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ABSTRACT

The role of apsidal density waves propagating in a primordial trans-Neptune  disk (i. e.,

Kuiper  belt) is investigated lt is shown that Neptune launches apsidal  waves at its secular

resonance near 40 AU which propagate radially outwards, deeper into the particle disk, The

wavelength of apsidal waves is considerably longer than waves that might be launched at Lindblad

resonances because the pattern speed, g,, resulting from the apse precession of Neptune is much

slower than its mean motion, S2,, If the early Kuiper  Belt had a sufficient surface density, U, the

disk’s wave response to Neptune’s secular perturbation would  have spread the disturbing torque

radially over a collective scale  A, = r(2pdQ/lrd’/dr/  )”2, where pd = mar ‘/MO and Q(r),  g(~)

are the mean motion and precession frequency of the disk particles, This results in considerably

smaller eccentricities at resonance than had the disk particles been treated as non-interacting test

particles. Consequently, pa~icles are less apt to be excited into planet-crossing orbits, implying

that the erosion timescales  reported by earlier test-particle simulations of the Kuiper Belt may be

underestimated, It is also shown that the torque the disk exerts upon the planet (due to its

gravitational attraction for the disk’s spiral wave pattern) damps the planet’s eccentricity and

fhrther inhibits the planet’s ability to erode the disk,
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I. INTRODIJCTION

In the past few years, the nature and dynamics of the Kuiper  Belt has been a subject of

considerable attention Interest was sparked by the demonstration of Duncan, Quinn, and

Tremaine  that a trans-Neptune disk could provide a plausible source for shor~ period comets

(Duncan, el al, 1988). The discovery of the first Kuiper Belt object, 1992 QBI, by Jewitt and

Luu (1992) firther accelerated efforts of both observers and modelers, Great advances in both

machine capability and computing techniques led to a series of increasingly intensive numerical

experiments on the dynamics of test particles in the Kuiper Belt region, e.g., ‘forbett, (1989),

Gladman  and Duncan, 1990; Holman  and Wisdom ( 1993), Levison and Duncan ( 1993), Duncan,

et al., (1995). These experiments made it clear that both secular and mean motion resonances

play a major role in shaping the evolution of the Kuiper  Belt. Analytical treatments of Kuiper

Belt resonant dynamics have been provided by Morbidelli,  et al (1995) and Malhotra ( 1995,

1996).

To date, observations have yielded some 55 trans-Neptune  bodies like 1992 Qlll, Based

on the size of the sky area searched, estimates of the total population of such objects within 10

deg of the ecliptic and larger than 100 km is of order few x 104. The total mass of the belt out

to -50 AU from objects greater than - km in diameter is put at 0.06-0,25A4@ (e.g., Jewitt  et a/.,

1996; Stern, 1996a).z However, these objects are far from uniform in their orbital characteristics.

Most objects interior to -40 AU appear to reside in mean motion resonances with Neptune,

These resonant orbits may be instrumental in presel ving their occupants; it is well-known that

Pluto enjoys such protection through its 3:2 resonance with Neptune, which prevents close

encounters between these objects. Resonant objects typically have high eccentricities which may

be evidence of resonance sweeping due to an outward migration of Neptune (Malhotra, 1997).

The formation and possible migration of Neptune requires a few Neptune masses of

material to be scattered by that planet (Fernandez and 1p, 1984, 1986, 1996), suggesting a

primordial Kuiper  Belt considerably in excess of today’s estimates if the belt ex~ended smoothly

into that region as well,  Indeed, observations ofextra-solar  disks such as ~ Pictons,  reveal

‘“llrc rwcnt discoven  of 19967Y,CK,  points 10 an additional scathmxJ  Kulpcr  belt componcnl having a mass
-OS. \l:, wItlI orbits hctwcerr -40 and 200” A[J (I,uu et al. 1997)
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remnant disks stretching far beyond the Sun-Neptune distance. Additionally, the existence of

100km sized objects such as QBI has been interpreted as evidence of a much more massive ( i e ,

10-50M<I,  between 30 and 50 AU) primordial Kuiper Belt Stern and co-workers (Stern, 1995,

1996 a,b; Stern and Colwell, 1996) have pointed out that accretion in the curre~ll environment

would not be possible due to (a, ) high relative velocities that are erosive, and (b. ) long collision

time scales due to low number density. They argue that a much more massive and quiescent disk

was needed in the past to account for the accretion of the largest objects so far observed, They

postulate that this more massive dsk may still exist beyond the gravitation influence of the giant

planets, i.e., r > -50 AU, and that the low density region between there and Neptune may be

highly depleted due to planetary perturbations, The current flux of short period comets, which

are suggest ed to originate horn chaotic layers bounding low order mean motion resonances (e.g.,

Malhotra, 1996), maybe the present day manifestation of this erosion process. Numerical

experiments show that many test particles achieve Neptune crossing status within a Gyr (Levison

and Duncan, 1993; Duncan, et al,, 1995) due to the action of secular and mean motion

resonances, These results are reminiscent of st udies of the stability of test particles between the

major planets, (e. g., Franklin, et al., 1989; Duncan, et d., 1989; Weibel, et u/., 1990; Gladma~

and Duncan, 1990; Soper, et al.,  1991; Holman and Wisdom, 1993; and Grazier et al., 1997.)

