Ballistic-electron-emission microscopy of semiconductor heterostructures

L. Douglas Bell
MIS 302-231
Jet Propulsion Laboratory
Pasadena, CA 91109 USA
Tel: 818-354-4761
FAX: 818-393-4540
dbell@vaxeb.jpl.nasa.gov

Venkatesh Narayanamurti
Dean, College of Engineering
University of California
Santa Barbara, CA 93106 USA
Tel: 805-893-3141
FAX: 805-
email:venky@eci.ucsb.edu

Summary

Ballistic-electron-emission microscopy has developed from its beginning as a probe of Schottky barriers into a powerful nanometer-scale method for characterizing semiconductor interfaces and hot-electron transport. Recent applications include band offsets, electron scattering, confined states, interracial defects, and insulating layers.
Introduction

Over the last 15 years scanning tunneling microscopy (STM) has made an immense contribution to an understanding of surfaces on an atomic scale [1]. The field has also spawned a general interest in local probe methods, an acknowledgment of the unique strengths and capabilities of these techniques. Ballistic-electron-emission microscopy [2,3,4] (BEEM) extends the reach of STM to subsurface semiconductor interfaces and hot-electron transport. Several reviews of earlier work have appeared previously [5,6]. More recently, its areas of utilization have multiplied, with many promising applications still to be explored.

In STM a voltage is applied across the tunnel gap between probe tip and sample, and a measurement is made of tunnel current at constant tip height (spectroscopy) or tip height at constant tunnel current (topographic imaging). Information is obtained about the sample which reflects surface or near-surface structure, since only near-surface properties affect the tunneling characteristics. In contrast, BEEM is a three terminal measurement; a second sample contact measures the fraction of the tunnel current which traverses the sample and enters the collector layer. Figure 1 illustrates the BEEM configuration. STM normally operates in feedback mode at constant tunnel current; thus, BEEM spectra are normalized to constant injected current. This type of normalized spectrum greatly enhances the ability to distinguish spectral features, as well as reducing variation which is due only to varying surface properties.

BEEM takes full advantage of the atomic-scale imaging capability of STM. The very high spatial resolution (atomic-scale) of STM translates to high spatial resolution (nanometer-scale) of subsurface properties. In the presence of interface heterogeneity, this high resolution allows isolated characterization of nanometer-scale areas with different electronic structure. In contrast, macroscopic probing with other techniques yields a weighted spatial average of interface properties.

BEEM represents a significant advance over conventional interface characterization in several other respects. Electronic structure may be probed over a wide energy range about the Fermi level (0--10 eV) by precise control of injected electron energy, simply by varying the voltage applied to the STM tip. Interface characterization by conventional methods, such as current-voltage or capacitance-voltage measurer, is restricted to probing with low-energy (near-equilibrium) electrons. A further advantage of BEEM is that no voltage is required across the sample structure itself, allowing investigation of interface structure which is unperturbed by voltage-induced band bending. Finally, since BEEM is a well-controlled carrier transport spectroscopy, BEEM spectra and images are sensitive to other aspects of transport such as scattering processes.

BEEM was first applied to metal/semiconductor (M/S) Schottky barrier interfaces [2,3]. Schottky barrier heights were determined with high precision, and direct imaging of interface heterogeneity was accomplished. Features due to higher-energy interface structure (conduction-band minima) were observed in BEEM spectra, and the first hole spectroscopy using BEEM techniques was performed [7]. These early experiments also yielded a direct measure of hot-electron mean-free path in Au [8].
Metal/semiconductor interface properties

The first area of application of BEEM has continued to be of great interest. Schottky barrier interfaces are fundamental to many classes of devices, and shrinking device dimensions have produced renewed interest in interface uniformity. Following much work on Si- and GaAs-based systems, other materials have more recently been studied by BEEM techniques.

