C
mn me m-

c

~(TM) =
m ‘n ‘ $[ P

#; M)H(W* ~
mc n ‘cc

Z(TM)(W =
m ‘n $[ P

H(TM)#~)* ~
m ‘cc

Z(W(TM) =
mn’ $[ k

#w#7’w* cc
me n ‘cc

(14)

It should be noted that ~L is always purely real .

Equation (11) shows that power losses or attenuations of

different simultaneously existing modes are not just additive, as

given by the first bracketed term [Part 1]. The correct

expression must include the second bracketed term [Part 2] , which

shows the cross–product terms. Indeed, the use of an attenuation

constant to describe power loss in a waveguide should be limited

to the single-mode uni-directional  propagation case only, because

only for this case is the power loss linearly dependent on the

length of the guide. For the multimode propagation case, the

power loss varies with the length of the guide in a rather
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complicated manner as shown in Eq. (11) . Equation (11) vividly

demonstrates the importance of the modal coupling term. Since the

factor

f(x) = ( q ( p ) -  1) / (jx) (15)

(where x = (bl – ~)l?, bI and h are the propagation constants for

the coupling modes, and ~ is the distance from the entrance of the

waveguide to the point of interest along the guide) determines the

importance of the coupling term, let us now examine this factor

closely. The function l~(x)l is largest when x+O and begins to

diminish and approaches zero when x increases. This means that

the cross-product terms in Eq. (11), i.e., [Part 2], are important

when the difference between the propagation constants of the

propagating modes that are excited in the waveguide is small

and/or when / is small, such that the product (@ – bz) / is small.

This condition is particularly true when the transverse dimensions

of the waveguide are very large, such as the beam-waveguide case

that we considered.

When Ixl>>l, then ~(x)+O, and the coupling terms j.n Eq. (11)

[Part 2] approach zero. This means that, when /+co, [Part 2] x O,

the usual decoupled result given by [Part 1] in Eq. (11) becomes

valid. So, as /+00, the power loss for each mode in the multimode

waveguide is additive.



I I I . THE SPECIAL TWO-MODE CASE

When two propagating modes exist simultaneously in a multimode

cylindrical waveguide,

waveguide walls can be

the power loss due to imperfection of the

expressed as follows (from Eq. (11)) .

(16)

where f(x) is given by Eq. (15) .

Here AI and A2 represent the amplitude coefficients for the two

propagating modes, and bl and b2 represent the propagation

constants for these modes. It is clearly seen that the term

containing f(x) with x = (b l – ~) / is the coupling term which

approaches zero as x x ● . If bl is near ~, the distance /? must be

very large in order that x may be large, implying that the

coupling term remains important for a very long distance. So

expressing the power loss in dB/m, even for a two-mode case, is

misleading at best.

Iv. LOSS CALCULATION BASED ON NtJMERICAL  MODAL FIELD DATA

For many practical situations, the complex modal fields,

obtained numerically and expressed in complex numbers and

vectorial directions, can not be obtained analytically. In

words, the line integrals in Eq. (14) must be evaluated

other

numerically. This is a task that can easily be accomplished
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through appropriate summations of the numerical data. This

approach was used in the beam-waveguide case which we shall

discuss later.

The following normalizations were used:2

U( )E(TE).~:’E)*  dA=l  rtl=?l
—fnt

s
=0 rn#n

M )g~tM).~$M)*  dA=l rn=n

s
=0 rn#n

N )H(TE).@j~)* dA=l r n = n—mt

s
= 0  rn#n

s
= 0  rn#n

The integration, which may be done numerically, is carried over

the cross–sectional area s. Here, ( )
~(TE),(TM) H(~E),(TM) are the
Jmf ‘ —nit

(17)

(18)

(19)

(20)

(21)

(22)

transverse fields.
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v . APPLICATION TO BEAM-WAVEGUIDE  NOISE TEMPERATURE COMPUTATIONS

We shall now apply the above theory to calculate the

conductivity loss (power loss) in a large beam waveguide (BWG)

tube. The noise temperature contributed by the conductivity loss

in a BWG can then be easily computed. Computed results are

compared with measured data from an experiment, validating the

theory.

Large beam-waveguide-type ground station antennas are generally

designed with metallic tubes enclosing the beam-waveguide mirrors.

The scattered field from a beam-waveguide mirror is obtained by

the use of a physical optics integration procedure with a Green’s

function appropriate to the circular waveguide geometry.9 In this

manner, the coefficients, ~(TE),(7M)
m , of the circular waveguide modes

that are propagating in the oversized waveguides are determined.

Knowing the coefficients A!~E)’(7M), one may calculate the

tangential magnetic fields for the TE and TM modes from Eqs.

and (9). The total tangential magnetic field is the sum of tl

7)

ese

tangential magnetic fields. Substituting the total tangential

magnetic field into Eq. (5) and carrying out the integral in Eq.

(5) numerically, one may readily obtain the total power loss PL.