It is very tempting to extend the numerical and analytical studies of test particle behavior

that have proved so valuable in explai~ting  many of the emerging characteristics of the Kuiper

Belt, to earlier epochs when the belt was presumed more massive. However, some caution is in

order; test particle integrations are striut!y valid only when there are no interactions with othtr

particles in the disk. And yet a motivation for postulating a much more massive primordial disk is

to speed up accretion rates, i.e., to insure more numerous collisions among the swarm This may

be a source of diffusion that is not incli.ided in the numerical models. Even more important are

collective particle behaviors. These effects are long range and act continuously, not just during

collisions. lt is well known that a perturber orbiting in a fluid disk will launch density waves at

resonances, and that the resulting fluid motions are quite unlike that of an isolated particle subject

to the same perturbations. The question is When is a wave model a more reasonable

approximation of a particle disk than the motions of non-interacting members” In this paper, we
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explore that questicm for the particular case of a secular eccentricity resonance, and show that the

necessary conditions for wave action are easily satisfied The resultant disk behavior is that of a

one armeci spiral apsidal wave that propagates outwards, into the Kuiper Belt Apsidal  waves

have previously been reported in Saturn’s rings (Cuzzi  e~ al. 1981) where the apsidal  precession

rate of the ring particles is commensurate with the mean motion of the satellite Iapetus However,

this is the first application we are aware of where the waves are launched from a true secular

resonance, i.e., where the commensurability is between the apsidal  rates of both perturber  and disk

particles. As we shall see, this has important implications for disk stirring, and for the orbit of the

perturber launching the waves,

11. TEST PARTJCLE MOTION

We begin by reviewing the behavior of a test particle orbiting near a secular resonance. A

Neptune-like model will be employed in which a secondary of Neptune’s mass is assumed to orbit

a solar mass primary at a distance of izf= 30.1 AU, with orbit period, 1’$ = 165 years,

eccentricity, e$ = 0,01, and precession rate of the longitude of perihelion, dihjdt  = g, = g8,

i.e., the frequency, 0.673 arcsec/yr, oft he g~ -mode of the solar sytem with corresponding period,

I’c, - 1.93 x 106 years, This is the dominant term of the secular variation of Neptune’s orbit (e.g.,

Applegate ei a)., 1986; Knezevic et a/., 1991). To first order in e,, and fourth order in e, the

particle’s eccentricity, the secular perturbation potential due to the secondary is (c,g,, Brouwer

and Clemance,  1964),

(1)

where a, Cl are the test particle’s semimajor axis and mean motion, & is its lor~gitude  of

perihelion, p, = M,/A4:j  = 5.15 x 10-f,  a = a,/a  < 1 in the Kuiper  disk, and

/
fi,(~)(a)  5 2 n Cos(m(l)dtl

YTo(l -  2acos0  + a2) J’2
(2)

are Laplace coefficients The secondary and particle orbits are assumed to be coplanar, and the
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elements subscripted s refer to the secondary Since the pattern speed is the precession rate, g$,

the Jacobi integral averaged over short period terms is

(3)

To the same accuracy as eqn (1), the normalized quantity 3 = -2V/p,(aQ)z can be written,

,) . Ae4 + Be2 - CCCO.Y~ + ~) (4)

A particle’s semimajor  axis does not vary due to secular forcing, so eqn (4) maybe used to

construct phase space plots along curves of constant 3 (level curves) to show how its eccentricity

varies with the resonance angle (p. Figure 1 a shows the level curves for ._) – D when

u = 1.37a,,  a = aja = 0,731, while Figure lb displays ~-D vs. e when sin(fi-fi$)  = O. The

extrema, given by

dj/de  = 4Ae 3 + 2Be i C = O (6)

are the stationary points in Fig, 1a, Phase space trajectories tend to circle points @ and @,

while point ~) lies on the separatrix  Their positions are a fhnction  of the particle’s semimajor

axis. The two branches of eqn (6) can be computecl  numerically and are shown in Figure 2. IfB is

expanded about aO where g, = ( 1 /4)p,Qab~~)  10, B(ao) = O, it can be replaced by - B’Aa,  where

Aa ~ a-ao, and

(7)

In this case, A and C can be evaluated at a. as well with little error The reference value aO, is

6



now found from

(8)

The LHS can be evaluated numerically from eqn (2) which reveals that eqn (8) is satisfied by the

value  aO = 0.770. This implies the resonance falls at a/aO=  39.1 AU, which agrees reasonably

well with the location of the gg resonance found by Knezevic  ef u/. ( 1991) when 1 = O.

