Ka-Band Atmospheric Noise Temperature Measurements Using a 34-Meter Beam-Waveguide Antenna

David Morabito, Bob Clauss, and Michael Speranza Jet Propulsion Laboratory California Institute of Technology

Tenth ACTS Propagation Studies Workshop November 19, 1997

Background

- NASA's Deep space missions have used 960 MHz, 2.3 GHz, and 8.4 GHz for spacecraft communication downlinks
- Ka-band (32 GHz) is being considered as a downlink frequency for future flight projects
 - Ka-band provides an advantage of 11.6dB (14.5 ratio) over X-band (8.4 GHz) in the spacecraft EIRP using the same transmitter output power and same antenna size
 - This downlink advantage is reduced to ~7 dB due to higher atmospheric noise, decreased ground station antenna efficiency and increased weather susceptibility at Ka-band
 - The higher Ka-band versus X-band downlink advantage can reduce cost, power, mass and volume of future space missions
 - In order to quantify this advantage, it is important to carefully characterize atmospheric effects at specific sites
- The Deep Space Network is supporting work to characterize the Ka-band atmospheric noise contribution at each of its three complexes

Surfsat- 1

- •Surfsat-1 was launched on November 4, 1995 on a Delta-II Rocket
 - Carries an experiment to evaluate X/Ka link advantage and transponders to test Space VLBI ground stations at X and Ku bands
 - Is in a sun synchronous polar orbit (937 km by 1494 km)
 - Is observable 2-3 times near sunrise and sunset from the DSN R&D 34-m beam waveguide antenna DSS 13 in Goldstone near Barstow, Calif.
- •Link experiment work deferred Signal level data at X-band and Ka-band not yet fully modeled due to unanticipated dynamic motion of spacecraft
- •Total Power Radiometer (TPR) data acquired from 192 tracking passes were processed to produce zenith atmospheric noise temperatures at Ka-band

Atmospheric Noise

- •At microwave frequencies, atmospheric attenuation is a significant source of external noise in earth-space communication systems
- •Opacity (or absorption) in earth's atmosphere at mm and cm wavelengths is primarily due to the combined effects of water (H_2O) and oxygen (O_2)
 - O₂ is well distributed in the atmosphere and is relatively steady during a pass (8 km scale height)
 - ~2K at X-band (8.4 GHz)
 - ~4.5K at Ka-band (32.0 GHz)
 - H₂O vapor is concentrated in the lower 2 km near surface and is the principle variable component in atmosphere (2 km scale height)
 - > ().2 K at X-band (8.4 GHz)
 - >3 K at Ka-band (32.0 GHz)
 - H₂O hydrometeors
 - variable on time scales of minutes

Data Acquisition

- •Surfsat- 1 tracking data were acquired at DSS- 13 in Goldstone, California
 - Passes occurred within 3 hours of sunrise or sunset
 - Passes were typically 5 to 20 minutes in duration
 - 418 total tracks between launch (November 1995) and December 1996
 - Elevation angles ranged from 7 deg (8.2 air masses) up to 90 deg (one air mass) depending upon particular track across sky
- •Total Power Radiometer (TPR) data were acquired for noise floor calibration of received signal strength data
 - 20 MHz filter bandwidth at X-band (8.4 GHz); 30 MHz at Ka-band (32 GHz); 5 sec integration time
 - Spacecraft signal was not in filter bandpass
- •WVR and surface meteorological data also acquired
 - WVR 31.4 GHz averaged brightness temperature over BWG tip curve time period was converted to 32 GHz for intercomparison.
 - Surface meteorological data converted to estimates of atmospheric noise temperature using model of Ulaby, Moore and Fung.

Model and Fit Strategy

- TOP measurements are "raw data" (192 data sets used in study)
- •Pre-fit Top's are estimated from raw TOP measurements by removing nonatmospheric dependent effects;

ATOP
$$(\theta) = T_{op}(\theta) - T_{ant}(\theta) - T_{equipment}$$

•The remaining signature in ATOP is atmosphere dependent;

ATOP (
$$\theta$$
) = Bias+ [$T_{cb}/L_{atm}(\theta) + T_{atm}(\theta)$]/ L_{ant}

T_{cb} is effective cosmic background (2.5K at X-band; 2.0K at Ka-band)

$$T_{atm}(\theta) = T_{O2} [1 - \exp{-\tau_{O2}}A(\theta)] \exp{-\tau_{H2O}}A(\theta) + T_{H2O}[1 - \exp{-\tau_{H2O}}A(\theta)]$$

$$L_{atm}(\theta) = \exp \left[(\tau_{O2} + \tau_{H2O}) A(\theta) \right], A(\theta) \text{ is airmass number } (\sim 1/\sin(\theta))$$

Reference: Kutner, M. L., Astrophysical Letters, 1978 Vol. 19, pp. 81-87.

- Ka-band data from 1 airmass (90 deg elev) to 5.5 airmasses (10.5 deg elev) are fit. X-band model derived from Ka-band fit for this study.
- Bias and τ_{H2O} are solve-for parameters from least-squares fit. (τ_{O2} calculated from surface model)
- Post-fit residuals are computed by removing the fitted model from pre-fit residuals. Scatter of these residuals is a measure of goodness of fit and/or "bumpiness" of atmospheric variations over pass.

Error Sources

- BWG Top measurement error sources
 - gain instability (-0. 1K)
 - thermal noise (0.005K)
 - atmospheric fluctuations (variable; dependent upon weather conditions)
- •Model uncertainty believed to be below ± 0.5 K in elevation dependent signature of non-atmospheric antenna model (tripod scatter and backlobe pickup)
- •Selection effect near-dawn or near-dusk observations only
- WVR and BWG intercomparisons
 - ±0.5K absolute calibration error of each system
 - BWG and WVR spatially sampling different atmosphere
 - 31.4 GHz to 32 GHz correction accounts for water vapor and oxygen but not for water droplets

Results

- For each pass, an Atmospheric Noise Temperature at zenith, $T_{atm}(90)$ was estimated from available BWG Tip Curve, WVR, and surface model meteorological data
- Statistics on these estimates over all available passes are presented below

	Mean	Mean RMs		Maximum Number of Passes		
BWG	10.6 K	4.0 K	7.3 K	56.2 K	192	
WVR	11.0 K	2.0 K	8.1 K	16.5 K	115	
MODEL	9.4 K	1.8K	6.1 K	16.2 K	173	

Example of 'Clear' Weather Data 96-150b Raw Top Data and Post-Fit Residuals

BWG versus WVR

Concurrent Data Acquired During Tip Curve Periods

Zenith Atmospheric Noise Temperature

 T_{WVR} , K

- •BWG and WVR $T_{atm}(90^{\circ})$ are in general agreement
 - typically within ±0.5K absolute uncertainties of each system
 - larger differences could be explained by both systems sampling different spatial areas of sky
- A linear fit of the 115 common data points yields

$$T_{BWG} = 0.96 T_{WVR} - 0.12K$$

 $\pm 0.04 \pm 0.40K$

0.76K rms scatter about fitted line

Cumulative Distribution

810-5 is internal JPL DSN document used by flight projects

CONCLUSIONS

- BWG Ka-band TPR Data Acquired During Surfsat-1 Provides Valid Estimates of Atmospheric Noise Temperatures
- •BWG and WVR Estimates are in Agreement within Uncertainties of Both Systems