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Abstract

We give results of recent work ona newly developed frequency st a-
bility characterization, called Total variance, whose main advantages
are improved confidence at and uear the longest averaging time of half
the data duration, and lower sensitivity to drift removal. Properties
given here, for thestandard FM noise types, include mean, degrees of
freedom, frequency response, and empirical dist ribut ion function.

1 Introduction and Conclusions

This paper is about characterizing common, difficult to characterize fre-
quency noise modulations found at long-term averaging time 7 in the out-
put signal of many laboratory frequency standards. It assumesa familiarity
with the Allan variance and its characterizations of white, flicker, and ran-
dom walk FM noise models (W1 IFM, FLFM, and RWFM) [I].
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A shortfall of the currently recommended [2] Allan variance for 7,
denoted here by Avar (T), is that the usual estimators of it are highly vari-
able at larger[1, 3, 4] and are sensitive to the method of drift removal
[5]. Wereport statistical properties of a new kind of frequency variance,
inherently dependent on measurement duration?’ as well as T, called To-
tal variance anti denoted hereafter by Totvar (T, T') (pronounced tot “-viir).
We quantify the improverment in the uncertainty on frequency-stability es-
timation from the use of Totvar (1, 7") rather than Avar (7) in the presence
of FM noises. The square root of this variance, called Total deviation and
denoted by Totdev (1, T') or the! recommended [2] notation 0y, TOTAL(T), can
beinterpreted like the Allan deviation oy (7) but withimproved confidence
at long-ter’in T, as pointed out in earlier papers [6, 7] and quantified in this
paper for FM noises. Not addressed here is the important property that
Totvar (T, 7’) appears to have considerably less sensitivity to the inethod of
drift removal than Avar (T) [8].

The main advantages of Totvar over Avar are immproved confidence at
and near the longest averaging time of 7=27"/2,and lower sensitivity to drift
removal. By theory and simulation we have computed its mean, variance,
and empirical probability distribution it the presence of the three FM noises.
Variance results are given in terms of equivalent degrees of freedom [9]. In
the presence of white FM noise modulation, Total variance is anunbiased
estimate of the Allan variance for all 7,yet has three degrees of freedom
instead of one at 7- = 7'/2. For all three noise types, the mean and edf of
Totvar arc given by simple exact or empirical formulas. A comparison of
the empirical distribution of Totvar(7'/2, T') with the appropriate chi-square
distribution indicates that confidence intervals based on chi-square levels are
conservative.

In the established tradition of timeand frequency statistics, fre-
quency stability is describedin terms of finite-difference variances that are
ensemble or infinite-time averages of stationary, ergodicincrements of phase
[12, 13,14]. In particular, the theoretical Allan variance is a number that de-
pendsonly on T, While! its conventional estimators arc! random variables that
depend 011 both 7and 7', the largest possible v being 7'/2. Total variance
is a random variable that,alonig with all its properties, inherently depends
on bothrand 7. Moreover, Total variance can report values beyond the
usual Allan variance last-7 value of t=:7/2; its values at > 7'/2might
be usedto augment the normal last-7 value of frequency stability reported
at T = 7/2.

We compute the frequency response of Total variance as a function
of T by averaging the squares of the Fourier transforms of Total variance



sampling functions, and find that it resembles the frequency response of Al-
lan variance. The results of these invest igat ious indicate that Total variance,
while it has an interpretation like that of the Allan variance, also haslower
variability and less sensitivity to drift removal.

2 Equations for Totvar (7, 7°)

The purpose of this scction is to give a precise definition of Totvar (7,7") for
an N-point time deviation record with sample period 7o.Inthe following
description, the indices m,n,and N ate related to time by 7 = m7,t =
to + 70, and 7" = N 70, where to is the time origin and without loss may be
made equal to zero.

Start with time-deviation dataa,, for n=1to hr. D efine a new,
longer vii tual datasequencea), as follows. Forn=1to N let x} == a,; for
J=1to N —-2let

x]. = 221 — T14 5, 51’*N+j = 2N -- TN- .
This operation, depicted inFigure 1, is called extension by reflection about
both endpoints. The result of this extension is a virtual data sequence {z},}
of length 3N — 4, whose index n now runs from3— N to 2N - 2.

