DRAFT* DRAFT * DRAFT * November7, 1997, 3:26pm  * DRAFT * DRAFT * DRAFT

Optimal Detection of Global Warming using Temperature Profiles

STEPHEN s. LEROY

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Manuscript Submitted November ??, 1997

Corresponding author address: Dr. Stephen T.croy, Karth and Space Sciences Division,

Jet Propulsion Laboratory, mail stop 183-335, Pasadena, CA 91109



ABSTRACT

Optimal fingerprinting is applicd to estimate the amount of time it would take to de-
tect warming by increcased concentrations of carbon dioxide in monthly averages of tem-
perature profiles over the Indian Ocean. A simple radiative-convcdive model is used to
define the structure of the warming signal, and the ] 00-year control run of the GFDL,
atmospheric oceanic global climate model is used to estimate the natural variability of
the upper air temperatures. The signal is assumed to be the difference in two period of
data, cach period consisting of twelve Consecutive mont hs of mont hly average tempera-
ture profiles. When the variability of monthly averages are assumed independent of each
other, the difference in August upper-air temperatures yielded the strongest fingerprint,
giving a time span for a 1 -sigma detection of 22 years. When only August surface ter -
peratures are used, the 1-sigma detection time is 43 years. When correlations of natural
variability between months arc considered, the 1-sigma detection time becomes 10 years,
13 years for surface temperatures.

In optimal fingerprinting the detection times can be critically dependent on small, un-
certain aspects of the signal shape used to detect a particular signal. The methods used
to climinate such a possibility are adhocinthis work, yet a formal method to properly

handle such difficulties should be construct in the future.




1. Introduction

That the near-surface temperature of the Earth’s atmosphere has been increasing over
the last scveral decades is almost certain; however, whether the warming is attributable
to increasing levels of greenhouse gas concentrations is still questionable (1 PCC 95).
The issue of attributability is commonly addressed by looking for distinct ive features
in the pattern of the observed warming which are predicted by theoretical models of the
climate system. Recent pattern-basd studies have examined surface temperature data
from the past century (Iegerl et al. 1996, 1997) and radiosonde records from the past
50 years (Santer et al. 1995, 1996). Only the former used a formal statistical technique
known as “optimal fingerprinting,” which specific.ally weights those components of the
expected pattern so that much of the natural variability of the climate is climinated
(Bell 1986, Hasselmann 1993, North ct al. 1995). The result is a signal-to-noise ratio
(or a tinlc-series of signal-to-noise ratios), which gives the probability that a natural
fluctuation of the climate could explain the trend that is secn in the climatological data.

Leroy (1 998) has shown that the technique of optimal fingerprinting is a special case
of Bayesian statistics in which the pattern of the signals are assumed as known and
the unknowns arc the amplitudes of the signals to be detected. Consequences of this
approach are (1) that optimal fingerprinting is able to perfectly distinguish between
different forced climate signals, no matter how similar their patterns, and (2) that any
error in the prescription of the signal patterns leads to confusing the detection of one
forced climate signal for another. The first allows us to detect several forced signals
without having to impose a priori conditions on the ratios of the signal amplitudes to
be detected, and the second dictates that care must be taken when relying upon signal
patterns which are to be used in climate signal detection studies.

The results of the pattern-l)asd signal detection studies to date, most of which
concentrate on glol]al-scale horizontal patterns (egerl et al. 1996, 1997), point

toward a human influence on present trends in the Earth’s climate (IPCC 95). This
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conclusion, though, is largely based on the absence of substantial long-term natural
variability of the climate as prescribed by long control runs of atmosphere/ocean global
climate models (A OGCM’s). Many AOGCM’s contain a “flux adjustment” in order

to maintain realistic climatc states in cases where occan circulation tends to magnify
discrepencies in the surface energy balance (11 *CC 1 995). This type of adjustinent could
suppress some interdecadal variability which the ocean circulation might realistically
generate. If indeed there is increased interdecadal variability caused by changes in

the ocean circulation, one need not rely on improved modeling to differentiate such
variability from trends causedbyincreasedgreenhouse gas forcing. For instance, it is
expected that a change in occan circulation ought to impact the vertical structure of the
atmosphere differently than does warming by increasing concentrations of greenhouse
gases. Furthermore, the pattern of stratospheric cooling and tropospheric warming by
increasing greenhouse gas concentrations may be quite different than natural climate
patterns of tropospheric and stratospheric fluctuations. ‘J'bus, we are pointed toward the
necessity of applying pattern-bad studies to changes inthe vertical structure of the
climate.

