Session: Polarimetric Radiometry

Polarimetric Radiometer and Scatterometer Measurements of Hurricane Ocean Winds

William J. Wilson, Simon H. Yueh, Brian Laursen, Steven J. Dinardo, and Rudy Lay

Jet Propulsion Laboratory, California Institute of Technology
Bldg. 168-327, 4800 Oak Grove Drive
Pasadena, California 91109
Phone: (818) 354-5699
FAX: (818) 393-4683
E-mail: william.j.wilson@jpl.nasa.gov
Corresponding author: William J. Wilson
Oral presentation preference

In September 1997, aircraft measurements of hurricane ocean surface winds were made over hurricane ERICA which was located 250 miles east of Bermuda in the Atlantic ocean. The microwave instruments included three polarimetric radiometers at 17, 19 and 37 GHz and a 14 GHz radar scatterometer. These instruments were mounted on the NASA P-3 aircraft and were flown around several locations near hurricane ERICA to measure the azimuthal dependence of the polarimetric wind signal versus incidence angle. Estimates of the wind speed and direction were obtained using Dropsondes dropped from the aircraft. Measurements of all 4 Stokes parameters of the ocean signal were made. In areas where there were high winds of 35 m/s and scattered clouds, there was a clear azimuthal signal in all the radiometric Stokes parameters, and in the scatterometer signal. Each of these signals was correlated with the wind direction. The radiometric wind signal was similar in all frequencies; however, there was significant variation with the incidence angle. At the larger incidence angles of 55 and 65 degrees, the fourth Stokes parameter “V” had a peak to peak amplitude of -1 K. Further details of these measurements will be shown during the presentation.

This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the National Aeronautics and Space Administration and the National Polar-orbiting Operational Environmental Satellite System Integrated Program Office.