The equilibrium e’s vs Aa are given by

Aa = -2e2($.) T +(;)

The negative branch turns around (i, e., de/dAa = CM)  at

e, = +(:)’” ; Aa* =  -~(~)(~)2’3

(9)

(lo)

Below e., the negative branch gives the

positive branch gives the eccentricity for

At ao, the ratios are A/B’ = 0.324, C/A = 0.455  e,.

eccentricity for @; above e., it is e of ~, while the

@ This application considers a planet that has recently formed from a cool disk composed of

ncm-interacting  bodies3, so the particles’ forced eccentricities will likely lie along the lower

portions of the Fig, 2 curves whenever they are multi-valued. The resulting maximum e on the

positive branch is em,, = 2e, = (CYA)l’3. The corresponding e-values are

e, =  0,385e,1  3,  en,,h z  O  769e::3 (11)

For our adopted Neptune-like eccentricity (et = 001 ), these become (0.083, O. 166),

respective y.

3t:or now, we assume thal their free ecccntmitics  dw 10 grnv]lalional rclakallou of [Ire dish cau k mglwlcd
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III. COLLEC’rl\rlI RESPONSE

a. ( ‘OIIW’[1 w Scale I.engfh

Hahn, Ward, and Rettig  ( 1996. hereafter HWR) have recently investigated a closely

related problem: the effects of collective particle behavior on the trapping strength of m ‘h order

Lindblad resonances for particles experiencing orbital decay due to gas drag They found that the

density wave response of the particle disk of surface density, u, reduces the trapping strength by

redistributing the angular momentum deposited at resonance over a collective scale length. This

causes a strong reduction in the forced eccentricities, This length is roughly the distance, ~., that

density waves can travel from resonance at their group velocity, c~ - nGu/K,  during the libration

time of the resonance variable, The libration  frequency is, @ = I K-ftI IQ -Clp,  I I , where (2P, is the

pattern speed, and K is the local epicycle frequency of the disk. In terms of the so-called

frequency distance from, resonance, D = K2 -m 2(Q -~P,)2 = 2K(K-ttI \fil -Qp$ \ ), the libration

frequency is ~ = (~/2K) ldD/dr/ with an average value equal to half the maximum, The libration

time at distance ~, becomes T1,~ = I/<@> = 4K/A. lcL!Xdr \ , where the derivative is evaluated

where D = O. Solving self-consistently, the scale length is of order,

(12)

The collective behavior smoothes out the perturbation, so that the torque cannot be coxentrated

on a very narrow annulus.4

HWR argued that there are two necessary conditions for wave action: (i.) there must be

multiple particles present within the collective scale, and (ii. ) their epicyclic radii must be less than

the wavelength We will tentatively assume these conditions are met, and check their validity a

posleriori. Without collective behavior, the orbit crossing half-width5  of the resonance for a non-

interacting, isolated particles (1P) can be estimated as w’ - (t$/rdD/dr)*  2, where ~ is the forcing

‘Actually. cqn (12) unckmstimatcs the collective scale ~vhcn ~. bcconws so long that Ji) Jr itself dwreases
significantly OIIX (hat distance

5’[’hM IS the dlstancc inwk  w hIch orbits mtcrswt 1( w ddlcrcnt than Ihc GVIIp/IIUJC  half-wid(h which varies as
$:1,
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function due to the perturber The wave response will be linear with nested orbits if A, > WI,

i.e., when $ s 4n{;or. We show below that for a secular resonance, $ - O(tJ,p,r 2Q2),

Introducing the so-called normalized disk mass, p~ = nor 2/A4,,.  = nGo/rQ2,  the linearity

criterion reads, 4pd z e,p, - 10 2p,.

b. Wave Solution  for Secular l?esotlattces

From Goldreich and Tremaine [ 1980, eqn (5)], the secondary’s potential is

where the relationship

gJ z dib~dt  =  Q -KSs (14)

has been used. To get the secular terms, which do not contain (l,t,  set /== O. For e, <<1,  the

largest term in any amplitude is proportional to e~~-rnl  - e$m. For our purposes it is sufficient to

retain only terms up to first order;

4= = %,0 + O.,, Cos(e-g,f) (15)

where, again from Goldreich and Tremaine (1980),

+,,, = -~@@O@ ;
%,1 ‘ - e,’~  d f;)

,  ‘ “ z b ’ 2  -  b;;)(p)]
(16)

s

with ~ s r/aJ,  and the disk is assumed keplerian.s  (Henceforth, the f = O part of the subscript

will be dropped. )

Following Shu (1984), all perturbed quantities are assumed of the form X - Xe ‘(’”- ‘e},

where @ = mCIPS  is the forcing frequency, and the amplitude, r$’, of the disk potential

perturbation in the vicinity of resonance can be found from

6
11 1S nlorc ccmvcnimt 10 dmwlop  tic wave fom~allsml  in terms O! ~ Nok. bowcwr.  that this is the reciprocal

of a USCCI  ur sccllon 11,
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( 1 7 )

which is valid in the tight winding limit (Shu, 1984)7. For apsidal  waves, m = 1, and the forcing

frequency, co = L?P, = g,. ‘T’he m = O potential can be combined with the central potential, $:;,

and any undisfwbed  disk potential, $d, to determine the mean motion,

rflz  =  -$(0:, + @o +  od,

The solution to eqn (17) is

(18)

(19)

where for specificity we have set the inner boundary of the disk at the edge of the secondary’s

chaotic zone, i, e., ~~ - r~ = p 217r$ (Wisdom, 1980). For a secular resonance,

where g(r) s Q-K  is the apse precession rate of the disk particles with r, locating the secular

resonance where D(,vr,; = O, g = g$.

