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ABSTRACT

Observations show that newly emerging flux tends to appear on the solar
surface at sites where there is flux already. This results inclustering of solar
activity. Standard dynamo theories do not predict this effect. Morcover, the
mean ficld predicted by dynamo theories is too weak to emerge a the surface
of the Sun. ‘1’0 solve the problem we suggest to take into account fluctuating
fields generated by the dynamo. The magnetic fields emerge at the solar surface
when the total ficld (the meanfield plus a fluctuation)) exceeds the threshold
for buoyancy. A slowly changing enhancement in mean field, predicted by
instability theories, provides a persistent basis (“Tmp™ ) for emergence of the
fluctuating field. T'he enhancements arve slowly destroyed by the solar differential
rotation, the time scae of whichdefinesthe life-tillle of clusters of activity. A
simple 2-dimensional model explaining the appearance of persistent clusters of

emerging flux is presented.

Subject headings: Sun: active regions - Sun: emerging magnetic fields



1. Introduction

Magnetic ficlds emerging on the solar surface initiate the solar activity. The distribution
of the ficlds carries clues to the mechanisim of magnetic field generation. One striking
feature of thisdistribution is clustering of activeregionsinto large-scale patterns called
“complexes of activity” (Bumba and Howard 1965, Gaizauskas et al. 1983, Harvey &
Zwaan 1 993). The complex of act ivity is defined as a cluster or sequence of act ive regions
(bipolar magnetic structures) which are related by proximity and by continuity of their
emergence. Complexes of activity arc typically formed within a solar rotation and live
typically 3 to 6 solar rotations during which they are refreshed by repeated injections of
magnetic flux. These flux injections appear and disappear in rapid, pulsclike succession
(Zirin 1974, Gaizauskas ct al. 1983). It is the {endency of magnetic flux to emerge near or

within regions of existent flux that results in clustering.

The physical mechanismof the clustering remainsunknown. The classical concept of
emerging {lux (Babcock 1961, Parker 1979) is based on the idea of a magnetic loop rising
from the convective zone to the solar surface due to huoyancy. Thie magnetic loops are
assumed to be caused by instabilities of the largescale, mean magnetic field generated by
the joint action of the differential rotation and mcan helicity of the convection (mean-field
dynamo). The mean-ficld dynamo explains the basics of the sunspot cyele: the Maunder
butterfly diagram and Hale’s law of the ficld polarities, and predicts a strong toroidal ficld
in the convection zone (¢, f. Moflatt 1978, Parker 1979, Krause & Radler 1981, Zeldovich
et al. 1983). Instabilities that couldlcad to the formation of emerging magnetic loops are
studied and incorporated into sell- consistentinodels of storage, instability and dynamical
cruption of magnetic flux tubes in the convection zone (see Schiissler et al. 1994, Brummell,
Cattanco & "Toomre 1965, Caligari et al. 1995 and references in these papers). According

to the instability models, whenthe field strength of a toroidal flux tube stool at the



core/convective zone overshoot layer exceeds a critical value, about 10° G, the flux tube
becomes unstable and then rapidly erupts to the surface of the Sun. The models are i a
good agreement with the basic observational facts related to sunspot magnetic fields in that
the flux tubes emerge at low heliolatitudes and have the correct inclination and asymmetry
with respect to the cast-west direction. One problem open to resolve is the magnitude of
the generated magnetic field. The mean-field dynamo theories do not predict such a strong
mean magnetic field (Moflatt 1978, Parker 1979, Krause & Radler 1981). The predicted
field does not exceed the equipartition field which is only about 10" G. Modeling the
eruption of these weak ficlds docs not go along with observations: they crupt in latitudes
which are too high, they show incorrect tilt angle, and their instability time is so long that
they cannot survive a destruction by motions in the convection zone (Schiissler et al. 1994).

Another problem is to explain why the new flux tends to emerge near the old one.