This numerical technique is quite general; it can be applied to a

metal tube waveguide of arbitrary shape. Another way may also be

7E)’(7M) for the modes in a circular metal tubeused: knowing A~ll
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(sleeve) waveguide, one may use the analytic expression

the Appendix to calculate the total power loss PL.lOI1l

given in

The above numerical approach was used to calculate the

conductivity loss of a short length of beam-waveguide tube. The

experiment utilized a 3.92-meter length of 2.5-meter-cliameter

structure

measuring

were made

steel tube and a very sensitive

radiometer (see Fig. 3) . Noise

between several different horns

noise temperature

temperature comparisons

radiating in free space

and radiating into the beam-waveguide tube (see Fig. 4) . The

experiment also included measurements with the steel tube and the

tube lined with aluminum sheets. Utilizing the measurecl

conductivity of the aluminum and steel (Table 1) , and the computed

modes in the beam-waveguide tube, a conductivity loss was computed

and converted into a noise temperature prediction. The following

formula was used for the conversion:

Noise Temperature, K =(1 – 10-1’’”’’0)7’0
(23)

where L@ is the

temperature in K

t o t a l  insertion  loss in +dB and To is t h e  a m b i e n t

(for room temperature, To = 293.lK) . A comparison

of the measurement with both the new theory (Eq. (11) ) and the

textbook theory (Eq. (3) expanded to n modes) is shown in Table 2,

The most dramatic difference was with the higher gain

horn. The explanation can be seen in Figure 5, which

attenuation loss as a function of tube size. Because

gain horn doesn’t “illuminate” the wall until further

16
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tube from its aperture plane, there is only a very small loss near

the aperture. This clearly demonstrates the fact that the power

loss is not linearly dependent on z and thus validates the

analysis.

VI. CONCLUSIONS

The concept of expressing power loss along a given uniform

wavegui.de in dB/meter must be used with caution. This concept is

only generally true for single-mode uni-directional propagation.

When more than one mode exists simultaneously, the power loss,

expressed in dB, is no longer linearly proportional t.o the length

of waveguide. Depending on the differences for the propagation

constants of the co–existing propagating modes and the length of

the waveguide, the total power loss may be more than, equal to, or

l e s s  t h a n  t h e  p r o p o r t i o n a l  s u m  o f  t h e  p o w e r  l o s s e s  f o r  e a c h  I n o d e

p r o p a g a t i n g  s e p a r a t e l y ,  a s  s h o w n  in Eq.  (11 )  .

Accurate formulas for the total power loss, taking mode

coupling into account, have been derived for an arbitrarily shaped

conducting tube, a circular conducting tube, and a rectangular

conducting tube. The factor f(x) (see Eq. (15) )–where x = (b~ –

bb) l?, with (ba – bb) being the differences between the propagation

constants of various modes propagating simultaneously in the

conducting tube, and / being the length of the waveguide from the

source plane to the plane of interest along the guide--appears to

be the governing factor that controls the importance of mode

17



coupling between mode a and mode b in affecting the total power

loss calculation. Since the factor sin x/x approaches zero as x

approaches infinity, the effect of the term containing this factor

approaches zero, indicating the diminishing effect of mode

coupling on the total power loss calculation. Since x = (ba –

bb) /, in order that x may approach a large value quickly, two

poss ib i l i t i e s  ex i s t :

(1) If ba is close to bb, as in the case of a very large guide,

then / must be very long in order that x may be large,

indicating that the mode coupling effect can affect the

total loss calculation for a very long distance from the

source plane.

(2) If ba is not close to bb, as in the case of a smaller

guide, then 1 can be relatively short for x to be large

enough so that the f(x) term may be negligible, indicating

that the mode coupling term only affects the total loss

calculation for a relatively short distance from the source

plane.

When applied to the JPL millimeter-wave beam-waveguide case,

one notes that ba is very close to bb. Thus , the total power loss

calculation is greatly affected by the mode coupling effects,

requiring the use of the newly developed loss formula described

here. One also notes that the concept of expressing power loss in

dB/meter is incorrect and misleading for the length of waveguide

18



typically used in BWG design. The newly developed loss formula

for an oversized circular conducting tube was thus used to

calculate the additional noise temperature contribution due to the

presence of a protective shroud surrounding a millimeter-wave

beam-waveguide.
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Table 1. Electrical Conductivities of Shroud Material [12]

Effective Conductivity
Material mhos/nleter

BWGantenna shroud 0.003 x 107

ASTM A36 steel

0.064 in. thick 2.2 x 107

6061 alurninumsheet

0.024 in. thick 1.2 x 107

galvanized steel

High-conductivity copper 5.66x 107

Table 2. Experimental Results

22.5 dB gain  horn with  steel tube

14.7 dB gain horn withsteel tube

14.7 dB gain horn with aluminum tube

Calculated

Measured, K

().1i().1

2.5 i 0.4

().2 * 0.1

New Method
Eq. (ll),K

0.1

2.3

0.09

Textbook
Method

Eq. (3), K

2.6

3.0

0.11
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