If A, <{ I r,-r~ 1, gJjdg/drl,  , so that the collective scale is small compared to both the,
distance to the disk edge and the scale over which a linear expansion, D = (r-r~)dfXdr{,  , is

,
reasonably good, eqn (19) can be written in terms of Fresnel integrals (e.g., Shu, 1984):

(21)

7No(t that Shu’s sign convcution  is the rcvcrw of {ioldrcich and ‘1’rcmamc’s, Wc can bring cqns ( 13). ( 15)
inm complicru by mul!iplyulg  the cosine argumcnfs by -1.



where

( 2 2 )

If g(r) decreases with heliocentric distance, q== +, and the direction of wave propagation is

wfward,  i.e., deeper into the Kuiper  disk, This is opposite to the propagation of waves launched

from Lindblad resonances in this region, Figure 3 shows a schematic diagram of an outward

propagating, one arm, trailing spiral wave. The streamlines of the motion are ellipses whose lines

of apsides  rotate in a clockwise manner with increased distance from resonance,

To simpli& ~, note that $1 = &ib~~~/c$  - b~~) and make use of the fact that

. .

{P-$+2}(P$  ‘ q;;) =  PM

(Brouwer  and Clemence,  1964) to find

where the combination Gii4Ja,  has been replaced by p,a~fl~.  Substituting into $‘ yields

(23)

( 2 4 )

(25)

where only ~ is allowed to vary, all other quantities being evaluated at resonance. Downstream,

lF/+/  - 1, and figure 4 shows I $’ I as a function of the disk’s mass, where eqn (35) given below

has been used for the derivative of g. Most of the driving occurs during the first wavelength,

which increases with the square root of the disk mass, resulting in a similar increase in the

amplitude, Also shown is the downstream value obtained from eqn (19) by numerical integration,

allowing for variations in *,

The driving is mostly limited

d)Ydr,  and u that become more important at longer

to the distance over which the radial wavenumber

11
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(26)

increases rapidly with r. The concomitant shortening of the wavelenbtih is necessary for a net

angular momentum flux to develop, Figure 5 displays wavenumber, k, versus r for three values of

the disk mass, Pd(r$) ~ pd., .g In each case, the most rapid increase in wavenumber occurs within

the first & = 0(10) AU. When the disk mass is so large that the first wavelength significantly

exceeds this distance, the amplitude becomes limited by the steep part of the k-curves instead of

the complete wavelength, and further mass increases are not effective, The oscillations in the

amplitude curve (Fig. 4) from eqn (19) occur because the phase of the wave, at the nearly

constant distance br, changes with disk mass. The wavelength, A(r)- as defined by

@(r+A)-O(P)  = 2n, where the phase, @(r) s
/

kdr - is shown in figure 7 for the same disk

masses of figure 6, The curves start at 39,1 AU with the value of the first wavelength, This

exceeds - 10 AU for disks with pd/pJ z 0(10- 1,. However, even eqn (19) is an approximation

because the derivation of eqn ( 17) ignors other slowly varying terms that may be significant at

long wavelengths. Nevertheless, we see that eqn (25) is a useful approximation even up to

~d  -  ~.

c. Wave Criteria

As advertised, we now return to the issue of whether the necessary conditions for wave

act ion are met. First, we check to see when the epicycle radius, - vd,$P/fl, due to the any

dispersion velocity, vd,,P, among the particles becoines  comparable to the wavelength,

Disk stability requires a minimum dispersicm velocity of VC = 1,07TtGu/K  = p~rQ)

regardless of particle size (Toomre, 1969). Particles large enough that their escape velocities

exceed this, will have dispersion velocities )’d,$fl - \’e$C,  Call vd,,P/vC = Q, so that

‘dl Sp - P&(rf2); the reader will recognize Q as the well known Toomre stability parameter,

Setting vd,,P/Q - Ikl “, and assuming downstream behavior fork where g can be ignored, the

location, ~<), of the wave propagation barrier is given by

‘As dc!ined. FJ ‘nor  ‘/J\f . vanes as r ~-” for a disk WI III surface dwsity o x r ‘“
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P;, - (QJ!,)Q,  ‘ (27)

where <)$ z Q(r,)  is to be evaluated for an unperturbed disk at the distance of the secondary’s

orbit.

l?c =

Q, .

Kuiper disk objects with escape velocities comparable to stability minimum have radii,

~J~)(8KC;~/3)”]  ‘2 - 0.2(pjp,)kmfor  p -2 g/~~/  3,  Therefore ,

RfRc - S(p~pd  ,)(l?/km) for R > I{C, and ~~ = 2.3x 103(pd,jp,)(R/km)’  *, i.e., -450 A U

in a n = 2 Neptune mass disk composed of 10 km Kuiper objects, 140 AU if most of the mass is in

100 km objects. For n = 3/2, these distances increase to =1100 AU and -240 AU, respectively.

