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Abstract — Charge-Coupled Device (CCD) based star
trackers provide reliable attitude estimation onboard most 3
axis stabilized spacecraft. The spacecraft attitude is
calculated based on observed positions of stars, which arc
located and identified in a CCID image of the sky.

A new photon sensitive imaging array - Active Pixel
Sensors (APS) - has emerged as a potential replacement to
CCDs. The APS chips utilize existing Complementary
Metal Oxide Semiconductor (CMOS) production facilities,
and the technology has several advantages over CCD
technology. These include: lower power consumption,
higher dynamic range, higher blooming threshold,
individual pixel readout, single 3.3 or 5 Volt operation, the
capability to integrate on-chip timing, control, windowing,
Analog to Digital (A/D) conversion anti centroiding
operations. However, because the photosensitivity of an
APS pixel is non-homogeneous, its suitability as a star
tracker imager has been unknown.

This paper reports test results of a 256 x 256-pixel Al’S chip
for star tracker applications. Using photon transfer curves, a
system read-out noise of 7 electrons, under laboratory
conditions, has been determined (photogate type). The full
well of an APS pixel is determined to be around 450,000
dectrons.  Utilizing astronomical  observations,  the
sensitivity of APS was measured to 13600 ¢ /(second-mm?)
for a 0™ magnitude star. Centroiding accuracy of the Al’'S
was in the order of 1/1 O pixel. The dynamic range of the
Al’S was better than 9 magnitudes.

These measurements allow us to conclude that the AlI’'Sisa
potential replacement for CCD star trackers.
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1. INTRODUCTION

Typically the attitude of a 3 axis stabilized spacecraft is
determined by a star tracker. A star tracker is an electronic
camera connected to a microcomputer. Using a sensed
image of a portion of the sky, stars can be located and
identified. Thus the orientation of the spacecraft can be
determined based on these observations. A modern star
tracker is fully autonomous - i.e. it automatically performs
pattern recognition of the star constellations in the field of
view and calculates the attitude quaternion with respect to
the celestial sphere, see figure 1 1], [2]. State of the art star
trackers utilize CCDimagcrs.‘ They typically have a mass
of 1-7 kg and consume 5-12 watts of power. Their accuracy
isin the arc secondsrange [3].

! Such asthe Lockheed Martin missile Systems AST201 or the Technical
University of Denmark ASC or the Computer Resources International 15-

AS or the l)aindcr-Benz Aerospace Jena-Optronik SETIS.
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Figure 1. Sketch of amodern star tracker.

The motivation for a replacement to the mature CCD
technology is:

. Simplified hardware: A conventional CCD chip
requires different voltages and complicated waveforms
to operate. Typicaly, 1/3-1 Watt is required to drive a
CCD chip, including several supporting chips. APS
chips operate on a single 3.3 or 5-volt supply. They
consume an insignificant amount of power and require
no specia supporting chips. In addition, it is possible to
implement an onboard A/D converter, which facilitates
a direct communication line to a microcomputer/
microcontroller. ‘I"his will be significant to the
construction of star trackers for future micro spacecraft
and probes where power consumption and mass arc
critical.

«  No blooming: Most autonomous star trackers do not
operate well when there arc bright objects present in the
field of view due to blooming on the CCD chip, This
phenomenon significantly decreascs the sky coverage
for earth orbiting star trackers. Future National
Aeronaltics & Space Administration (NASA) missions
that plan to utilize an autonomous star tracker during
close encounters with solar system bodies will have to
operate with an extended body in the field of view. The
blooming problem is eliminated with an APS based star
tracker.

«  More radiation resistant: APS technology will
probably be better suited for high radiation missions
than CCD technology in the future [4]. Thelargest
advantage of APS is that the pixels are addressed
directly, so the Charge Transfer E fficicncy (CTE)
degradation that affects CCDS subjected to proton
irradiation is eliminated.

At present, APS chips suffer an increase in dark current
with ionizing dose comparable to that seen in
conventional (non-Multi-f inned Phase (MPP)) CCDs.
However, it is believed that the usc of pinned
photodiodes will eliminate this problem, just as the
corresponding MPP technology has done for CCDs.
The residual component of dark current duc to

displacement damage from protons can not be
eliminated, but is expected be similar to or less than
that in MPP CCDs, In any case, cooling can mitigate
dark current problems.