ZnSe is one material for which reports of Schottky barrier height have differed widely. As in most cases, variations in chemical treatment and surface stoichiometry are thought to be responsible. Morgan et al. [9] have investigated barrier heights for Au/ZnSe contacts. Interestingly, they found different mean barrier heights and narrower height distributions than in previous results by Coratger et al. [10] This was attributed to a difference in surface preparation and stoichiometry. Further work [11] compared these barrier height variations with those of PtSi/Si. The wider variation in barrier height observed for Au/ZnSe was attributed to rough interface topography. Dharmadasa et al. [12] and Coratger et al. [13] reported a range of discrete barrier values for metal/ZnSe ranging from 0.90 to 2.10 eV, a unified series of values which is independent of metal species. This is correlated with the existence of multiple pinning positions. Presumably the local predominance of one type of defect over others, or local variations in stoichiometry, might determine which pinning position and barrier height occurs.

In a comparative study of Au Schottky contacts on several semiconductors by Morgan et al. [14], variations of barrier height were generally observed to increase for compound semiconductors and for higher substrate doping. A reduction in the effect of field pinch-off is proposed as a likely explanation for the latter effect.

The investigation of the atomic-scale nature of defects at interfaces is an area where BEEM has unique advantages. Sirringhaus et al. [15**] have imaged individual point defects at the CoSi/Si(111) interface, which were observed due to their effect on electron scattering, A lower Schottky barrier was observed at defects for (1 00) interfaces, whereas it was absent for the(111) orientation. Meyer and von Känel [16**] continued this work, observing that these point defects accumulate at dislocation cores. A pair of images illustrating this observation is given in Fig. 2.

Effects due to interface modification have been studied previously in BEEM experiments, due to the importance of understanding the evolution of interfaces in response to temperature or other processing steps. The effect of focused ion beam implantation on BEEM spectra of Au/GaAs was investigated by McNabb and Craighead [17]. Increased scattering due to induced defects was invoked as the cause of reduced transmission in the implanted areas. Sumiya et al. [18] have studied the effects of annealing and high-temperature deposition on BEEM spectra of Au/Si(1 11). The observed elimination of collected current after a 300°C anneal was attributed to Au/Si interdiffusion which is known to occur at elevated temperatures.

Novel materials will continue to be a focus of BEEM research. Brazel et al. [19*] performed measurements on the Au/GaN system, where transmission was observed only in a few areas. This most likely resulted from the relatively poor material quality of GaN or from as-yet unidentified interface effects, and emphasizes the unique capabilities of BEEM for the identification of non-ideal behaviour in interface transport.
Scattering and transport in metal/semiconductor structures

Hot-electron transport in metals and across the M/S interface has been investigated by BEEM since its inception, but there are many details which are still uncertain. One central issue for which there has been no definitive answer is whether elastic interface scattering plays a strong role in the interface transport process. Recent work has shed some light on this question, but much work remains to be done. Ventrice et al. [20*] performed BEEM spectroscopy on Au/Si(100) structures at room temperature and at 77K. By observing the temperature dependence of BEEM current attenuation with Au thickness, they concluded that strong interface scattering was responsible for the results.

A theoretical treatment of transport in the Au/Si system was presented by Garcia-Vidal et al. [21]. The similarity of (111) and (100) spectra was described by focusing of electrons along certain trajectories by the Au band structure. Since the (111) orientation is the one expected to show very different behaviour in the presence or absence of scattering, Bell [22**,23] performed BEEM spectroscopy on Au/Si(111) as a function of Au thickness and temperature. The surprising feature of these experiments was the appearance of anomalous spectra at 77K for thick Au layers (Fig. 3). This was explained in terms of parallel momentum conservation at the M/S interface, coupled with the contribution of multiple electron passes through thin Au layers. As argued in this model, multiple passes did not have a strong effect with thick Au layers, and at low temperature phonon scattering was reduced, allowing the effects of parallel momentum conservation at the Au/Si interface to be observed. A direct signature of multiple passes was observed in attenuation length measurements at very thin Au coverages. It was pointed out that the appearance of the anomalous spectra only at low temperature argued against a model involving Au band structure.

