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ABSTRACT

The idea that low soot propensity of high-energy-density (HED)  liquid sooting fuels and cost reduc-
tion of a multicomponent  energetic fuel can be achieved by doping a less expensive, less sooting
liquid fuel with HED is tested through numerical simulations. The model represents an axisym-
metric, polydisperse,  dense cluster of binary-fuel (solvent/solute) spherical drops embedded into a
vortex. The partial density of the evaporated fuels which is symptomatic of sooting propensity is
compared for uncharged and electrostatically charged drops; charging is here usecl m an effective
way to increase dispersion and reduce sooting propensity. Results from the simulations show that
while the solvent soot propensity indeed decreases with drop charging, contrary to simplistic expec-
tations, addition of HED a.. a solute increases sooting propensity of the solute with increased drop
dispersion. This is due to the additional dispersion maintaining the slip velocity at the drop sur-
face and preferentially evaporating the solute. These counterintuitive  but correct physical effects
are independent of the initial solvent/solute mass ratio and decrease with decreasing solute volatil-
ity. Based upon these results, blending strategies are suggested for minimizing sooting propensity
and decreasing fuel costs.



1 .  INTRODUCTION

High-energy-density (HED)  fuels developed over the last decades to replace conventional liquid fuels have

the drawback of high soot propensity which makes them environmentally and strategically unacceptable.

Experimental evidence of heavy sooting from such fuels has been presented by Law[l].  Soot propensity is

defined here ~~ the ability of a fuel to form soot precursors through nucleation reactions; it does not refer to

soot growth, or soot production which includes the additional effect of soot destruction through oxidation

reactions.

To reduce soot propensity one has at least two options: (1) drop dispersion (experimentally investigated

by Sangiovanni  and Liscinsky[2]  ) to avoid the crest ion of fuel-rich-vapor regions where soot nucleation occurs,

and (2) fuel blending. Bellan  and Harstad  [3] have shown that electrostatically inducecl dispersion does indeed

reduce soot propensity; electrostatic dispersion has also been found superior to mechanical dispersion [4].

FIere  we examine the possibility ies of: (1) deriving a fuel blending strategy that can reduce both the cost

of fuel (HED fuels are expensive) and the sooting propensity, and (2) combining fuel blending and drop

dispersion to further reduce soot propensity. We focus this study on binary fuels as they are the simplest

mult  i component fuels.

2. M O D E L

The configuration studied is that of an a.xisymmetric  (coordinates r-, 0, z), polydisperse, dense cluster of

spherical evaporating drops embedded into an axisymmetric vortex. Due to the centrifugal motion of the

vortex, the drop cluster quickly forms an inner boundary additionally to its existing outer boundary. The

model has been described in detail by Harstad and Bellan  [5] and will be only briefly summarized here. The

mathematical formulation consists of two fully (twoway)  coupled sets of equations: one for the gas and the

other for the drops. The gas is followed in an Eulerian way whereas the drops are followed by initird  size class

in a Lagrangian  way. Each drop initial size class evolves into a multitude of drop sizes as the drops evaporate

at different rates according to their location within the cluster. The set of equations for the gas contains the

continuity equation, the inviscid moment urn equation (radial and azimuthal velocities), species conservation

equations, the energy equation and the equation of state. We define statistically a sphere of influence around
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each drop so that the ensemble of the spheres of influence and the interstitial space  constitute the cluster

volume. The drops conservation equations are the drop number conservation, momentum conservation

(radial and azimuthal velocities) and thequa.si-steady energy and species equations for each drop in its

sphere of influence; the boundary conditions at the edge of each sphere of influence are given by the values

of the gas dependent variables. Coupling between drops and gas occurs through heat transfer, evaporation

(Ins-ss transfer), and momentum transfer. Heat transfer is modeled in each sphere of influence and yields an

analytic expression for the temperature profile in the sphere  of influence; since Leg == 1, the IIMSS fraction

profiles are found by similarity from the temperature profile. Evaporation is described by the Langmuir-

Knudsen non-equilibrium kinetic law since the drops are small (R” <2.5 x 10-3cm;  R is the drop radius)

and the initial gas temperature is much larger than the boiling point of the fuels [6]. Moment urn transfer

occurs through form drag on the drops and through blowing of mass from the drops; the drag coefficient

contains a correction accounting for mass blowing and the drag term is function of the drop number density.