‘The data scts available at present for pattern-l)ascd studies arc unsuitable because
they either suffer from calibration error or incomplete global coverage. For instance, the
50-year rccord of radiosonde measurcments (Angell 1988) suffer from both inadequacies
(Gaflen1994). With the scheduled launching of instruments such as the Atmospheric
Infrared Sounder (Aumann and Pagano 1994) as part of KOS, we can expect a deluge of
data which is potentially suitable for pattern-based studies of changes in the vertical
structure of the atmosphere. in addition, two remote sensing experiments have been
proposed which would obtain global coverage with negligible calibration error: one
of which is radio occultation of the atmosphere using the global positioning system
(Kursinskiet al. 1996, 199'7, Leroy 1997) and the other is a high resolution infrared

interferometer, both of which are low cost (Goody ct al. 1997).
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In this paper, optimal fingerprinting is used to investigate the likelihood of detecting
changes in vertical temperature which are attributable to increasing concentrations of
greenhousce gases. For the sake of simplicity, only temperature profiles in the region
of the Indian Ocean are considered, and it is anticipate that the data set to he
obtained is only onec year in length. This snapshot of the atmosphere would thenbe
compared to a similar snapshot of the atmosphere several years hence to identify trends
possibly attributable to increasing greenhouse gas concentrations. Kven though raw
mcasurements can be used in optimal fingerprinting, such as infrared radiances from
ATRS or an interferometer or refractivities from GPS radio occultations, in this study
temperature profiles are used.

In the second section of this paper a brief introduction to optimal fingerprinting is
presented following Hasselmann (1993, 1997). in the third section is an analysis of
how long it should take to positively attribute a trend inthe temperature profile to
greenhouse-gas induced warming it it is indeed present. This analysis first assumes
that only an individual month of data is taken in cach of the two snapshots of the
atmosphere over the Indian Ocean and then assumes that an entire year's worth
of monthly averages is taken incach snapshot. The final section of this paper is a

discussion of the implications of this work and work which mmust be done in the future.

2,0ptimal fingerprinting

In a pattern-based detection study, it is anticipated that we have N data clements
which comprisc a data vector d.The elements of this vector canbe any type of
measurcement or post-processed measurement such as temperature as measured by a
surface meteorological station, a temperature at 300 mbars as retrieved froin a radiance
measurement from space, a monthly mean geopotential height of the 200-mbar surface
over a spccific location, etc. Furthermore, it is required that a climatologi cal mecan is
removed from d. This can be done in many ways. For instance, if an element is a Fourier
transform component of a time series, no mean is involved. Also, one can take two
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snapshots of the atmosphere and take the difference of like elements, thus eliminating

a climatological mean. In the end, the data vector with N clements can be written as

m

d: }_:51'()(1"| n (1)
il

in which m signals arc hypothesized to be present, the ’th signal is expected to have a
pat tern .S; as sewn in the data, the amplitude of the ’th signal is @i, and n is a Gaussian
noise component which describes the natural variability of the atmosphere as seen in
the data d. Each of the m signals is the response in the data to an “external” forcing,
such as variations in solar insolation due to the 1 1-year solar cycle, decreasing levels

of stratospheric ozone, etc. The statistics of the climate variability component can be

adcquately described by its covariance
AT
N = (nn’). (2)

The signal patterns can be rewrittenin the form of a matrix S with N rows and m
columns, the #’th column of which is the pattern of the 7’th signal i
At first it is instructive to find signal amplitudes given signal patterns S without

regard to the nature of the climate variability. This is done by define x? as

(d- Sa)’ (d- Sa) (3)

2 _

Xnonoptimal -

which is simply the sum of the square of residuals after the signals are removed from the
data. The signal amplitudes are found by minimizing ximmpmna] by varying it ina. The

solution is
el = CL i d (4a)
Qnonoptimal = “nonoptimal ¢
where
- s(s”s) ! (41))
C nonoptimal -
The columns of Chonoptimal ake up a set of vectors called signal adjoints, the ’th

colmmmn of Cronoptimal projecting only onto the 2’th column of § and no other. In this

case, note that the adjoint vectors which comprise Cuonoptimal Span the samc space as
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the vectors which comprise S. Using the adjoint vectors, it is possible to detect signals
with the patterns prescribed by S by simply cross-correlating them with the data set d.
This pattern-based detection method is nonopt imal, though.