Guthrie et al. [24**] performed extensive calculations and low-temperature measurements for Au/Si and Au/GaAs, at temperatures down to 7K. Their data and modeling also indicated extensive elastic scattering and suggested multiple electron reflections within the metal layer, but thickness dependence was not discussed.

Semiconductor heterostructures

The uses of BEEM now extend well beyond its initial application to M/S systems. More recently BEEM has been used to probe interfaces and transport in semiconductor heterostructures. Ke et al. [25] performed BEEM on Au/GaAs/AlAs samples, Monte Carlo simulations led to the conclusion that transmission across the Au/GaAs interface was incoherent, whereas GaAs/AlAs transmission was coherent. This work was followed by spectroscopy on Au/InAs/GaAs [26], where a lowering in barrier height was observed with increasing InAs thickness. This lowering was explained in terms of a relaxation of the InAs layer. Additionally, spectra for InAs layers thicker than two monolayer (ML) showed only two thresholds. Parallel momentum conservation at the InAs/GaAs interlace was argued to account for this observation.

A thorough study of the AlGaAs/GaAs system using BEEM was also reported by O’Shea et al. [27**]. Spectroscopy was performed over the entire Al alloy fraction range, and temperature was
also varied. Certain contributions to collected current were observed to vary strongly with temperature, supporting the argument that phonon-assisted intervalley scattering was responsible for these contributions. Measured band positions in the AlGaAs layers agreed well with calculations.

A theoretical treatment of BEEM spectroscopy through single- and double-barrier semiconductor heterostructures has been presented by Smith and Kogan [28*]. Transmission coefficients were calculated for the heterostructures and used within the phase-space framework of the original BEEM model. These calculations yielded reasonable agreement with previously reported experimental results [29] on double-barrier resonant tunneling structures.

Other III-V heterostructures have been probed by BEEM. O’Shea et al. [30**] made band-offset measurements on GaInP/GaAs. The value of this offset was observed to vary, decreasing with increasing alloy ordering in the GaInP layer. By growing on disoriented GaAs substrates, this ordering was enhanced or inhibited. In BEEM measurements on Au/InAs/AlSb structures, Bhargava et al. [31*] measured a single spectral threshold corresponding to the AlSb conduction-band minimum. By comparing this with the InAs/AlSb band offset obtained from capacitance-voltage measurements, they obtained an estimate of the Fermi level pinning position in InAs.

Imaging of misfit dislocations at the InGaAs/GaAs (100) interface was accomplished by Lee et al. [32**]. Surface topographic protrusions resulting from the dislocations were observed in conjunction with diminished BEEM current (Fig. 4); however, the two features were laterally displaced relative to each other. This displacement, which demonstrated that the source of the features was subsurface, is expected if the dislocations glide along {111}. Either strain-induced lattice deformation or trapped charge was proposed to explain the measured logarithmic spatial dependence of the BEEM reduction at the dislocations. Initial calculations of expected BEEM resolution for these dislocations [33] agreed well with observed resolutions.

Superlattices, quantum wires, quantum dots

Low-dimensional structures have also recently been the focus of several BEEM efforts. Westwood et al. [34] reported observation of BEEM current modulation due to compositional modulation in buried GaAs/AlAs lateral superlattices. Eder et al. [35] have utilized lateral patterning of GaAs/AlGaAs heterostructures to produce quantum wires. Using BEEM spectroscopy different barrier heights and transmissions were observed over the wires. Further work was performed at liquid helium temperature [36] with the additional goal of extracting a precise threshold power law, but the results were inconclusive.