Thus, source terms appear in the gas continuity equation, both gas and drop momentum equations and the

gas energy equation. Gas turbulence is modeled using the Prandtl mixing length hypothesis where small

scale turbulence resulting from drops differential azimuthal velocity is modeled by similarity with the Stokes-

Einstein relationship, except that here instead of the motion being induced by thermal fluctuations, it is

induced by the fluctuations of the small scale turbulent eddies. When the drops are charged, there is an

additional electrostatic radial force in the momentum equations as described in detail by Bellan and Harstad

[3].

The internal drop model for drop heating and solvent/solute evaporation is that of Harstad  and Bellan

[7]. The two main assumptions of the model is that the solute is much more volatile than the solvent (once

at the drop surface, the solute evaporates immediately) and that the mass fraction of solute is smaller by

almost an order of magnitude than that of the solvent. In general, the evaporation rate is the sum of

three terms: the evaporation rate of the solvent according to the Langmuir-Knudsen (L-K) evaporation law,

the diffusion rate of the solute through the boundary layer and the rate of surface layer stripping of the

drop. However,  two important limiting regimes of evaporation are identified according to the value of a

dimensionless number, Be = – [R/( D,,,u/ )]05(dR/dt),  that represents the ratio of t he mass regression rate
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to a characteristic volatile diffusion rate; D,,, is the liquid mass diffusivity,  U1 is the velocity of the liquid

inside the drop and t is the time. When Be << 1, diffusion into the boundary layer governs the rate of species

transfer from the liquid core to the drop surface; subsequent mass transfer from the drop surface to the

gas phase is governed by evaporation according to the I/-K evaporation law. These are sequential processes

and the overall mass transfer is determined by the lower of the diffusion and evaporation rates. In contrast,

when Be >> 1, transfer of the solute to the gas phase is governed by the rate of surface layer stripping

(the evaporation rate of the drop). Because surface layer stripping and diffusion rate from the core to the

boundary layer are competitive processes, the overall transfer of solute from the core to the gas is governed

by the higher of the diffusion and drop regression rates. The quasi-steady boundary layer assumption is

ccmsistent with lle <<1 but inconsistent with Be >>1.

3. SIMULATIONS RATIONALE

Early experiments with cubane by Law [I] pointed out one of the main drawbacks of cubane as a liquid
t

propulsion fuel: in solution with other fuels it does not participate in combustion and instead it accumu-

lates in the fuel creating an increasingly viscous, less volatile mixture until supersaturation occurs when a

temperature larger than the boiling point of the more volatile fuel is attained. It is only at that time that

microexplosions  ensue and cubane participates in the burning process. To palliate this aspect of cubane,

liquid cubane  compounds were synthesized and studied. For example, experiments by Law [8] at p = 0.25

atm showed that methylcubane  (MTCU)  has a considerably larger burning rate constant, K, than nonane

(NONA), a typical hydrocarbon; experiments were also performed with pure nonane and pure MTCU show-

ing the increase in K with p, and with mixtures of nollane/MTCU.  The rationale of using mixtures of a

HED fuel and a typical hydrocarbon is that HED fuels are expensive and thus might not be economically

feasible to use; judiciously used in solution with a hydrocarbon they might still enhance burning, yet be

more economical.

Taking guidance from the experiments of Law [8], MTCU was chosen as a typical HED to be used as

a solute in a mixture with a hydrocarbon. Following methods previously outlined [9], the properties of

hflTCU were estimated as seen in Table 1. To validate the calculated properties of MTCU, simulations were
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performed with a very dilute cluster of uniformly-distributed, monodisperse  chops of 0.438 mm diameter

at 0.13 atm and of 0.531 rnm diameter at 0.25 at m (the conditions in the experiment of Law [8]) in a

vortex embedded into a very hot T environment (3000 K) to duplicate the high flame temperature of MTCU

(which hov’ever  had not been measured [8]). The cluster radius was 2 cm; both the vortex and the drops

had negligible velocities [0(10-3) cm] to duplicate the convection-free environment of the experiment. The

calculations at 0.13 atm yielded K = 1.125 mtn2/s  which should be compared to the experimental value

of 1.2 mm2/s. Calculations at the higher pressure (0.25 atm) could not be completed due to convergence

problems as the model and code have not been derived for the very dilute regime.