Detection can be optimized by redefining x?2, essentially dividing the residuals by the
noise. In doing so, large residuals are permitted where the natural variability of the
climate is expected to be large anyway, but residuals arc more strongly penalized where

the climate is not expected to vary naturally by very much. The redefinition is
2 ima 2 (d- Sa)'N 1 (d- Sa) (5)
Xoptimal = ¢ « (~ ). )

The signal amplitude o which minimizes Xgptimal is found, as usual, by varying a and

setting 5x0ptima1 "0. The result is the “most probable” signal amplitude a,,,, whit]) is

am - C'd (6a)
where

C:-N's (8N 's) . (6b)

The columns of C arc the optimal adjoints of the signal patterns given by the col i nns
of S. Once again, the2’th optimal adjoint pattern has a nonzero correlation with only
the 2’th signal pattern §;. The space spanned by the optimal adjoints is that spanned by
the cigenvectors of N.

The uncertainty in the calculated amplitude qy, is a covariance matrix A inthe
clements of . The uncertainty in the amplitude of the 2’th signal is just the square root
of the #’th diagonal clement of A. This covariance matrix is found by varying the data d
by the natural variability 1, estimating the changein the signal amplitude da = oy,

and calculating the ensemble average
A {6 daT) (7)

which yields
A:(S"N sy (8)
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The uncertainty in the signal amplitudes can be determined given the prescription of the
signal patterns and the natural variability but without, any real data.

While the theory is clegant and all the quantities are well-defined, working with the
natural variability covariance matrix N can be problematic. In general, one would
compute the natural variability matrix by taking the ensemble average of climate
fluctuations, as in Eq. (2), from a long control run of an AOG CM. The dimension of
N is the number of members in the data vector d, which can be a large number indecd.
If an ensemble of 100 elements is used to calculate N, then if its rank N is greater than
100 , the matrix N will have at least N - 101 cigenvalues which arec zero. In that case,
N cannot be inverted. This problem is avoided if wc retain only the first { cigenmodes
of N as suggested by Hasselman (1993). In this situation, the cigenvalues of N are Ay
and the cigenvectors arce P, Pr being the E’th column of matrix P. If only a subset of
1 cigenmodes is retained, then a truncated noise covariance matrix and its inverse are

defined as
N,: P, L, Pl (9a)
N, ': por P! (9b)

in which Pt is the truncated sct of 1 cigenvectors and Ly is the diagonal matrix of
corresponding cigenvalues. With these definitions, note that N,' is not the true matrix
inverse of N, but that N, ! N;: P, P Equations (6) and (8) remain valid nonetheless.
When the problem is formulated this way, it becomes convenient to think of the de-

tection problem in terms of ‘(indicators.” These indicators arc obtained by resolving
the data set d into [ numbers by projecting the ! retained cigenmodes onto d. Essen-
tially, only [ linear combinations of the original data sct arc kept. T'hese are the indica-
tors. These indicators can then be used by themselves to solve the multiple climate sig-

nal detection problem. The only caveat is that the number of indicators retained must



be greater than or equal to the number of signals to be detected. Otherwise it can be

shown that the quantity 87 N;l S, which appears throughout, has no inverse.

3. Application to temperature profiles

In this section, the theory of the previous section is applied to calculate the uncer-
tainty A in the determination of signal amplitudes given a prescription of the natural
variability. Kquation (8) is used to calculate this uncertainty estimate, which does not
involve the use of any data. The result will permit an estimate of how large a signal
should be before we can be certain it is not a natural fluctuation of the climate.