Now define
N--1
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for 1 <m<N-1,i.e., Tcango to (N - 1)70 instecad of the usual limit
of [ (N — 1) /2|To- The previous notation Totvar (7,7’) is to be regarded as
equivalent to (1) with the dependence on7osuppressed. Totvar cau also be
represented in terms of extended fractional frequency fluctuation averages

as

le
P e S‘ [71 - g'/:;“m 21 (2)
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Totvar (m, N, 7o) =

where g:l = (:E:H m :T’:L) /T‘

It can be verified that Totvar, like Avarandits estimators, is invari-
ant to an overall shift in phasc and frequency, i.e., if afirst-degree polynomial
¢o + cin is added to the original data set x,,then Totvar does not change.

We expect the Total variance to beapplied mostly to long phase
records in which the FM noises dominate the PM noises (whiteand flicker
PM). In this case it is convenient for theoret ical purposes to approximate



Totvar (1n, N, 70) by a continuous-time analog called Tot varc (T, 7),in which
the sum in (1) is replaced by an integral, and d ep endence on g is eliminated.
The time deviation is now a continuous-tirne process x (t), given for 0<¢ <
T. Extend z (t) to x*(t) as follows: for O <t<7T' let a*(t)=x(t); for
0<’21<7’ let z*(—u) =2z (0) — z (w)and a* (1" +w) = 22 (1) -z (T - w).
Then a*(t) is given for —7"<t<27". The continuous analog of Totvar is
defined by

Totvare (7_,1") == 1 ! [*(t - T) - 20" (t) + * (t + 7)]°dt, (3)

2T2T lo
for0 <7 <1,

The expressions above are quite different from their equivalent Allan
variance expressions. Mainly, Totvar (T, 7°) reports a value for an interval
T within data length 7" based on more samples of the! sccond-difference of
phase (or first-difference of average frequency) using a rearranged and ex-
tended series of the original data series {a,}. It does this by a multiple
sample on the phase using a larger, virtual set of data which is anodd, or
reflected, extension at the beginning aud end (left and right) of tile original
real set. Figure 1 illustrates the extension and, hence, the resulting; circular
or repeating representation.

Analyzing a larger virtual data set built from the original data set
has been a tool in frequency-domain signal processing for many years. A n
assumption of periodicity replaces the recurrent behavior (in a time-series
sense), a consequence of the ergodic principle [15]. In particular, a range of
frequency values (Fourier components)from O < f < fy, can be extended
by a mirror reflection through f = O so that “negative frequencics” are
added to an original data set, resulting in-f; < f < fi.Inthe context of
time-series analysis, rather than doing extensions of the original vector {z;,, }
and applying the straight second-diflerence, we alternatively can resample
within the original vector; see Section 4 for an algorithm that requires no
extension of the data array.

3 Totvarc (7,7") as an Estimator of Avar(7)

3.1 Mean and Variance

As mentioned above, for computing theoretical moments it is convenient to
use the continuous-time random variable Totvarc (T, 7°) as a surtogat e for
the discrete-time random variable Totvar (T, T'), for the same rcason that
the calculus of integrals andderivatives is less iutricate thanthe calculus



of sums and differences. ‘he meanand variance of Totvarc (T, 7")in the
presence of the three standard power-law FM noises were computed by the
generalized autocovariance tethod [4] under the assuinption of Gaussian,
mean-zero second differences of phase; no frequency drift or drift removal is
allowed. The mean F [Totvarc (T, T')] is compared to Avar (T); the variance is
most conveniently communicated through the equivalent degrees of freedom
(edf), defined for a random variable V by

edf (v) = -;f;— . (4)

The results, some of which are exact and some of which are empirical fits to
numerically computed results, can be expressed as follows.

E [Totvarc (7,7)] T T
= ] -- - O < — 5
Avar (1) “7 STS ®)
7 7
edf[Totvarc (T, T)=b--¢ 0<7< o (6)
T

where a, b,and ¢ are givenin Table I. These results were checked by simu-
lations of Totvar (m, N, To), with N == 101.

Table 1
Noise a b c
WHFM 0 3/2 0
FLEM 13 111(2)) 24 (in(2)/7)* 0.222
RWFM 3/4 140/151 0.358

The simple, exact form (5) for the mean of Totvar can beinterpreted
as a scaling property of power-law noise. It turns out this way because tile
shapes of the sample functions for Totvar and Avar (sec Section 4) depend
only 011 T. For 2%/2 < 7 <7 thesampling function shapes depend also 011
T'; yet, it is noteworthy that (5) persists all the way to 7', but ouly for white
FM and random walk FM. The edf results are empirical, with an observed
error below 1.2% of numerically computed values; for white FM, though,
the edf result appears to be exact,although this is unverified.