This paper suggests that solutions to both problems, of insuflicient field strength to
emerge and of the clustering, can be found by taking into account the random, fluctuating
magnetic fields inaddition to the regular, meanfield. Although it is not easy to characterize
the fluctuating fields, their exist ence is supported by observational and theoretical studies.
Observations evidence, for example, that no single large flux tube emerges when sunspots
arc formed. Instead, the sunspot magnetic field is asse mbled over a 1)(’lied of hours and
(1s)’s through the progressive gathering of many flux tubes (Zawvaan 1978). In accord with
these observations, it has been pointed out that the sunspot field appears as a dynamical
clustering of” many separat e flux t ubes(Parker 1 979). Morcover, the most of magnetic flux
emerging on the solar surface is apparently associated with fluctuating field. The magnetic
flux emerging in active regions represent the largescale end of @ continuous emerging flux
spectrumn (Rabin et al., 1991, Stenflo 1992). Theoretically, the generation of’ fluctuating
ficlds in the solar convection zone and their role in the generation of the mean field has been

widely discussed: for carly studies see for example Krause & Radler (1981), Zeldovich et al.
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(19%3), for numerical simulationssee for example Meneguzzi et al. (198 1), Brandenburg
ctal. (1990). Recently Ossendrijver etal. (1996) developed a solar dynamo model with
a stochastic kinetic helicity. Fluctuations of the kinetic helicity excite overtones of the
basic mode of the mean magnetic field. Schmitt et al. (1996) used magnetic fluctuations
as a stochastic forcing control of the dynamo leading to grand minimain solar activity.
Fluctuating magnetic fields are produced by random convective mot ions. The generation
of fluctuating magnetic field is less demanding then that of the mean field: almostany

t hree-dimensional random motions are eflicient (Molchanov et a. 1 984).

A model which involves fluctuating magnetic fields in sunspot formation has recently
been developed (Ruzmaikin 1997). Central o the model is a concept of “threshold crossing”
recently developed in the study of dynamical systems (see for example Wiesenfeld & Moss
1995). Our paper was restricted to the simplest one-dimensional model of the noise-periodic
signal interaction, where the periodic signal simulated the mean solar magnetic ficld
oscillating with 11-year period and the noise simulated fluctuating magnetic ficlds. The
basic objective was {o resolve the problem of the weak magnitude of the mean magnetic
field. Here we expand the model to two spatial dimensions and suggest an explanation
for the persistency of flux emergernice, i.c. for magnetic flux clustering. The persistence of
solar active regions was previously modeled as a percolation phenomenon (Wentzel &Seiden
1996, Seiden & Wentzel 1996). This approach will be compared with ours in the last section

of this paper.

2. Flux emergence as a threshold-crossing phenomenon

In accordance with the current knowledge, we assume that the largescale solar magnetic
ficld is generated near the bottom of the convection zone by joint action of the differential

rolationand helical convective motions. This location of the solar dynamo was recently



confirmed by the analysis of the SOIIO MDI helioscisimic observations (INosovichev et al
1997). The gencerated ficld is mainly azimuthal (toroidal) (Parker 1979, Krause & Radler
1981, Zeldovich et al. 1983). This ficld, if sufficiently strong (f3 > I3, ~ 10° Gauss,
where subscript “th” stays for “threshold™), is highly unstable: stitches of the toroid rise
through the convection zone and eventually crupt at the solar surface to form active regions
(Schiissler et al. 1994, Brummell, Cattanco & Toomre 1965, Caligari et al. 1995 and
references in these papers). However the strength of the field generated by the mean-ficld

dynamo is too weak to cross the threshold and emerge.

To resolve this problem, we assume that crossings of the threshold, required for the
fields to emerge to the solar surface, are provided by fluctuating magnetic ficlds (noisc)
superimposed on the mean field. Note that in the stability analysis by Caligari et al. (1995)
this threshold was obtained for the ficlds with the longitudinal wavenumbers e = 1.2
For the perturbations localized at higher wavenumbers the instability threshold is higher
and the demands on the amplitude of fluctuations would be much stronger. However
intermittent magnetic fluctuations are not localized in the Fourier space. Typically they
have a sclf-similar power-law spectrim with the power growing towards the largest scale.
Thus one can expect that the fluctuations with larger scales (smaller azimuthal m) play
the basic role in order to satisfy the requirements of the instability analysis. On the other
hand, the preferred emergence of the low-wavelength modes advocated by the instability
models scems Lo be inconsistent with the Tocalized nature of the emerging flux (Zwaan
1996). The problem, perhaps, can be resolved by modeling the emergence process near
the solar surface, where such effects as down {lows initiated by the emerging ficlds have
to be taken into account. Another way to resolve the problem is to consider small-scale
fluctuating ficlds in the upper part of the convection zone as “piggybacking™ on “humps™ of
the submerged mean field (Ruzmaikin 1990, Zwaan 1996). In this case the approach of the

present paper will be even more sound. However, for the sake of consistency we will base
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our consideration below on the instability model by Caligari et al. 1995.