The data arc monthly average temperature as a function of pressure as measured
in onc global region for two periods of twelve consccutive months widely spaced in
time. The region chosen in this study is the Indian Ocean, which is defined by 50° to
90°k longitude and 100S to 10*N latitude. The Indian Ocean is chosen because it is
anticipated that the natural variability of upper air temperature there is smalland a
simple radiative-convective model can be used to gene.rate a signal shape. The pressure

levels chosen span 10 to 1000 mbars logarithmically:

pi- (1() mbars)x 1 ol 1)/20 (lo)
where ¢ Tuns from 1 to 41 . T'he clements of the data vector d are the differencesin
temperature over a long time baseline for the given pressure levels and the twelve
months of the year. The data vector The months are ordered as January through
1 ))ecember. ~’bus, d consists of temperature changes for 41 different pressure levels and
12 different months of the year, yielding 492 elements for d,and a 492-by-492 matrix for

the natural variability covariance N.

a. The signal pattern
The only pattern sought in this study is the result of increasing concentrations of

carbon dioxide. Since only one signal is involved, the signal pattern matrix S becomes a



vector sof dimension 492 and the amplitude uncertainty covariance matrix A becomes
a scalar a.

The signal pattern is obtained from a one dimensional radiative-con vective model
(Lindzen et al. 1982) covering 0 to 40-km altitude of a cloudless atmosphere. The
cutnulus convection scheme is that of Lindzen (1 981, 1982) and the radiation scheme
is taken from Chou and Suarcz (1994). The solar flux is set to 1374 W m?, the surface
albedo to 0.15. The diurnal cycle is omitted, but is simulated by sctting the solar flux at
the surface to half its daylight average. T'he daylight, average cosine of the zenith angle
is set to 0.5. The mixing ratios of methane and nitrous oxide are set to 1.75 ppmv and
0.3 ppmv respectively. Equilibrium tem perature profiles are obtained by integrating the
model for 600 days with the carbon dioxide mixing ratio set to 330 ppmv and then to
396 ppmv, a 20% increasc.

The equilibrium temperature profile as a function of pressure for a carbon dioxide
mixing ratio of 330 ppmv is shownin Fig. 1, and the change in the equilibrium
temperature profile resulting from increased carbon dioxide is shown in Fig. 2. The

latter is the signal pattern s.1t is assumed characteristic of each month of the year.

b. The natural variability

The natural variability is computed using the 1 00-year control run of the Geophysical
Fluid Dynamics Laboratory (G FDI1.; Gordon and Stern 1982, Manabe et al. 1991). The
model’s atmospheric grid is gaussian with 48 longitude elements, 40 latitude elements,
and 9 vertical o-levels spanning the surface to 25 mbars. It is a fully coupled AOGCM.
The data, which was obtained from the National Climatic Data Center, are monthly
averages over a span of 100 years, giving 1200 time steps of output. The temperature
profiles are interpolated onto the pressure levels defined by Eq. (1 O) logarithmically in
pressure.

The natural fluctuations of temperature are obtained by subtracting the average
temperature profile and the annual cycle. The natural variability covariance N is
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calculated by defining the ensemble members over which to average as each year of
the 1 00-year run. This method captures the model’s natural variability in upper-air
temperature with frequencies less than ~ 1 yr !, which is appropriate since the simulated

data spans just one ycarin time.

c. Signal adjoints and uncertainties

The optimal fingerprints (signal adjoints) and the uncertainty in signal amplitude arc
calculated. The signal adjoints arc found using Fq. (6) and the amplitude uncertainties
are calculated using Xq. (8). The climate variability is a truncated version of the full
covariance, as defined by Eq. (9). The profile of the range of temperature fluctuations

for August, is shown in Fig. 3.

1) NO 1 NTERMONTH CORRELATION

At first, the fluctuations of the climate are considered independent from month to
month but not from vertical level to level. Detecting the signal s turnsinto twelve
independent problems, one for each month of the year, each with its ownsignal adjoint
vector ¢;, amplitude estimate a;, and amplitude covariance @;- The index i is for the
month of the year, and equations (6) and(8)apply to cach month individually. The
natural variability covariance N; is computed for cach month, and the cigenmodes and
cigenvalues are found for cach Nj. For example, the first four eigenmodes for August are
shown in Fig. 4.