For white FM noise processes, Total Variance is an unbiased esti-
mate of the traditional Allan Variance (frequency-cha nge-squared vs. 7) for
all averaging times (T’s). Its primary advantage as surmised from (6)and
Table 1 is a considerable improvement in the confidence of that estimate at
longer averaging times. For example, 10,000 seconds of frequency measure-
ments means that 1can't go beyond 5,000 seconds (1°/2) to get one single



estimate of frequency-change over the data duration (last half minus first
half) using Allan. Theabove edf result (6) for white FM shows that one
obtains the equivalent of three independent estimates (edf = 3) by using
Total and its multi-sampling function, which is discussed in thenext sec-
tion. The improvement of edf in the presence of FLFM and RWFM (2.097
and1.514, respectively) is not as dram atic,but substantial nevertheless. For
1=T/4,1/8, etc., the confidence measures of Allan and Total confidence
approach each other, until they are essentially the samc at 7'/16. For small
values of 7/7’, the time-deviation record is extended only a short distance
at both ends, and hence Totvar (7, 7") diflers little from tile fully overlapped
estimator of Avar (7) [9].

3.2 Distribution Functions

In the tradition of time and frequency statistics, it is customary to derive
confidence intervals for frequency stability 011 the basis of the assumption
that the probability distribution of a frequency stability estimator V, when
scaled appropriately, followsthe chi-square distribution) with the same edf
as V; see [9]. The chi-square assuiption has beeninvestigated in a limited
way for conventional estimnators of Allan variance [10, 11]; in view of the
greater complexity of Total variance, some investigation of its distribution
is appropriate.

Let V denote the Totvar estimator of Allan variance ¢, for some T,
and let r=FE (v) /o?, v=-edf (V), which are presumed known from the
previous results. Then the random variable

vV

ro?

s

has the same mean and edf as clews a X2, namely, v. If X had the x2
distribution, then one could derive confidence intervals for o2 based on one
observation of V.

We carried out a brief investigation of the chi-square assumption for
the most important case of 7=7"/2. One thousaud independent trials of
Totvar (50,101) were simulated for the three FM noise types, and the em-
pirical distribution functions of X were plotted along with the theoretical
chi-square distribution functi ous. It turned out that the chi-square distrib-
utions were good fits to the empirical distributions except at the lower tails,
expanded views of which are showninFigure 2. The empirical tail always
lies below the chi-square tail. Thus, for a probability p < 0.2, if =, (p) is
the chi-square level for p,and z}, (p) the level of the scaled Totvar X, we



have x, (p) < 2} (p). Because the upper end of a true confidence interval
for o2 is proportional to 1/a, (p) for an appropriate value of p,the use of
a (p) for this purpose gives a conservative confidence interval. For example,
suppose we wish to have a 90% confidence interval for 02 at 7=1/2based
on V = Totvar (2"/2, T) and a white-FM noise assumption. Thenr = 1,
V.= 3; the 5% and 95% X3 levels are 0.352 and 7.81; and a 90% confidence
interval for o2 based on chi-square is [3 V/7.81, 3V/.352]={0.384V, 8.52 V].
(Take square roots for o.) The more realistic value of 0.60 for the 5% Totvar
level from Figure 2(a) reducesthe upper end of the coufidence interval to
5.0V.

4 Sampling Functions and Frequency Responses

The procedure of extending by reflection an original {w,, } vector at both
ends ancl then applying a second diflerence can be equivalently represented
as four different types of diflerencingon {z,:n=1,.... N} directly. ‘he
surnmand of Totvar (m, N, To) in the following equation takes on four forms
that depend on therelationship of n to a givenm and N:

1 g
Totvar (m, N, T0) =, ~—= i/ nr - - D2, 7
( , 70) 2(mmo)AN"2) 4 " (7)
where
D, =2y~ 22, + Tpgm © M—N2> 1, m+n <N,
Dy, =221 — 29 pam — 20, + Tpgm 2 m—n<l, m+n<N,
D, =z gy 2z + 2IN —~TYN-p-m  Mm-—n=1l, m+n> N>
Dy =221 - 29 nqm —~ 2Tn + 20N —T2N—p-m * M- N < I, m+n>N.