An important feature of fluctuations is the absence of an upper limit on their
magnitude. Although the variance of fluctuations is limited, say by the equipartion hetween
the kinetic and magnetic energies, t heoccurrence of large random deviations is rest ricted
only by the form of distribution function of the fluctuating field. Thus. from time to time
the fluctuations are strong enouglhi to permit the magnetic flux emergence. Without the
mean field, Ilo~I"ever, thedistribution of the emerged fields on the solar surface would be
pure random. Thic mican field, being under-threshold, plays a crucial role in organization
of observed solar cycle regularities (Ruzmaikin 1997) and causes the persistency in flux

c1nergence, .. the clustering.

3. A cause of persistent, flux emergence

The persistency of the flux emergence can be understood as follows. The fluctuating
magnetic fields emerge continually whenever and wherever their strength randomly exceeds
the threshold. There is always a probability of pattern formation in random distributions,
however the observed, at least large-scale, patterns are interpreted as non-random (Harvey
& Zawaan 1993). The regular mean-field itselfl could form these patterns but the magnitude
of this field, as considered, is too small to overcome the buoyancy threshold and emerge.
What works is a combination of these two fields. The mean field forms an enhancement (“a
hump™) and whenever a coherent (having the same direction) fluctuating field of a suflicient
amplitude appear in the vicinity of the hump the resulting field eflectively emerges to the

surface of the Sun (Figure 1).

But where do the enhancements come from ? Their origin can be justified as follows.

The strongest component produced by the mican-field dynamo is an axisymmetric toroidal



field. This field propagates from high la itudes to the equator as a wave with 11-year
period. Thus a a given motnent of time he region around its maximum can be considered
as a toroidal belt. 1t is the stability of this belt that has been studied inthe instability
models (Schiissler et al. 1991, Brummell, Cattanco & Toomre 1965, Caligari et al. 1995).
T'he unstable modes are found to be non- axisymmetric (m # 0). This explains why the
ficld emerges in the form of a loop not as a whole belt. The growth times for instabilitics
arc found to be strongly dependent on the magnitude of the field I3 at the bottom of the
convection zone. For 13 > 10° Gauss the growth time is short enough so that a loop can
form and risc up through the convection zone hefore it could be destroyed by the solar
diflerential rotation. For weaker I, however, the field can “survive” a short phase of
instability without erupting because the growth of the perturbation can not keep up with
the continuous stretching by differential rotation (Schiissler et al. 1994). The stretching
time scale has been identified by these authors as confined between 100 and 500 days.
We identify these regions of slow instability with the localized enhancements of the mean

magnetic field.

In other words, we identify the life-time of observed clusters of activity with the
stretehing time scale due to the differential rotation at the bottom of convection zone. let
us estimate the stretching time. Consider a loop-type enhancement of the basic toroidal
ficld produced by dynamo. According to the induction equation the radial component of
this loop will be stretched into an azimuthal ficld as

f)uhy‘ 3 ”(/Q
ol ! dr

B,

We neglect the resisitivity term inessential at the time scale under consideration. Ilence
the stretching time can be define as inverse proportional to rdQ/dr =~ (r/Ar)AQ where
AQ the change in the angular velocity over the distance Ar mcasured in the solar radius.

The diflerential rotation AQ in the convection zone has heen inferred from the helioseismic
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data (for the latest results and references see Kosovichev et al 1997, figure 13). The radial
gradient of the angular velocity shows a noticeable latitudinal dependence. 1t is strong
enough at 60 deg so that (r/ Ar)AQ is comparable with © and hence the enha n cernent s
would not survive more than one rotation. The gradient, however, decreases toward the
lower latitudes and even changes the sign at shout 30 deg. Hence inthe latitudinal region
around 30 deg the enhancements of the miean field can survive for ma ny sola r rotations.