Self-assembled InAs quantum dots were probed by Rubin et al. [37**] using BEEM spectroscopy and imaging. The experiment is schematically shown in Fig. 5. The dots were fabricated on GaAs substrates, and a GaAs capping layer was then deposited. Different behaviour was observed for spectra over the dot areas compared with spectra away from the dots. Band shifts due to strain effects in the GaAs cap were observed, and additional structure was attributed to resonant transport through confined states in the quantum dot.
Whereas InAs quantum dots produce local potential wells when grown on GaAs, GaSb dots produce local potential steps. Rubin et al. [38] also performed spectroscopy and imaging on GaSb dots on GaAs, again with a GaAs cap. STM and BEEM images of a single GaSb dot are shown in Fig. 6. By comparison of on-dot and off-dot spectra the GaSb/GaAs band offset was extracted.

Recent Monte Carlo calculations of BEEM transport addressed spatial resolution of this technique for the imaging and spectroscopy of buried quantum dots and wires [39]. Although no comparison of the calculations with experimental data was attempted, it was concluded that similar calculations should allow extraction of electronic structure parameters for buried low-dimensional structures.

Oxide properties and MOS structures

Since Si-based MOS systems are of such critical importance in current microelectronic device technology, they represent an important class of structures to characterize on the deep submicron scale. Kaczer and Pelz [40* *,41] have applied BEEM to SiO₂/Si to investigate the effects of charge trapping in the oxide. Local suppression of BEEM transmission was observed in areas which were subjected to electron charging from the STM tip. This suppression was accompanied by an increase in BEEM threshold voltage. These changes were explained by charge-induced band-bending of the SiO₂ conduction band. Some discussion of the lateral extent and lifetime of the suppressed area was also presented. Recent results by Ludeke and Wen [42] have also addressed the charging of SiO₂ layers, distinguishing between the effects of pre-existing defects and stress-induced traps.

Ludeke et al. [43**] have continued this work on BEEM of SiO₂ layers. By comparing Monte Carlo calculations to experimental spectra, breakdown of the oxide (Fig. 7) was found to be much more difficult to achieve than expected. The implication was that impurities or defects are responsible for breakdowns observed in practical devices, and that an intrinsic limit has not yet been reached. Further work by Wen et al. [44**] investigated BEEM spectroscopy as a function of voltage across the oxide layer. An average image-force dielectric constant was extracted, and a theoretical calculation provided good agreement with this value.

Conclusion

In the 10 years since its inception, a variety of new applications for BEEM have been demonstrated. Recent advances include measurements of band offsets, transport and scattering, confined states, interracial defects, insulating layers, epitaxial systems, and strained layers. BEEM methods will continue to provide unique insights into the microscopic nature of interfaces and hot-electron transport.

This paper was produced by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was jointly sponsored by the Office of Naval Research and the Ballistic Missile Defense Organization / Innovative Science and Technology Office through an agreement with the National Aeronautics and Space Administration (NASA).
References and recommended reading

BEEM spectroscopy on Au/Si(1 1 1) as a function of Au thickness and temperature. The surprising feature was the appearance of anomalous spectra at 77K for thick Au layers, modeled in terms of parallel momentum conservation at the M/S interface. First identification of multiple passes of electrons through the Au layer from attenuation length measurements.

Extensive calculations and low-temperature measurements for Au/Si and Au/GaAs, at temperatures down to 7K. The data and modeling also indicated extensive elastic scattering and suggested multiple electron reflections within the metal.

A thorough study of the AlGaAs/GaAs system. Results are presented for the entire Al alloy fraction range. Phonon-assisted intervalley scattering was proposed for certain temperature-dependent contributions to the BEEM spectrum.

Theoretical treatment of BEEM spectroscopy through single- and double-barrier semiconductor heterostructures. Calculated transmission coefficients yielded agreement with previously reported BEEM results on double-barrier resonant tunneling structures.

Band-offset measurements on GaInP/GaAs. The offset was observed to decrease with increasing alloy ordering in the GaInP layer. Control over this ordering was demonstrated by growth on disoriented GaAs substrates.