[A better estimate of the distance to the Q-barrier can be found by including the Toomre

reduction factor in the dispersion relation (Toomre, 1969; HWR; Hahn and Ward, 1997).]

Next check the requirement that there be multiple particles within a wavelength. Down

stream, where k changes little during a given cycle, we can write

a=$ - 2nr(
Pp
— )  = 3.8r,p3’’-”(y)

~, s
(28)

Because waves from a secular resonance can be extremely long, A - 0(1 02p~p$)  AU, this

requirement is easily satisfied, i, e,, the ~ypical  spacing between particles is - N ]‘2, where

N = o/A4 is the surface number density of objects of mass, &f. QB1 objects have masses of order

10-b&f@;  for this mass, A[N - 0(1 04)(p~p,)3’2. If the bulk of the material is in smaller objects

R < 100km, there is an additional factor(  102km/R)3  2.

d, Resonance’ Site

The precession of a test particle’s longitude of perihelion is given by

- 1  ~o~~=+=—.— (29)
~’~ 2Q &

where $1. = @ ~+ @$+ @d+ $’ is the sum of all the contributing potentials LJsing the disturbing
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function eqn ( 1 ) to order c 2, CJLJ,,, yields the familiar expression,

(30)

for the precession rate of an isolated test particle. The nominal resonance position, aO, is where

the first term equals the precession rate of the secondary, g,, while the second term is used to

‘tune’ the rate to the resonance value for particles inside and outside of resonance. As the

resonance is approached, the eccentricity (in this linear treatment) must diverge to shut off the

second term when it is not needed, In section II, this singularity was removed by including 4

terms in the disturbing fimction, However, disk gravity will also remove the divergence as

discussed below.

Ward (198 1; see. also- Heppenheimer, 1980) showed that an axisymmetric  disk of sutiace

density o CK r ‘n produces an additional potential,

0. =  -2nGur2,:ow+l)[(2j)  !/22’o!)’]2 = -2nGCJrCn
(2j+2-?l)(~-  1 +/r)

(31)

which also affects the precession rate, An easy way to show this is by writing K2 = rcK22/dr  +4f22

so that

K’ - $ 2 2  =  r@ + 3f12 = ~-~(r3Q2)
dr rzdr

(32)

Approximating K2 -(l’ = (K+Q)(K -Q) = -2SldG)/df,  and using eqn (18) allows one to find the

precession rate. The central 1/r potential can be ignored because it cannot produce precession,

while the contribution fro~l $~ is already included in eqn (30), The addition contribution from

the undisturbed disk is,

(33)

that must be added to the RHS of eqn (30), where (’~ = (II- 1 )(2 -n)c. For a wide range of n,
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( ’n = ()( l), and eqn (33) describes apsidal  line regression,  which shifis the resonance location

inward toward the secondary (Ward, 1981, see also Levison ef a/., 1996).

Remembering that wave behavior of the disk results in a much reduced eccentricity

compared to the isolated particle case, the second term in eqn (30) can no longer vanish due to a

divergence ofe. On the other hand, there is an additional part of the potential due to the spiral

wave, ($)’, yet to consider. It is shown in the appendix that these two non-axisymmetric  terms

cancel, leaving

(34)

as the”resontice  condition,

The disk correction to the resonance location is small for disks of moderate mass, i.e.,

Pal,, s p,. In this case, the resonance condition is approximately that used in section II, and

rr = ~.. The gradient of the precession frequency is then,

(3s)

where I’(a)  is a fbnction  of semi-major axis, but does not depend explicitly on Laplace  coefficients

(Appendix B). For a = 0,770, I’ = 9,13.

e. Eccentricities

In the tight winding limit, the fluid disk’s radial velocity is U = @’fW?XGU  (e.g., HWR),

while the eccentricity is

with the RHS being evaluated at resonance. In (36) the Laplace coefficient

(36)

is written in terms of

a = l/~, by making use of the identity h,!~)(~) = a’h,(~)(a). Substituting eqns (8) and (35) and

evaluating  h~~(aO) = 11 19 yields
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“LA = 1.le(-~”:)’2/Hl
PJ

(37)

Eqn (36) is compared to test particle behavior in figure 2 for the case pd = p,. The

collective response of the disk suppresses the particles’ eccentricity below the isolated particle

value, en,~x - ().769LZ~1;3,  when pjp~ 2 2.4e  4’ 3, which  for e - 0,01,  reads 5x 10-3, Hence, fors s

low mass disks with p ~ < 10-2 p,, collective behavior is not important. However, for higher

mass the forced eccentricity is reduced by the wave action, For a disk mass comparable to

Neptune, the fill amplitude eccentricity is ea, - 0,011, which is down by a factor,

eh/e~~X  - 1,4e~’3 = 0.065 = 1/1 5. At the resonance itself, IH+ I = 1/2, and the eccentricity is

only half its downstream value,

$ Secondary’s Orbit.