From these expressions we can derive the frequency sampling func-
ions associated with Totvar(7,7"), i.e.,, how its terms act ony, = ¥, —
-1, ancl contrast them with the simpler sampling function associated with
Avar (T) (seeFigure 3), Which gives the changeinaverage frequency fromone
Tinterval to the next [7]. The augmentation incorporated in Totvar (1,7’)
combines the sequential sampling function with other ones which makes its
sample technique rather bizarre, but nevertheless shown in Figure 4.

Although the time-domain presentation of the action of Totvar on
frequency residuals seem to give little insight, one canusethe Fourier trans-
form of these sampling functions to derive frequency responses that perhaps



couvey more meaning. The continuous analog version of Totvar(7,7') can
be written in the form

y - 2

Totvarc (1, T) = 2;2&],—0 dt [/0 duy(u)hy (v t,71) ] (8)
where hy (u;t,7) is the sampling function for V2a*(¢) (for the extended
a*(-) record) in terms of y(u)=dx(u)/du, O <u <2'. let H, (f; t, 7) =
f(;l' hy, (u;t, T) e~i2n fu gy, One can show that the expected value is given in

terms of Sy (f), the one-sided spectral density of ¥ (t), by

E[Lotvarc (, T)] = / W, (fi7,T) S, () df, 9)
0
where o
S B o 2
W, (f; 7, T) = Q,T_%Tp |H, (f;t,7)|° dt. (lo)

It follows that W, (f;7, T) can beregarded as the mean frequency response
of Totvar as an action on y (t). Figure 5 shows this frequency response
plotted against fr for 7/7" = 0.1, ().2,... ,0.5. The frequency response of
Allan variance (clotted curve) is the limit of Totvarresponse as 7/7" + O.
Also shown (clashed curve) is the frequency response of 2. Totvarc (T, T),
regarded as an estimator of Avar (7'/2) (see Section 5 below).

Totvarc (T, 7') has an approximate Allan-like response; more impor-
tantly Totvar hasn’t the deep nulls encountered with Avar(7) near 1=T/2,
consequently it has less variability, hence better confidence as indicated by
an increased edf. We showed that the estimate (vis-a-vis E[Totvarc (1, T')])
is an unbiased estimate of Avar(7)for WHFM noise and slightly biased
for FLFM and RWFM noise. This may be somewhat evidenced by noting
the slight reduction in the amplitudes of the main lobes of the frequency
responses in Figure 5.

5 Properties of Totvarc (T, 7°)

Although we have defined Totvar for rall the wayup to (N - 1) 1o, one
can realistically expect to obtain meaningful frequency stability results only
1<T/2. Nevertheless, we computed the mean and edf of Totvarc (T, T")
for T/2 < 1 <T.For white and random walk FM,itturnsoutthat twice
Totvarc (7', T) is unbiased for Avar (T/2), and is almost unbiased (within a
factor of 2/(31xI(2)) = 0.9618) for flicker FM.This result was motivated by




comparing the frequency responses Of 2. Totvarc(7',7") and Avar (7'/2), as
seen in Figure 5. Unfortunately, Totvarc (7', T) has a smaller edf (1.5, 1.126,
and 1.029 for WHFM, FLFM, and RWFM) than Totvarc (T/2, T) does, ancl
hence the mean-square error (i.e, bias? -t variance) of 2. Totvarc (T, T') as an
estimator of Avar (T/2) is greater than that of Totvarc (T/2, T), so that one
might still prefer Totvarc (2"/2, T'), or perhaps some linear combination of the
two. This possibility has yet to be investigated, but other work indicates that
Total variance coefficients beyond 7.=7'/2 could justifiably be incorporated
in the last T/2 value usually reported. It has been shown that summing all
the familiar “power-of-2” 7-values in a Total variance plot leads to exactly
twice the standard sample variance much inthe same way that integrating
an estimate of a spectrurmn also yields the sample variance [18].
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Figure 1: (a) Extension of a phase record by reflection at both ends; (b)
circular representation of extended phase record

Figure 2: Expanded views of thelower tails of empirical Totvar distribu-
tion functions (lower curves), andthe correspondirig chi-square distribution
functions (upper curves)

Figure 3: Usual sampling given by Avar for values of m and n when N=10,
711< (N - 1)/2

Figure 4. Sampling given by Totvar for values of m and n when N==10; note
that m is not restricted to m <(N --1)/2 as with Avar

Figure 5: Mean frequency responses of Avar and Totvar as operations on
y (t)
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