The usc of commercially available radiation hard
processes, which is already underway, should also offer
improvements, including the elimination of latchup and
minimization of Single Event Upsets (SEU).

To determine if current APS technology is suitable for a star
tracker, parameters specific to star tracking (e.g. absolute
sensitivity and sub-pixel accuracy) have been investigated.
The evaluation was based on a 256x256 pixel Jet Propulsion
Laboratory (JPL) designed APS chip. The APS chip itself
was mounted in a vacuum chamber to cool it without
condensation. Also, a rudimentary support circuit for
transferring the image to a PC was constructed. The setup is
depicted in figure 2.

Figure 2. The APS setup.

The noise and the full well capacity of an APS pixel were
determined in a laboratory at JPL. The evaluation of the
absolute light sensitivity and the sub-pixel accuracy was
performed at Table Mountain Observatory, Wrightwood,
CA.

2. ApPs TECHNOLOGY

An active pixel sensor is an imaging array with active
transistors located with each pixel. Two types of APSS exist:
photo diode pixel and photo gate pixel. The tested APSis a
20.4 pm photo diode pixel with 3 transistors pcr pixel.
Typica pixel pitch is - 17x the minimum feature size [5]-
[11 ]. The sensors arc fabricated in a standard CMOS
process. The Hewlett-Packard 1.2 pym N-well CMOS
process was provided through the MOSIS? service. The
specific chip had a geometric fill factor of 32.570. The
conversion factor is approximately 3 pV/electron.

*MOSIS aggregates designs from different sources onto one mask set,
allowing designers to obtain small quantities and to share the cost of
fabrication among a number of users.



The power consumption of Very Large Scale Integration
(VLSI) CMOS is intrinsically low, and locating the CMOS
circuits for timing and control on chip eliminates high
power chip to chip communication. The power consumption
is typicaly in the 20 mW range. Also, the CMOS will
operateon a single 5 or 3.3 Volt supply.

Advancements in VL Sl technology arc casi |y incorporated
onto a ncew APS. This includes the ability to provide
additional functionality on a single chip (e.g. A/D
conversion or potentially star centroid calculation).
Examples of state-of-the-art Al’S miniature cameras arc
depicted in figure 3.

Figure 3. State-of-the-art APS miniature cameras, depicted
with coins for comparisons.

3. LABORATORY MEASUREMENTS

When characterizing an imaging device, it is important to
determine how many photoelectrons equals onc A/
converter Digital Number (DN), the number of
photoelectrons in a full well and the number of electrons in
the system read-out noise. One way to dctermine this
empiricaly is to utilize photon transfer curves [ 12]. A
photon transfer curve, is an XY scatter plot of average pixel
values and temporal pixel variations. The setup for making a
photon transfer curve isdepicted in figure 4.

Regulated stable
light source

Diffuser
Figure 4. Photon transfer curve setup.

Imaging device

After acquiring two similar and homogeneous illuminated
images (or smaller windows in the two images), with a
given exposure time, the two images (image; and image,,
each with dimension N, times NY) arc subtracted from each

other pixel-wise to minimize the individual pixel variations.
The temporal pixel variations arc defined as:

Nx Ny
EZ(imagc, (i, }) - image, (i, j)?
i=] j=1 @)
v ="
Ny-Ny -1
The average of the imagesis calculated as:
1 N, M Nx Ny
image =— — image,(, j) + imagey (i, j)) ()
ZPVXAK jg;lj:l ggl;g;

The mean DN is shown as a function of exposure timein
figure 5.
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Figure S. The mean DN as a function of the exposure times.

The average DNs and the temporal pixel variations are also
measured for multiple average DNs, and the values are
displayed in a XY scatter plot. This is the actual photon
transfer curve. The photon transfer curve for the APS setup
isdisplayed in figure 6.
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Figure 6. The measured photon transfer curve for the APS
camera setup.