The reaction torque, 7; = - T = ro ‘Z14G,  on the secondary can have important effects

on its orbit (e.g., Goldreich  and Tremaine, 1980). The secondary’s angular momentum and

energy are: 1. = A4~a~fl,(  1 -e~)l’2, E = -A4,(a,ClJ2/2.  Differentiating with respect to time, and

rearranging yields, &Ja~ = –J~/E, .4Je, = -e=-’( 1- e$2)’ ‘2[/:/1. -tl;12E..,  where 1; = 7’3. Since a

wave potential appears stationa~  in a reference frame rotating at its pattern speed, the rates of

change are related as ~ = C?P#; , by virtue oft he Jacobi constant. From this, semi-major axis and

eccentricity variation rates can be derived,

(38)

Substituting the torque and pattern speed, g,, for the secular resonance in the c equation yields

:’3s–— ~ - +32(b;;)(P))2pd@$_ r;;,dr) - -1 .66 PJP,,Q,(:)
s 3

(39)

From (38), it follows that the ratio lt’Je,l/luJa,l  ❑ [f),/QpJ - (I-tJ32)12]/2t~~ = L?@~,2g,  n 1,
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so that the semimajor  axis changes little during the decay of the eccentricity Eqn (39) is to be

compared with the excitation rate from Lindblad  resonances (Goldreich  and Tremaine, 1980,

Ward, 1988),

1 ~es JLLX- -jj-#dN[ fK,(4/3) +5Ko(4/3)]2 - 0,048 pdP,Q#)4——
es d “

(40)

where inn,,, is the largest order Lindblad  resonance falling in a disk with an inner edge a distance

Ar = r,- a, from the secondary. Urdike  (@\e,)m, eqn (40) falls off rapidly as Ar is increased,

Thus, Lindblad resonances cannot prevent the decay of the eccentricity if the distance to the inner

edge exceeds Ar - 0.4a,(g@J*’4  = 0.04a, -1.2 AU, which is comparable to the edge of the

chaotic zone When the secular resonance dominates, e decays with a characteristic time scale of. .

T decoy - 5.2 x 105 (p,/pd) years, and the disk torque on the secondary quickly damps its orbital

eccent ricit  y!9

Figure 7 plots the perturbered

solution to Poisson’s equation for $’

V. DISCLJSSION

surface density for pJP~ = 1, found from the WKB

(e.g., Goldreich  and Tremaine, 1978, 1979),

(41)

The long wavelength keeps the response linear at launch because non-linear forcing only occurs

when P& a A. (e.g., HWR), for which p/p, s fie$ab~~)/4  - 0.04. For larger disks, the

forcing at resonance in linear.

Non-linearity cat) develop downstream if the waves wind up andlor the surface density

drops sufilciently.  The fractional perturbation of the wave, u ‘/u, is found from the conservation

—

9Actually.  the torque from an {nrcncw secular rcsonancc would cwite  the ccwntricity (1 Mm and Ward. 1997).
M here wc assnnw that tic interior planctcsimal dish has bcc’n swept Up b} planet f{)rrnation  by [hc time Ncpturw
forms
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of angular momentum luminosity (Toomre, 1964, Goldreich  and Tremaine, 1978)

(42)

where the RHS is to be evaluated at resonance. For our Neptune-like model, the fractional

density perturbation is

PS ~32atI 2( J)2(. - 1)u’ = ~ J2n+5)4 (2)—
s o

h,z(aO)(jp~)3’2($) ’’2(;; )’’’(;)2(”-’) ‘ l.lc,(—
0 0

~d$ a
(43)

Ss 5 s

For n = 2, U’/U approaches unity at r = 1,1 e,- 1 ‘2(pd JpS)3’4aJ,  which for

e = 0.01, as - 30.1 AU, pal,, - ps; reads rs -330 AU. Non-linear waves may shock dissipate,

depositing their energy and a+ngular  momentum in remote regions of the disk, The large

wavelengths of apsidal waves may also render them detectable in extra-solar disks. This issue is

to be addressed in a follow-on paper (Hahn and Ward, 1997).

Long term test particle integrations have shown that Neptune will eject bodies with q <35

AU over timescales  < 109 years (Duncan et a/,, 1995), The removal of test particles with a <35

AU is likely assisted by Neptune’s mean motion resonances. However it appears that the mean

motion resonances must play a lessor role in stirring and depleting the more distant parts ofa

Kuiper Belt composed of test pal tides, The Jacobi constant for a particle at an m+ 1 :m IIiean

motion resonance has the same folm as eqn, (3) but with A = 3(m + 1 )2/4 and C = 8mp,/5,  so

the particle’s maximum eccentriclry  is em,, = (C/A)1;3 = (2.1 p$/m)*’3(  1 + l/m) -23 =

0.05m “’3(1+ l/m) -2’3,  and its perihelion is q = as[(l  + l/m)2’3 -0.05/m 1;3] > 35 AU for all of the

m s 3 resonances that lie beyond 35 AU. Therefore, it appears that the ,gR resonance is the most

significant in-plane perturbation txerted  by Neptune in the more distant part of the Kuiper Belt.