Recall that the matrix Py is defined as a subsct of the complete cigenvector set for
the climate variability covariance matrix N. lere, the cigenvector matrix is composed
of the I modes with the largest cigenvalues. The degree to which cach of these modes
contributes to detecting the signal s depends on how much of the signal is described
by the cigenmode and how much of the climate’s natural variability is in that mode.

To evaluate the former dependence, the degree to which the signal s projects onto each
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mode is given by

¢ : P;‘; (11)

The latter dependence is just the cigenvalue of that mode. The uncertainty covariance a,
otherwise given by Eq. (8), can be rewritten as
{ d)2
Y k
a:<L7> ‘ (12)
1 2%
in which ¢ is the k’th clement of ¢, Ap is the k’th cigenvalue, and the extra factor of
2 is included bLiecause a diflerence must be taken between two different years. If o, is

the amplitude of the signal as it might cierge in the data, then the si.gnal-to-noise ratio

SNR of the detection is given by ozm/a]/?, or

1 2
2 \* _‘/’k

SNR? - .
L) = 2)‘1'

(13)

Figure b shows twelve spectra of (j)z and 2}, onc for cach month of the year. The
ratio of ¢f to 2X; for cach cigenmode is the amount of SNR? contributed by cach
indicator given a,, - 1, or the presence of the signal s in the data d. There is a
clear cascade of eigenvalues for cachmmonth, but the projections (f)% do not cascade as
smoothly. In fact, beyond some eigenmode number, the projections (J‘)z become highly
irregular, reflecting the fact that the signal s will project onto an cigenvector regardless
of its eigenvalue. Depending on what set of modes is retained as the indicators, it seems
possible to obtain any signal-to-noise ratio for detecting the climate signal s we desire.
T'his deserves c.loser inspection.

In general, the modes of variability with the largest cigenvalues are associated with
the largest vertical features, and the modes with the smallest eigenvalues with the
finest vertical features. ‘1'bus, the coarsest features of the signal s are represented by
the modes with the largest associated variability. To illustrate this point, the signal is

projected onto the first I modes of variability and expanded by those same modes:

sp- PPl (14)
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where s is the reconstructed signal and P is thematrix containing the first / modes of
viability. The reconstructed signal sy is dependent on the number of modes included
(1), and is shown in Fig. 6 for I from 1 to 6 using the eigenvectors for August. The
first five modes describethe coarsest scales of the signal well enough, such that the
remaining differences between the signal and its reconstruction are more likely the result
of a flawed model than details of a realistic signal. ‘1’'here is no reason to trust a 1-d
radiative-convective model (or any other model) to give arealistic signal shape down
to such fine detail. ‘1’'bus, the higher order modes cannot be justifiably used as indicators
in this detection problem and only the first five modes are used (1= 5 in Kq. (9)).

T'alit 1 gives the signal-to-noise ratio for cach month given 1 = 5. Recall that
oy, = 1 reflects the consequences of a 20% increase in carbon dioxide. For purposes of
comparison, table 1 also gives the SNR that is obtained if only the surface temperature
(p- 1000 mbars) is used. The signal is most probably detected in August, with an SNR
of 1.80 (v, = 1). Assuming a carbon dioxide growth rate of 0.5% per year, it would take
22 years ((40 years)/1 .80) to obtain a 1 -sigma detection of anthropogeni cally-induced
warming in August upper air temperatures. In comparison, it would take 43 yecars ((40
years)/0.93) to obtain a I-sigma dectection using the August surface temperature alone.

Many previous detection studies have used only surface temperatures to detect climate
signals, so it is instructive to estimate how many extra independent indicators one
gains by using upper-air temperatures in addition. The ratio of the SNR obtained using
upper-air temperatures to the SNR obtained using surface temperature is approximately
the square-root of the number of independent indicators compared to just one indicator
for the surface temperature. By this method, the number of independent. indicators is
approximately 2 to 3 times the number of surface temperature indicators, according to

table 1.



2) WITH INTERMONTH CORRELATION

Next, the fluctuations arc assured correlated between levels and months of the year.
The signal s contains 492 clements and bears the same structure for each month of the
year, as shown in Fig. 2. Kquations (6) and (8) applied in full.

Figure 7 shows the spectra of both the projection of the signal onto cach mode
of variability and twice the variance A of that mode. Recall that all months of the
year arc coupled together and thus only a single spectrum is necessary. As before,
it is possible to obtain a nearly infinite SNR in detection if every modec is included.