Plots of the saturation pressure versus the temperature for benzvalene (BV), quadricyclane  (QUAD),

dihydrobenzvalene (DHBV),  MTCU, heptane (HPT) and NONA appear in Fig. 1 (properties of BV, QUAD

and DHBV were given elsewhere [3]). These plots show that the difference in volatility between MTCU and

NONA is such that for Law’s experimental conditions of p = 0.13 atm and 0.25 atm, MTCU is more volatile

than NONA and thus the mixture NONA/MTCU is indeed a reasonable solvent/solute mixture. However,

for p >1 atm, it is NONA that is more volatile than MTCU and the entire concept of the HED being used as

a solute breaks down. Moreover, it appears that for p > 1 atm MTCU is the least volatile of the substances

considered here and thus it cannot serve as a solute in any combination with them. Further examination of

Fig. 1 shows that NONA is considerably less volatile than BV, QUAD or DHBV and thus can represent the

solvent for which the other three fuels can be solutes.

4. R E S U L T S

The results of the calculations were used to examine the evolution of the partial density of fuel, solvent and

solute, for both uncharged and charged clusters of drops, and to determine the influence of the solvent/solute

masss fraction and solute volatility upon the results. The simulations were performed with a binary initial

size distribution (R; = 2 x 10-3cm, &o = 2.5 x 10–3cn~), an initial cluster radius of 2 cm, initial drop and

far field gas temperature , ~w, of 300 K and 600 K respectively, p = latm, null initial drop radial velocity,

irrotational gas tangential velocity (100/r cnl/s) and tangential drop velocity of the form (75/r  + 200r)

cnl/s; the initial gas radial velocity is found by solving the energy equation. The far field gas temperature
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is a function of time, T~m [1 + t/(6 x 10–3)], to simulate the passage of the vortex through an increasing

temperature region. The functional form of the drop number density dist ribut ion is given in [3], the air/fuel

mass ratio is 0.314 and the ratio of the initial maximum drop number distributions is 1/3 with the smaller

drops being more numerous. The drop number density distribution is such that except at the cluster

boundaries, the nondimensional raclius of the sphere of influence is in that dense regime [7]. Calculations

with charged drops are stopped for any clrop when its Rayleigh limit is encountered [3]. Fcjr the present initial

conditions, the Rayleigh limit occurs typically when the drops reach 570 of their initial radius; as a result,

the limit occurs first at the outer cluster boundary [5]. Any outer-boundary drop that has reached the limit

is further neglected because its mass, moment urn, energy and charge do not affect the other drops. However,

inner boundary drops evaporate almost as fast as outer boundary drops [5]; w’hen an inner boundary drop

has reached the Rziyleigh  limit, the entire calculation is stopped since the cluster can no longer remain an

entity.

4.1. General behavior

As shown previously [3], when singl~component,  drops are charged, the partial gaseous fuel density decreases

due to increased drop dispersion, thereby reducing soot propensity.

Figures 2-5 contain results from simulations made with NONA/DHBV, the initial mass ratio being 80/20.

The plots are made for the dependent variables related to drops in initial-siz~class-l;  they are qualitatively

representative of initial-size-class-2 as well. Instead of plotting the variables versus the radial location in the

cluster, r, the abscissa in Figs. 2-5 is the residual drop radius, R1 /R~, and the variable parameter along each

curve is r; the multivalued character of the curves arises from the fact that there are several locations within

the cluster at which the residual drop radius is the same. The advantage of plots versus RI /Rf is that they

indicate the importance of an effect during the drops lifetime; for example, when the residual radius is 0.3,

less than 3% of the mass is left in the drops.

