Measurement of Isothermal Compressibility of 3He near its Critical Point * FANG ZHONG, INSEOB HAHN, MARTIN BARMATZ, Jet Propulsion Lab., Caltech - The isothermal compressibility χ_T of a fluid is conventionally derived from the measurement of density ρ versus pressure P along an isotherm or from ρ measurements at two known vertical locations. For a fluid near its liquid-gas critical point χ_T diverges strongly. As a result, the application of the first method requires the development of a pressure sensor with resolution of $\delta P/P < 10^{-10}$ in order to measure χ_T at a reduced temperature $\epsilon < 10^{-6}$. The second method fails for $\epsilon < 10^{-4}$ due to the nonlinear density stratification induced by earth’s gravity. A technique using electrostriction has been developed to measure χ_T of 3He fluid near its critical point. The application of a DC electric field within a parallel plate capacitor induces a δP in the gap. The resultant $\delta \rho$ is then measured with the same capacitor. χ_T can then be obtained from the ratio of the $\delta \rho$ to δP. Tests of this technique at low temperatures as well as the results of initial χ_T measurements near the 3He critical point will be presented. This χ_T measurement technique will be an integral part of a microgravity flight experiment that will also measure the divergence of the specific heat at constant volume in order to test the static scaling relations predicted by the Renormalization Group Theory.

"Supported by NASA and a NRC grant.

Fang Zhong
fang@squid.jpl.nasa.gov
Jet Propulsion Lab., Caltech

Prefer Oral Session
Prefer Poster Session

Date submitted: December 1, 1997

Electronic form version 1.1