In this case, the signal is spread over many more modes than previously, because in

coupling the monthg of the year together more modes of variability arc introduced. As a
consequence, how to truncate the series of projections becomes a more difficult, decision.
Figure 8 shows the sun of the first 1 square-projections Q’)%. normalized by the square of

the signal s2:

Cum ¢?(1) - (ZI:] ¢f)/(12>4_]%q?) (15)

A-
Recall that ¢y is the £’th clement of ¢ as defined by Kq. (1 1). The first cight elements

of s are dropped because the variability, which is computed using the GFIDIL. AOGCM,
dots not span pressures between 10 and 25 mbars. The cumulative square projection can
be thought_of as the fraction of the signal accounted for after including the I modes with
the largest variances.

The climate variability Ny is defined by truncating the sct of eigenmodes according to
Fq. (9). After truncation, the remaining l modes arc those with the 1 largest cigenvalues.
The number of modes retained is enough to give a cumulative ¢ of 0.90, shout, the
same cumulative ¢2 obtained by including 5 modes in the previous section. This
mandates keeping about 60 modes. The adjoint vector, which spans all months of the
year, is shown in Fig. 9. The SNR for this mecthod is 5.04. If, however, the first 72

modes arc used, then the SNR for detection becomes 6.06. Table 2 contains a list of the
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SNR for certain numbers of modes included (1). Clearly, the detectability of a signal is
heavily dependent on thel indicators used in the detection.

In comparison, the SNR for detecting a signal induced by a 20% increase in carbon
dioxide (ay,: 1), using only the surface temperature with intermonth coupling, is 3.05.
This is found by first taking the subset of the total climate covariance N corresponding
to the 1000-mbar temperature fluctuations, defining it as Ny, a 12-1~y-12-clcnlent matrix.
Then the signal is defined as $s,a w-acene vector, cach element of which is set to the

clement of the signal § corresponding to 1000 mbars. The surface SNR becomes

SNRZ- a2, (sIN,'s,). (16)

‘I’bus, with intermonth coupling, it would take 7 years ((40 years)/5.04) to obtain a

1-sigma (a,, = 1 /5.04) detection of carbon dioxide-induced warming using upper air

temperature but 13 years ((40 years)/3.05) using only surface air temperature.
Certainly, natural fluctuations of the climate can generate temperature trends over

a 7-year timescale than can swamp the eftects of warming by increased greenhouse

gases. P’rovided that the modelused to simulate the variability approximates decadal
timescale variability wall, the statistics done here properly take such natural trends
into account,. Note that a 1-sigma detection mcans that there is a 32% chancre that a
natural fluctuation of the climate will overwhelm the signal. This is not aninsignificant
probability, and thus at least a 3-sigia detect ion should be sought.

The results for SNR obtained so far can be casily modified by selecting a different
set of modes to redefine the climate variability. Another plausible approach is to select
only those modes which account for most of the signal. This amounts to sorting by
descending squared-proj ections ¢2 as defined by Kq. (11). The cumulative square
projection Cum 4°(1) (c.f.}2q. (1 5)) is then defined after resorting, and t he signal-to-
noise ratio can be redefined accordingly (cf. ¥4. (13)). The cigenvalues of the variability

Ap are resorted by decreasing ¢7 as well.



The SNR /oy, is plotted as a function of the cumulative square projection in Fig. 10.
Logically, as more modes are included, the SNR increases. In fact, it does so steadily
until about 80% of the signal is accounted for, at which point an abrupt jump in the
SNR occurs. The jump occurs because of the contribution of mode 69 in Vig. 7. By
itself, this mode can generate an SNR of 2.53 even though it only contributes to 0.0064
of the squarc of the signal shape |s|2.

‘J’here arc many modes which can contribute iimmensely to the signal-to-noise ratio
of the detection of the carbon dioxide warming signal, but all of these correspond to
very small components of the input signal. If in fad we could impute confidence in their
begin important components of the signal, then these are the components which should
be most sought after in signal detection studies and observations. If on the other hand
there is no reason to helieve that these components arc trustworthy indicators of the
presence of the signal, then it would be a mistake to usc them at all. in this case, there
is no recason to helieve that the component of the signal which projects onto mode 69 of
the variability is a realistic component of the signal. ‘1’here is no reason to assume the
radiative-convective model is correct cnough to give us certainty in this mode.

