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Abstract

“7It is shown that quantum resonance can be used for combinatorial
optimization. The advantage of the approach is in independence of the
computing time upon the dimensionally of the problem.
the solution to a constraint satisfaction problem of exponential complexity is
demonstrated.

Combinatorial problems are among the hardest in theory of computations. They

include a special class of so called NP-complete  problems which are considered to be

intractable by most of the theoretical computer scientists. A typical representative of this

class is a famous traveling-salesman problem (TSP) of determining the shortest closed tour

that connects a given set of n points in the plane. As for any of NP-complete problem, here

the algorithm for solution is very simple: enumerate all the tours, compute their lengths,

and select the shortest one. However, the number of tours is proportional to n! and that
leads to exponential growth of computational time as a function of the dimensionality  n of

the problem, and therefore, to computational intractability.

It should be noticed that, in contradistinction to continuous optimization problems

where the knowledge about the length of a trajectory is transferred to the neighboring

trajectories through the gradient, here the gradient does not exist, and there is no alternative

to a simple enumeration of tours.

The class of NP-complete  problems has a very interesting property: if any single

problem (including its worse case) can be solved in polynomial time, then every NP-

complete problem can be solved in polynomial time as well. But despite that, there is no

progress so far in removing a curse of combinatorial explosion: it turns out that if one

manages to achieve a polynomial time of computation, then the space or energy grow

exponentially, i.e., the effect of combinatorial explosion stubbornly reappears. That is

why the intractability of NP-complete  problems is being observed as a fundamental

principle of theory of computations which plays the same role as the second law of

thermodynamics in physics.



At the same time, one has to recognize that the theory of computational complexity

is an attribute of a digital approach to computations, which means that the monster of NP-

completeness is a creature of the Turing machine.

As an alternative, one can turn to an analog device which replaces digital

computations by physical simulations. Indeed, assume that one found such a physical

phenomenon whose mathematical description is equivalent to those of a particular NP-

complete problem. Then, incorporating this phenomenon into an appropriate analog device

one can simulate the corresponding NP-co]mplete problem. In this connection it is

interesting to note that, on the first sight, all the NP-complete  problems are fundamentally

different from natural phenomena: they look like man-made puzzles while their formal

mathematical framework is mapped into decision problems with yes/no solutions.

However, one should recall that physical laws can also be stated in a “man-made” form:

The least time (Fermat), the least action (in modifications of Hamilton, Lagrange, or

Jacobi), and the least constraints (Gauss).

In this note we will concentrate attention to mapping a constraint satisfaction

problem into physical phenomena of quantum resonance on a conceptual level, without

going into details of actual implementations.

Consider a quantum system subject to a small white-noise perturbing interaction,

and let the perturbation be switched on at zero time. The Hamiltonian  of the system can be

presentcxt  as a sum of the time-independent and oscillating components:

H = Ho + E#f,a(ox), &o <<1 (1)

where HO and HI are constant Hermitian matrices, co is the frequency of perturbations,

and i3(w) is the Dirac function.

The probability of a transition from state k to q is proportional to the product ‘1] .

(2)
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Here ~j are the eigenstates  of Ho:

HOqj =Ejpj j=l,2...N

where Ej are the energy eigenvalues,

a~~ =E~ –E,, k,q=1,2,...N

(3)

(4)

The resonance, i.e., a time-proportional growth of the transition probability P~g occurs

when co= /3~~.. But since all the frequencies co have the same energy contribution (see

Eq. (l)), the decisive factor for the choice of a certain transition will be the time

independent multiplier in Eq. (2). Hence, those two states k and q for which

(5)

will have the highest probability to be detecttil.

The property (5) can be mapped into several computational problems, and, for the

purpose of illustration, we will choose the following one: given n different items to be

distributed over n different places; the cost of an /Yh item put in a y’~ place is l!). Find

such a distribution that the total cost is equal (or the closest) to a prescribed number a2.

This problem is typical for optimal design, and it represents a so called design to

cost approach. Since the cost of a particular distribution is expressed by the sum

(6)



one has to compute all the n“ sums (6) in order to find those E~ which is equal (or the

closest) to a, i. e.,

E~=a2,  o r  E~–a2=min Ej–a2
k=l..  N

(7)

Eq. (7) represents a global constraint, and therefore our problem belongs to the class of so

called constraint satisfaction problems which are the hardest among other optimization

problems. The constraint (7) prevents one from partitioning the solution into smaller-size

sub-problems, and therefore, the problem is NP-complete:  its computational cost grows

exponentially with the growth of the dimensionality  n.

Now we will show how this problem can be solved by the quantum device

described above in one computational step.

First, let us represent the unitary matrix U. corresponding to the time-independent

Hamiltonian

U. = eif’”

as a direct product of n diagonal unitary matrices of the size nxn:

uo=u1@u2@”””c3u,,

while

[1
i~r)

e “’” o
Ur= i ““” :

0 i&. . . e

(8)

(9)

(lo)

Then the unitary matrix U. in (9) will be also diagonal
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and

Ho =
E, ‘.O o

. . . .

(0 . . . EN

while E j isexpressed by Eq. (6).

N = 11” (11)

Hence, if one select a!) in (10) as the costs of a /3’h item put in a y’h place, then

the eigenstates E j of the Hamiltonian  Ho will represent costs of all N = nn possible

distributions (6).

Now we have to choose the second component of the Hamiltonian,  i.e., HI (see

W. (1)) such that the highest  probability (5) includes the eigenstate  E, which satisfies the

constraint (7). For that purpose assume that

H,=(HO-*H: )F’(HO-*H:)

where P is the NxN idempotent matrix:

{1 ‘.. 1)

(12)

[JP=; ““” ““” ““”
1 . . . 1

Then, with reference to Eq. (3), one obtains:

<~oc  E~–&E; E~-&E:

(13)

(14)

Thus, the probability P& has its maximum when



E~ =a2, and E~ =a2
(15)

However, since Ej in Eq. (6) take only discrete values which may not commensurate with

the prescribed value a2, we will turn to Eq. (7) and replace (15) by the following:

IE, -a211E,  -a’l = min IE, -a21E, -a’ (16)1=1,...N
j=],.,,N

Thus, two states, k and q, have the highest probability to be detected if their eigenvalues

E~, and E~ respectively, are the closest to the prescribed value a’. Hence, in one (or few)

measurement these two states can be detected, and the problem is solved regardless of its

dimensionality  n.

Other computational mappings can be achieved by changing the representations of

(10) and (12).

The space required to perform computations described above grows proportionally

only to n2 because of direct product representation of the time-independent Harniltonian

(see Eqs. (8) and (9)). The second component of the Hamiltonian, i.e., 1{1,  (see Eqs. (8),

(12) and (13)) is representable in a similar way. The matrix in (13) (associated with a

projector operator), is factorizable into the direct product of the N-vector (1,1,...1) and its

conjugate. The last vectors, in turn, can be factorized into the direct product of n-vectors of

the same structure.

Thus, it has been demonstrated how a man-made problem of . .

computational complexity which cannot be handled by algorithmic methods,

exploiting a strongly pronounced physical phenomena: quantum resonance.

exponentml

is solved by
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