Initially the drops evaporate in the liquid mass diffusion controlled mode (Be << 1, see Fig. 2), but

gradually the surface layer stripping (frozen composition) mode (Be >> 1) takes over; however, it appears

the last mode does not occur until the drops are almost entirely evaporated. The large initial slip velocity
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[(difference between drops and gas velocity); Fig. 2] creates shear at the chops surface alld induces a

circulatory motion inside the drops which enhances liquicl mass cliffusion (an otherwise slow process with a

characteristic time larger then the drop lifetime) and preferentially brings the solute to the surface. As drag

reduces the slip velocity, the circulatory motion decreases and liquid mass diffusion is no longer effective as

clearly indicated in Fig. 2. Plots of the solute evaporation rate fraction, Tit~OIU / 7h, and of the solute mass

fraction in the drop core, Y. OIU,dC,  also found in Fig. 2 show consistently with the abcwe  interpretation that

the initially large evaporation fraction , 0.6, quickly decreases to w 0.1 and remains small resulting in the

composition of the drop core changing from 80/20 to about 84/16 and remaining frozen. This means that

in fact Be does not have to be >> 1 for the liquid mass diffusion mode to cease; Be H 0(10) suffices. This

transition frc)m the first to the second evaporation mode occurs when there is about 5C)~0 of the mass left in

the drops.

Similar plots to those of Fig. 2 appear in Fig. 3 for the identical initial conditions except the drops are

charged with 25~0 of the maximum charge [3]. The effect of charging is to maintain the slip velocity, and

thus to keep Be small; the drop thus continue to evaporate in the liquid mass diffusion mode resulting in the

solute being cent inuously depleted from the drop core and the solute evaporation rate fraction continuously

decreasing.

A comparison of the gaseous mass fractions of solvent and solute for the uncharged and charged cases

is shown in Fig.4. The effect of charging is to reduce the gas solvent mass fraction and to increase the gas

solute mass fraction. The larger solute mass fraction results from preferential evaporation maintained by

the large slip velocity. In fact, any means of drop dispersion (not only charging) will have the same effect.

However, it is not the mass fractions, but the partial gas densities that indicate soot propensity; they are

plotted for ccmlparison  in Fig. 5. The comparison show’s  the dramatic reduction in the solvent partial density

due to reductions in both density and mass fraction [3], and the increase in the solute partial density as the

reduction in the total density cannot compensate for the larger solute mass fraction. This means that if the

solute is the more potentially sooting component, the sooting propensity of the fuel has not been decreased,

and perhaps has even been increased. A preliminary ccmclusion is that soot reduction strategies for pure

fuels cannot automatically be translated to fuel blends.
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4.2. Effect of the initial composition

To investigate the effect of the initial composition, simulations have been performed for 90/10 and 95/5

liquid mass compositions with the same fuel and initial conditions; the small % of solute reflects one of the

assumptions of the binary-fuel model [7]. The results (not illustrated) were essentially the same: increasing

dispersion decreases the solvent, but not the solute, partial density.

4.3. Effect of the solute relative volatility with respect to solvent

According to Fig. 1, BV is slightly less volatile than DHBV, whereas QUAD is considerably less volatile

than DHBV at p = latrn. Simulations were therefore performed with NONA/BV and NONA/QUAD for

identical initial conditions to those in the NONA/DHEIV  simulations to determine the effect of volatility

upon soot propensity reduction through enhanced dispersion.

A small decre=e  in solute relative volatility (BV vs I)HBV)  does not influence the solvent partial density

reduction but renders the relative solute soot propensity a function of time: initially the solute partial density

of charged drops is larger, but a tapering off effect rellders  it almost equal to that of uncharged drops at

the Rayleigh limit (not shown). A larger reduction in the solvent relative volatility (NONA/QUAD, Fig.

6) accentuates the trend: the initial partial density of the solute is only slightly larger when the drops are

charged and quickly becomes equal to that in the uncharged case. The physical explanation is not in the

extent of preferential evaporation as a function of the relative solvent/solute volatility since it is always

small; it is an indirect effect through the modification of the latent heat of the mixture. Thus, if HED fuels

are blended with other fuels of similar volatility (in the range of combustion device operation), the behavior

of the blend will become closer to that of a single-component fuel and drop dispersion will be effective in

reducing soot propensity.

5. C O N C L U S I O N S

Simulations of polydisperse, dense clusters of drops evaporating in a vortex were performed for several

binary-fuel combinations with the solute being a high-energy-density fuel. Both uncharged and charged

drops were considered; the simulations with chargecl drops were ended when the Rayleigh limit was reached
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at the inner cluster boundary. Drop charging was used because it was previously shown to be an effective

way for dispersing drops and reducing soot propensity.