In the end, the best estimate of the SNR obtainable is that obtained before mode 69 is
included. The SNR obtained by including the first I modes with the largest projections
onto the signal is 4.11for o, = 1. This implies that a 1-sigma detection of carbon
dioxide-induced warming should take about 10 years when one year’'s worth of monthly
averages is compared to another ycar’s worth of monthly averages over the Indian

Occan.

4. Discussion

T'he evidence for greenhouse ~as-induced warming will be convincing when the
significance of detection exceeds about 3-sigma. Given a 1 -sigma detection time of about
10 years, the 3-sigma time is about 30 years, or about three fourths of the signal shown

in Fig. 2. Given this figure, several complicating aspects of detecting this signal remain.
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First, optimal detection requires a certain degree of accuracy in the obscervations to

be used. Secondly, the signal being sought must be computed with some quantifiable
confidence. Tbird, the background variability of the atmosphere required by optimal
detection can only be provided by imperfect modecls. Finally, the work presented in this
paper necds to be expanded to encompass horizontally global coverage and different
realistic data types.

The philosophy behind optimal detection is to identify a forced signal in climate data
even when it is very weak. For optimal detection to apply to real data, the observations
must certainly be able to recognize such a signal in the absence of climate noise. Hence,
the observations must have systematic errors less than the temperature differences
involved, which areabout 0.5 K. While this seems like an extraordinary restriction,
there are potential methods of observing the Farth’s climate with such small systematic
errors. Such methods include GPS radio occultations and high spectral resolution
infrared spectroscopy. Then again, even if the systematic errors are comparable to 0.5
K, they aretroublesome only if they can possibly imitate the form of the temperature
signal. For instance, a systematic error which is uniform across all vertical levels can
be distinguished from the expected signal pattern which is not uniform across vertical
levels. If estimable, the systematic errors canbe properly accounted for by adding their
covariance to the natural variability covariance matrix and proceeding as discussed in
this papecr.

Optimal fingerprinting and hence attribution  of greenhouse gas-induced global
warming requires prior knowledge of the form of the forced climate signal, which can
only be estimated using imperfect models. While some bulk properties of the signal may
be predicted reliably, the sensitivity of optimal fingerprinting to small components of
the uncertain signal shape is troublesome. The methods used in this work to cut out
those components which give unrealistic signal-to-noise ratios arc ad hoc, there being

no alternative technique to formally consider uncertainties insignal shapes. Since the
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difficulty is a direct consequence of uncertainties ininput quantities, it scems that a
Bayesian analysis would be the best way to approach this problem formally.

In optimizing the detection and attribution of greenhouse gas-induced global warming,
a prescription the natural variability of the atinosphere is necessary so that specific
components of the forced signal can be emphasized over others in organizing the data.
The prescription of the variability must come from AOGCM’s and is thus flawed.
Ultimatcly, confidence in the prescriptions can be gained whew the processes of the
models arc checked statistically against data and subsequently improved. Methods for
such testing are described elsewhere (J Taskins et al. 1997, Polyak 1996). No practical
method for improving models once this testing has taken place has been formally
presented. In the meantime, one must try to avoid components of simulated variability
which are exceedingly small and use as many different prescriptions of the variability as
possible.

Even though the base timescale estimated for detecting (and attributing) carbon
dioxide warming of the atmosphere is approximately 1() years for a 1 -sigma detection,
much more can be done to possibly improve upon this figure. This study only concerned
monthly average temperatures in the region of the Indian Ocean. Subsequent work will
expand to horizontally global coverage, first by including more regions in addition to
the Indian Ocean. Most likely there arc several regions of the globe whose variabilities
arc largely uncorrelated, the result of which will be to augment the potential SNR
of a detection by the square--root of the number of independent regions. Secondly, in
subsequent studies, different types of data, such as those mentioned above, will be
examined as potential data types to reveal greenhouse .gas-induced global warming.
Actual data types must be simulated because temperature profiles in the atmosphere are
newer truly measured: it is only sonic kernel of temperature profiles (and water vapor
and cloud profiles) which is measured. Thirdly, subsequent work will include the forms

of other potential signals in order to climinate the possibility of filter leakage (l.croy
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1998). For example, a signal in temperature profiles can be produced by an independent
warming of the ocean surface layer which probably has similarities to greenhouse gas-
induced warming. Confusion hetween the two signals can be eliminated by simply

including both in the sct of signals S described insection 2.
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Table Captions