This gives a clue to the origin of the long-living clusters of activity.

4. A model of flux emergence

Let us incorporate the above ideas into a simple model. Consider two arcas of size
La x Lo, one represent a hottom of the convection zone and the other represent the solar
surface. In the middle of the bottom plane there is a regular pattern of characteristic size
La/4 x Lo/4, sce Vigure 2 where the pattern has the “Gaussian™ shape with La = Lo. The
pattern represents an enhancement of the mean magnetic ficld B generated by the dynamo.
To further simplify the situation we assume that the regular pattern is time-independent.
This assumption is justified by the fact that the life-time of activity clusters (a few
solar rotations) is much shorter than the solar cycle (a characteristic time of mean field

variations).

At times ¢ = 1,2,3, ... cach cell of the bottom is given a number produced hy a random
generator. The numbers are independent at different times and for diflerent cells. This
noise distribution represents the fluctuating magnetic fields b. Both the amplitude of mean
ficld and the variance of fluctuating ficlds are assumed to be subthreshold. When in a
cell at some time the total field (B + /ob exceeds the threshold By, = 1 a crossing mark
appears in a corresponding cell on the upper plane. Fach crossing is interpreted as a flux

emergence event. The emergence in our simplified model is approximated as instant, i.c. we
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neglect a time needed to a flux loop to travel from the bottom to the top. T'he parameters
¢ and ¢ arc introduced to simulate diflerent values of the mean field amplitude and the
noise variance. I'or the sake of simplificat ion, the sign of field is not included so that we
model only a magnitude of the emerging flux and do not simulate emerging bipoles. It is
clear that the number of crossings depends on the probability distribution of fluctuations.
although there will be some cross ings for any distribut ion function that has non-zero values

abovethet hreshold.

A simplest choice for the distribution of fluctuations is the normal distribution. We
used this distributioninmodeling. However there is 110 physicalreason to make this choice.
Observational studies of magnetogranis show that the solar magnet ic field is not distributed
normally (Lawrence et al. 1993). Theoretical considerations show that the distribution
function of dynamo generated magnetic fields is not expected to bhe normal (Molchanov e
al. 1984, Finn & Ott 1988). T'he main reason is the following. The nortnal distribution
charact erizes the additive random variables, such as random experimental errors. This is a
conscquence of thelaw of large nuinbers. The magnetic field generated by random motions
i s however not an additive but a multiplicative variable (Molchanov et al. 19s1). The
dist ribution functions for multiplicative variables have higher tails, i.e. higher probabilities
of strong fluctuations compa red to those p roduces with the normal distribution. [To better
understand this point take for example a multiplicative variable which is a product of
normally distributed variables. Then the logarithm of this multiplicative variable will be an
additive variable obeying the normal law. Hence the variableitsell obeys to the log-1iormal
law. ] In the numerical example b elow we approximate the high intensity tail of the

distribution by an exponential.

I'igure 3 shows a snapshot of a numerical simulation 011 the square area La = Lo = 15.

The threshold (13;,) is taken as a unit for the field amplitude. The magnitude of the
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mean field for the case shown is 0.8 of the threshold. The fluctuating field is exponentially
distributed with the variance o set to 0.2 of the threshold. *1'0 simulate the magnetic flux
disappearance (due to reconnections, diffusion and lift into the corona) we ass ume, quite
arbitrary, that every flux distribut ion, shown on one of the panels inVigure 3, is asumn of
what have emerged at the given moment plus the flux left from two previous steps. The
nuimber of these “I11C1101' " stepscanbe, of course, changed to better simulate the solar

conditions.

Inspite of random charact er of the emerging patterns there a preferred place in the
central region of pictures is clearly seen. The flux emerging in this region carries evidence

of the hidden. subs urface distribution of the mean field.

Figure 4 shows the emergence rate per unit time and per unit area for different values

of ¢ (the magnitude of the hidden mean field) and o (the amplitude of fluctuations).