In section II, it was confirmed that the perturbations exerted on a massless  test particle at the g~

resonance are sufficiently vigorous to excite its eccentricity and lower its perihelion below 35 AU

for a range of semi-major axes. Consequently, this resonance may act as a particle sink in the

cnrret~t Kuiper Belt since nearby particles may diffuse into the resonance

Although long-term test particle integrations shed light on the recent behavior of the

18



Kuiper Belt, they appear less credible for its earliest stage, when its mass may have been much

larger The self-gravity of the disk cannot be ignored, and the particles can respond in a collective

(i.e., wave) mode At a secular resonance, the necessary conditions for wave action are easily

satisfied, and Neptune launches apsidal  waves that propagate outward into the Kuiper Belt The

w’avc  response spreads Neptune’s torque over the collective scale, resulting in sigt~i~canlly  lowwr

Particit’  ecccutricities thotl  pred~cted  by the i.vc~lo~t~di~c~rtic[t~  treatmenf.  The particle motions are

coherent and nested, and do not contribute to a clispersion velocity. Since test particle simulations

do not consider particle-particle interactions, they fail to account for this transport property of

density waves and, thus, the reliability of their findings is uncertain. For a secular resonance at

-39 AU in a pd = pA,,P,U~~ disk, particles acquire insufllcient  eccentricities to have their perihelia

wit hin 35 AU of Neptune, Indeed, it seems problematic whether this secular resonance could

contribute significantly to the depletion of the Kuiper Belt in an early, high mass stage, unless it

somehow acts in concert with other resonances in an as yet unknown manner, This caveat may

also apply to other situations treated by test particle integrations, such as the depletion of the

asteroid belt and of pkmetesimals  between the planets.

The lowest mass estimate of the primordial Kuiper Belt obtained via a test particle

simulation is given in Fig. 8 of Duncan et al, (1995), who require an initial number density profile

of n(r) ; 3 x 10CX (40A U/r)2 particles/A U2 to account for the present flux of Jupiter family

comets into the inner Solar System, This implies an initial surface density of

u- 0.06(RII  0km)3gm/crn  2 or p~p, - 0.7 (R/l Ohn)3 at 40 AU, assuming a mass density of 1

gtn/crn  3. Since the bulk of these objects must be comet-sized, R is likely - I-10 km. Inserting

this disk mass into the discussion of section IIc shows that even at the low end, the criteria for

apsidal wave propagation are still met, although the waves may be non-linear. Again, these

models do not allow for the de-focusing of the planet’s disturbance at resonance due to the disk’s

self-gravity, and as a result the erosion timescales  reported in Duncan et a/. ( 1995) maybe

underestimated.

A substantial disk is required by models in which the giant planets migrate (e.g.,

Fernandez and Ip 1983, Malhotra 1995, 1996) For instance, Malhotra  ( 1997) estimates

that - 35Af[:, of disk material distributed between the giant planets is necessary to expand
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Neptune’s orbit such that Pluto is captured at a mean motion resonance with its eccentricity

pumped up to the observed value If one spreads this amount of disk material between the giant

planets as per an r 2 surface density distribution, and then extrapolates additional mass beyond

Neptune’s orbit’”, then the inferred disk mass is p~p, - 06,

A similarly massive primordial Kuiper  Belt has been postulated by Stern ( 1996), who

prefers - 10- 50M~J of material between 30 and 50 AU (i.e., p~p$ - 06 to 3 for a r‘2 surface

density distribution) in order to collisionally  assemble - 100 km sized QB1 -type Kuiper Belt

108-9 years and is thenobjects prior Neptune’s formation, In this scenario, Neptune forms after -

presumed to stir up the disk so much that fiu-ther  growth of ~B1 objects is halted. Although

Neptune’s shorter wavelength Lindblad  waves will be shut off once the particles achieve that size,

Neptune’s apsidal waves still propagate. If this scenario is to succeed then it remains to be

demonstrated whether Neptune can actually stir up this massive disk in order to shut off its. .
apsidal  waves, truncate particle growth at Qlill  sizes, and also deplete the disk to its current

low-mass state,

Neptune’s ability to erode a massive primordial disk is fiu-ther  inhibited by the torque that

the disk exerts upon the planet. The torque between planet and disk is surprisingly strong

because the long wavelengths allow the disk to couple to the forcing potential over large

distances. As a result, Neptune’s eccentricity damping timescale  could be quite short as compared

to the age of the Solar System, which obviously contradicts Neptune’s finite (though curiously

low) eccentricity, One possible resolution to this dilemma is that an exfended Kuiper Belt beyond

50 AU does noz exist, and the dropoff in surface density past N’eptune is a remnant of the true

edge of the primordial planetesimal  disk. Alternatively, sufficient erosion of the disk beyond the

secular resonance could shut down the wave response, However, we have seen that collective

behavior may inhibit erosion, so a better treatment of this problem, including Liindblad  resonances,

is needed, Still another possibility is that waves reflect off the Q-barrier or a real disk edge before

damping, and return their energy and angular momentum to the resonance zone At any rate, the

requirement that Neptune’s present eccentricity - or more precisely the amplitude of the gg mode

‘OAlthough II should Iw sn]d [hat cxtcndmg the disk well beyond Neptune is an additional assumption not
rcqumd by the migration h~pothcws



- be finite could be used to place a rather strengcnt  constraint on the mass and distribution of the

current Kuiper Belt We shall address this important topic in a follow-on paper.