TABLE 1. The signal-to-noise ratio for detecting the signal from a 20% increase in
carbon dioxide intemperature profiles and surface temperatures averaged over the

Indian Ocean. Liike months are diflerenced (e.g. January to January, etc.). T'he signal
is calculated using a radiative-convective model and the variability is taken from the

GFDI, 100-year control run but assumed uncorrelated between months.

Month SNR /oy, Surface SNR/
January 1,457 1.187
February 1.307 1.186
March 1.471 0.952
April 1.439 1.120
May 1.752 1.100
June 1.754 1.034
July 1.475 0.860
August 1.802 0.926
September 1.627 1.010
October 1.670 1.019
November 1.643 1.051
December 1.641 1.163

TABLE 2. The signal-to-noise ratio for detecting the signal from a 20% increase in
carbon dioxide in temperature profiles after including the first lmodes of variability.

Also included is the fraction of the signal accounted for after including the first 1 modes

SNR /gy,

of variability. S

I Cum ¢*(1)

12 0.625 2.337
24 0.754 3.025
36 0.813 3.627
48 0.868 4.719
60 0.877 5.042
72 0.891 6.059
84 0.904 8.071
96 0.908 11.843
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Figure Captions

FIG. 1. The equilibrium temperature profile of a 1-d radiative-convective model with
CO2 concentration of 330 ppmv.

FI1G. 2. The difference between a radiative-convective equilibrium temperature profile
given CO2 concentration of 396 ppmv and one given a CO2 concentration of 330 ppmv.
FIG. 3. The variance range of the monthly average temperature as a function of
pressure for August over the Indian Ocean as determined by the first 100 years of the
GFDI, 1000-year control run.

FIG. 4. The first four cigenvectors of variability for monthly average August temper-
ature over the Indian Ocean. The cigenvectors arc scaled by the square-root of their
cigenvalues. The variability was calculated using the first 100 years of the GFDI1, 1000-
year Control run. The first eigenmode contains 41% of the total variance (A), the second
contains 31 % (B), the third contains 1 s« ), and we fourth contains 5% (D).

FIG. 5. Spectra for the squared-projections and variability eigenvalues for cach month
over the Indian Oceant. The signal is determined using a 1-d radiative-convective model
and the climate “noise” is taken from the first 100 years of the GFDI. 100()-year control
run. The units arc K*, the open diamonds are for twice the cigenvalues, and the solid
diamonds are for the squared-projections.

FIG. 6. Reconstructions of the - 20% CO2 signal given the cigenvectors for August.
Reconstructions are shown after the first I eigenvectors are included for 1 = 1, .6
corresponding to A-F. The heavy line is the reconstruction and the lighter line is the
synthesized signal.

F1G. 7. Spectrum for the squamd-project ions and variability eigenvalues when the
months of the year arc coupled. The open squares represent the squared-projections gf)f.

and the smooth line represents twice the cigenvalues.
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F1G. 8. The sum of the squared-projections of t he COz-increase signal onto the first 1
modes. The sum is normalized by the square of the signal|s|? over the pressure range
spanned by the GFDIL model. The cigenmodes are sorted by decreasing cigenvalue.
FIG.9.The optimal adjoint using the first 60 cigenvectors of variability. The units of
the abscissa are 1 0* *K™ !, and multiplication of this vector onto the difference between
monthly average temperatures separated by many years gives the amplitude of the
signal in units of a 20% increcasc in carbon dioxide.

FIG. 10.Theamount of signal-to-noise available by including the first { indicators
versus the normalized cumulative squared-projection. The indicators arc sorted by

decreasing squared-projection (f)% onto the cigenvectors of the climate variability.
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Figure 3
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Figure 4
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Figure 6
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Figure 7
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Figure 8
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Figure 10
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