The results show that increased drop dispersion results in the solute evaporating preferentially for longer

times. This increases the gaseous mass fraction of the solute and despite the reduction in total density

increases the partial density of the solute, The expected consequence is that if the solute is the more sooting

component of the blend, soot propensity might actually increase instead of decreasing. These conclusions

are independent of the initial liquid composition within the limits of the solvent/solute assumption. The

results also show that as the solvent/solute volatility ratio increases towards unity, preferential evaporation

of the solute decreases and the blend acts more like a singl~cornponent fuel.

The above results show that soot reduction strategies for single-component fuels are not necessarily

extendable tc) fuel blends. These results also indicate that there might be two HE D-fuel blending strategies

for fuel cost and soot propensity reduction. The first strategy is blending the HED with a fuel of same

volatility at the operating conditions; the HED can be the solute and thus the cost of the blend will be

relatively low. The second strategy is blending the H13D  with a higher volatility fuel (the HED is now the

solvent); this will still reduce the fuel cost with respect to a singl~component  HED, and will insure that

soot propensity is decreased with increasing drop dispersion since the HED is now the solvent.
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Symbol HPT NONA M’D2U
@. E (air/fuel) mass 15.1 15

——
13.4

w, g/mole 100.2 128.26 118
Tbn, K 371.6 424 423
Lb,,, Cal/g 64.16 78.98 58.1
AC’P, cal/(gK) -9.08 x10-3 -7.57 X1 O-3 O(assm)
Pf, .#cm3 0.684 0.718 0.908
CP1,  cal/(gK) 0.539 0.22 0.2
P1 , ~(cms) 0.208 x10-2 0.661 x10 -2 (assm)  C).35xlo-z(assm)
Dw,f(Lel=lO), cm2/s  - 1.353 X1 O-4 I . 2 7 x 1 0- 4

Al, cal/(gK) 2.406 x10-4 2.525 x10-4 2.44 x10-4
C’P9(TQ = 424 K) 0.528 0.527 0.4—— ——

1 .Properties of fuels



Figure Captions

Figure 1. Saturation pressure versus temperature for BV (—-), QUAD (----), DHBV(- - -), MTCU( ), HP T(-–),

NONA(–. .– .-).

Figure2.  Slipvelocity  mdBe(a),  relative solute evaporation rateand  solute liquid mass fraction inthedrop core(b) versus the

residual drop radius for initial-size-class- 1.-Uncharged drops of NONA (80 Yo)/DHBV(20%).  Curves are for different times as

follows: 6.8 X1O-’5 s (. ..), 1.4 X1 O-3 s (-—— ),2.8 x10-3 S (– – --),4 .2x10-3 S (– ~ – . –), 5.5x10-3 S (— —),6.2x10-3

s(_ . . . . . –), 1.2 X1 O-2 s (-–o—).

Figure 3, Slip velocity and Be (a), relative solute evaporation rate and solute liquid mass fraction in the drop core (b) versus

the residual drop radius for initial-size-class- 1. Charged drops of NONA (80 Yo)/DHBV(2070),  Curves are for different times as

follows: 6,8 X10-5 s (. . ..), 1.4 X 1 0-3 
S ( - — ) , 2 . 8 X 1 0 -3 S

(- - -),4 .2 X 1 0-3 
S (- .- .–),5.5X 1 0- 3

S ( – – )  , 6 . 2 X 1 0 - 3

s o _ . . _ . . _ ) .

Figure 4. Solvent and solute gaseous mass fractions versus the radial coordinate for NONA (80%J)/DHBV(20%) clusters of

uncharged (a) and charged (b) drops, The legend is the same as in Figs. 2 and 3.

Figure 5. Partial solvent and solute gaseous densities for NONA (80%)/DHBV(20%)  clusters of uncharged (a) and charged (b)

drops. The legend is the same as in Figs. 2 and 3.

Figure 6. Partial solvent and solute gaseous densities for NONA (80%)/QUAD(20%)  clusters of uncharged (a) and charged (b)

drops. Curves are for different times as follows: 6.8x10-5 s (. . ..), 7.5x10-4 s (—), 2. IX1O-3 s (– – –), 3.5 X1 O-3 s

(– – “ –),4.8x10-3  S(— —),6.2X10-3S(–  “ ~ – ~ “ –1 1.2 X10-2 S(—O—)
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