BEEM of Au/InAs/AlSb. Comparison of the measured Au/AlSb band offset with that of InAs/AlSb yielded the Fermi level pinning position in InAs.

First imaging of misfit dislocations at the InGaAs/GaAs(100) interface. Surface topographic protrusions resulting from the dislocations were observed in conjunction with diminished BEEM current; a relative displacement of the two features demonstrated that the source was subsurface.

BEEM of InAs quantum dots on GaAs. BEEM spectra over the dot areas were observed to differ from spectra away from the dots. Certain spectral structure was attributed to resonant transport through confined states in the quantum dot.

BEEM of SiO2/Si. Suppression of BEEM transmission was observed in areas which had been charged by the STM tip. An increase in BEEM threshold voltage was also observed in these areas.

BEEM of SiO2 layers. By comparing Monte Carlo calculations to experimental spectra, breakdown of the oxide was found to be much more difficult to achieve than expected. The implication was that impurities or defects, rather than an intrinsic material limit, are responsible for breakdowns observed in devices.

BEEM spectroscopy as a function of voltage across an SiO2 layer. Theoretical calculations provided good agreement with the extracted image-force dielectric constant.
Figure Captions

Figure 1: Energy diagram for BEEM of a metal/semiconductor Schottky barrier system. (a) Tip-sample voltage $V = 0$. (b) Tip-sample voltage $V > V_b$. For this case, some of the injected electrons have sufficient energy to enter the semiconductor.

Figure 2: (a) STM image of a 2.8 nm CoSi$_2$ film. The bright diagonal line is a 0.06 nm protrusion caused by the strain field of a dislocation. Some surface defects, such as (S), are also seen. (b) The BEEM image of this region shows interfacial point defects, such as (P), that have been trapped in the core of the dislocation (D). The dislocation displays both empty (E) and occupied (O) regions. From reference 16 (Fig. 1).

Figure 3: Experimental BEEM spectra (circles) obtained for Au/Si(111) samples. The solid lines are fits to the data using the Monte Carlo calculations. These calculations include elastic and inelastic scattering, interface and surface reflections, and assume parallel momentum conservation at the metal/semiconductor interface. From reference 24 (Fig. 4).

Figure 4: Simultaneously taken STM and BEEM images of Au/GaAs/In$_0.2$Ga$_{0.8}$As/GaAs. BEEM contrast (-8 pA) is associated directly with the dislocation core, located 50 nm beneath the epitaxial surface. The protrusions in the STM image are roughly 1 nm in height and are slightly shifted from the position in the BEEM image. The tip current was 4nA at a tip-sample bias of 1.5V.

Figure 5: Schematic view of BEEM measurements on SADs. The dots are grown underneath a thin capping layer so that they are visible in the STM topography. The tip can then be positioned on and off the dot for comparison of transport through the dots with transport through the surrounding material.

Figure 6: Concurrently scanned STM and BEEM images of a single GaSb SAD buried -7.5 nm beneath the Au/ GaAs interface, at 2 nA and -1.6 V. The images clearly show a reduced current through the GaSb dot, consistent with a local conduction band offset within the dot.

Figure 7: A successful breakdown sequence for a 3.8 nm oxide stressed with 6 eV (kinetic energy) electrons. The shift to higher threshold between (a) and (b) is due to negative charge at the SiO$_2$/Si interface. Total injected charge to breakdown is about 6×10^7 C/cm2. From reference 43 (Fig. 9).
Fig 3

(a) 75 Å Au
T=293 K

(b) 300 Å Au
T=293 K

(c) 75 Å Au
T=77 K

(d) 300 Å Au
T=77 K
Fig 4
Fig 6
BEEM for 38 Å SiO₂ stressed at $V_T = 10$ V/$I_T = 2$ nA

Collector current I_c (pA)

Tip bias V_T (V)

(a) no stress

(b) 10 sec.

(c) 20 sec.

(d) 30 sec.

$\times 0.01$