APPENDIX A

To calculate the effect of the wave potential on a particle’s precession rate, Gauss’s form

of Lagrange’s equation is employed

d~—= (1~~’2[-}:rCOSf + Fe(j+l)sinfi

dt
(44)

wherej is the true anamoly,  F’,, 30

p = u(I -e 2,. In the tight winding

the second term and set. .

are radial  and azimuthal perturbation forces, and

limit, \@ ’/drl n (1/r) l&$ ’/dfl I ~ IF’,1 N IF”OI, so we drop

F, = Re {e ‘i@ G’Gs)(-d@’/dr)} (45)

The wave potential satisfies eqn ( 17). For a test particle at resonance, D = O, and the orbit

averaged contribution of the wave potential to the precession rate becomes,

Substituting for IJJ reveals that eqn (32) cancels the problematic (eJe) -term in eqn (30)

APPENDIX B

The derivative ofg is

dg  1 5/2 5 d (1)
r— = -—

dr 4
p$lJa [j +  a-#J2]

From Brouwer and Clemence  ( 1964),

(46)

(47)
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~h(l) . 1 + 4&2h(l) c1 (2)
ada 3 2 , - j- 32 - , _ /32

The ratio of L.aplace  coefficients is given by the continued fraction (Brouwer  and Clemence,

1964)

bj~) 5 a a a2 b a2 c a2 da2—= —____ .,, ~ /,:;)
fi;:) 41- 1- 1- 1- 1-

with a = -1/8, b H 7/16, c = 1/16, d = 3/8, etc. Combining and using eqn  (8) leads to

dg 7  -  2apj~) + 3 a2

r% =  –# ] = - g I ’ ( a )
2(1 - a 2)

(48)

(49)

(50)

For a = 0.770, p~~) = 0.874 and I’ = 9.13.
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FIGURE CAPTIONS

Fig, 1. (a) The ~ level curves for eqn (4). Each curve is a polar plot of eccentricity e versus

resonance angle ~ for particles having the same semi-major axis a = O.731, but different values

of ~ (i. e., different free eccentricities). This and subsequent figures assume Neptune’s mass and

orbit. (b) The solid curve shows ~-1> versus e cos q (D is constant) when sin~  = O, and the

dashed lines identifi  the values of j-D for each of the level curves in the upper figure; the lowest

dashed line refers to the smallest bean-shaped orbit in (a) while the upper dashed line is for the

outermost orbit.

Fig.2, The particle’s forced eccentricity e versus semi-major axis (note that a increases to the

kjit). The curve labeled @ is the numerical solution to eqn (4) with cos q = + 1, while the

Cos (p = --1 solution has an upper 0 segment and a lower @ segment. The lower portions of the

@-curve left of emX and the lower segment (D represent the eccentricities that are likely adopted

by a disk of initially cold particles The dot indicates the maximum eccentricity

e - 0.17 occurs a distance A a. = -0.01 from the resonance site aO, consistent with thenlax  -

estimates given by eqns (10) and ( 11 ). Also shown is the e(a) necessary for the perihelion
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distance, q = 35 AU

Fig 3. Schematic diagram of m = 1 elliptical streamlines oriented to produce a one-armed spiral,

Cross denotes the position of the primary. (From Adams, CI d., Asfrophys.  ,/. 347, 959. )

Fig,4. Absolute value of thedownstream amplitude, Io’l, of thedisk  wave potential  inunitsof

e$p$(aJQ,)2 Dashed curve is the small wavelength (low disk mass) solution, eqn (25), Solid

curve shows the numerical integration of eqn (19), taking into account a finite lower boundary,

and variations in $, dD/dr,  u with r, which become more important as the wavelength increases.

Fig. 5. Wavenumber as .@ven  by the dispersion relationship, k = D/27rGu  - (g, -g)/p~&?),

which increases rapidly as g(r) drops, and then more slowly as r”- 3’2, for a o = r -n disk, Case

shown is for n = 2. Curves are parameterized by the disk to secondary mass ratio with pd

evaiuated  at a,.

Fig, 6. Wavelength, ~(r), defined by the relationship,
J

“Ur)kdr  = 2n, for the same cases
.

shown in figure 5. The beginning of each curve marks the value of the first wavelength, For

higher  mass disks, the first wavelength extends beyond the rapid rise ink so that a precipitous

drop in wavelength is not observed,

Fig, 7. Surface density perturbation in an n == 2 disk for an one-armed trailing apsidal  wave

generated in an extended Kuiper  Belt by a secondary at 30.1 AU with normalized disk and

secmdary  masses comparable to Neptune’s mass White circle indicates the resonance site at

39.1 AU, Crests of the waves are white; the greyscale  is stretched to reveal the contrast The

surface density amplitude can be found from eqn (43). The first wavelength is -75 AU, in

agreement with the pd/p$ = 1 curve of figure 6, and decreases as r -1’2, These waves are

predicted to become non-linear at - 330 AU, which is near the edge of the plot
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