5. Discussion

The simple model presented in this paper serves as a qualitative demonstration of
how active regions could persistently result from ran dom fluctuations superposed 011 a
weaker mean field. The mean field plays a vital role in producing the regular features of
the sunspots and the solar cycle itself. The fluctuating field is responsible for allowing the
mean field to be observed. The persistence of the emerging flux arises then as the result of
interaction between the fluctuating and mean fields: Enhancements of the mean ficld serve
as “humps” increasing the rate of fluctuating ficld emergence. We identify the life-time of
these enhancements, and hence the life-time of the clusters of activity, with the stretching

timie scale due to the diflerential rotation at the bottom of the convection zone.

Our approach to explanation of the persistence of emerging flux has to he compared



with the approach basal on percolation ideas (Wentzel &Seiden 1996, Seiden & Went zel

1 996). The percolation mode] starts computation by randomly designating 1 % of cells on
a two-dimensional region as active. At active cell then can induce activity in its neighbor
cell - like a tree hops a fire to anothier tree in the forest fire  with a prescribed stimulated
probability Py, The flux disappears by diffusing from active cells into empty cells with
another probability ). There is also a small spontancous probability /%, to support new
activitv. The assumption on hopping the activity to neighbor cells is crucial for the
explanation of clustering of the emerging flux. The model is justified observationally by
fitting the calculated size distribution of active regions to the histogram built from the data
on active regions (Harvey & Zwaan1993). A key (for the percolat ion model ) interpret ation
of the observed dist ribution is a break at about 15 — 20 deg? t hat separat e smaller scale
power-law and large scale exponential behavior (Seiden & Went zel 1996). The ident ificat ion
of the exponential distribution from the observational histogram, however, is not quite
certain due to a small number of the large-scale clusters. (The author acknowledges tile

discussion of thispoint withIx.lHarvey.)

In our model no assumption on influence of an active cell (a site for the cinerging {lux)
on its neighbor is made. Active cells are considered as independent, i.e. a new flux does
not know anything about the old one. The persistence of the emergence flux and henee
its clustering arises due to subsurface enhancements, “humps”, made of the mean field. A
“hump” effectively lowers the threshold so that more random ficlds can emerge on top of
it. As an extra benefit, our model suggests the explanation of the life-times of observed
clusters of activity. The observed cluster size distribution (arvey & Zavaan 1993). not
discussed in the present paper, gives a few important insights that can help to further
develop the model. According to our model, the flux in the smaller (thau the enhancement
size) scale region emerges independently so that its clustering is random and hence has a

self-similar, power-law distribution (because there is no preferred scale). The break-point
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scale can be identified witha characteristic scale of the mecanficld enhancements. The size
distribution of these enha n cements can, in principle, be found from the instability modeling,

and compared with the observed dist ribut ion.

The work was performed in part for the Jet Propulsion Laboratory, California Institute
of Techimology, under a cont ract with the National Acronautics and Space Administration.
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Figure Captions

Figure 1. A schematic illustration of cooperative emergence of the mean, B, and
fluctuating, b, magnetic fields. Shown is a latitudinal cut of the Sun, say at 35 deg, viewed
from the north pole. A loop of a random ficld is rising on the slowly changing enhancement

of the mean field (shown by a thick line.

Figure 2. The form of mean magnetic field enhancement used in our calculations. The

cnhancement has a Gaussian shape with a width equal to a half-size of the plot ted region.

Figure 3. A time series of the random flux emerging on the solar surface. A rectangular

region of size 45 x45 cells is shown. At every time step (12 steps are shown) the realizations.
whose amplitudes exceed the value “threshold-mean-field™ are plotted (new emergence) as
additions to the flux no more than two steps old. These realizations are obtained from the
exponential distribution function with o = 0.2, The preferred emergence around the mean
ficld hump which has maximum 0.8 of the threshold value and is hidden in the center of the

picture, is clearly secen.

Figure 4. The rate of flux emergence per unit time and per unit area in arbitrary units.
The asterisks mark the rate of emergence at ¢ = 0, i.e. in the absence of the mean field
enhancement. The rest four curves correspond to different values of ¢: 0.2 (solid), 0.1

(dashed)), 0.6 (dotted), and 0.8 (dashdot).
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