It is assumed that the measured signal in DNs is
proportional to the number of photoelectrons, i.e.:

3)

The signal noise, can then be expressed as (assuming the
electronics do not generate noise independently):

S( onverter X" N Photoclectrons

o 4)

signal = X Photoelectrons
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2. R
O signal = A Nphotacteciron

Substituting the two equations yields:
O-gignul = ""S'('vnn'rlcr (6)

Also, noise independent of the signal (readout noise) has to
be added:

2 2 !
O Signat = XS gy verter O readout v

This means that the unknown X, is the slope of the photon
transfer curve. Also, l/slope is equal the number of
photoelectrons per DN. In the photon transfer curve as
displayed in figure 6, the slope of the line is -0.048, which
is equivalent of 20.77 electrons/I)N.

The mean value corresponding to O second exposure timeis
(figure 5) equivalent to 45.06 DN. 45.06 DN has a variance
on 20.34 (figure 6) or standard deviation (square root) on
451 DN. This is equivalent to 45 | DN * 20.77
electrong/f)N = -94 electrons read-noise.

It must be emphasized that the amplifier and signal chain as
displayed in figure 2 is rudimentary. The readout noise
would be much better if an optimized circuit was utilized.
Another test setup at JPL reports readout noise as low as 7
electrons. However, this is using a photogate type APS.

Photon transfer curves can aso determine the full well of a
pixel. In figures 7 and 8, thc Signal DN is displayed as a
function of the exposure time and the corresponding photon
transfer curve. It is emphasized that the setup was changed
for these measurements, so that the analog amp] ifier gain
was much lower for these measurements.
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Figure 8. The measured photon transfer curve for the APS
camera setup.

It is observed in figure 7, that the curve begins to deviate
from a straight line around DN=2000. This is where the
pixel response reaches non-linearity. The slope of the linein
figure 8 (until DN=2000) is approximately 0.0044, which is
equivalent to -225 photo electrons/DN. Full well is then
225 * 2000 = 450,000 photoelectrons. This is higher than
CCDs.

4. ASTRONOMICAL M EASUREMENTS

For star tracker applications, it is essential to accurately
determine the position of a star using sub-pixel accuracy’. It
has been unclear whether APS pixels will support accurate
sub-pixel calculations due to their pixel non-homogeneity.

The issue has been thoroughly investigated. The APS
camera was taken to the JP1. operated Table Mountain
Observatory in Wrightwood, CA. The APS camera was
mounted on a 24” telescope, which was used as a pointing
device. By commanding the telescope to slew the night sky
near zcnith (to minimize atmospheric perturbation) it is
possible to get multiple samples of a star within one pixel,
For the setup, acommercial 50mm f/1.8 Canon photography
lens was utilized. The field of view covered an inscribed
circle with a diameter of -5.5°. The 24-inch telescope is
depicted in figure 9.

*Ina star tracker image, theimage is defocused on purpose. This result in a
stnr will be stieared out over a couple of pixels, ‘f he position of the star is
calculated as the center of light (centroid) based on several pixels,
Resolutions down 10 1/100 of a pixel have been reported.
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Figure 9. The APS setup mounted on a 24-inch telescope at
Table Mountain Observatory, Wrightwood, CA. The black
arrow identifies the APS camera, The plumbing is an ion-
pump to evacuate the APS chip.

Star Centroid Determination

To determine the suitability of the Al'S chip as a star
tracker, an estimate of the accuracy in locating stars is
needed. For this purpose, the algorithm described in the next
paragraphsis used to locate stars in the image:

The image is sifted for pixels that arc above a given
threshold. Once a pixel is detected, a region of interest
(ROI) window is aligned with the dctected pixel in the
center. The average pixel value on the border is calculated
(see figure 10) and subtracted from all pixelsin the ROI.

- = Border

Figure 10. The region of interest (ROI), and the border of
the ROI of a detected star.

The centroid and DN arc calculated fron the background -
subtracted pixelsin the ROL

ROIend
DN =

R()Igml
image(i, j) (8
i=ROIstart j= ROIstart

ROlend  ROlend L L.
X _ i-image(i, j)
om0 (9)
i=ROIstart j=ROIstart DN

ROlend  ROlend

o ~ . image(i, j)
Yem = z 2 DN (10)

i=ROIstart j=ROIsturt

The centroid of a typically star during telescope tracking is
displayed infigure 11.
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Figure 11, The centroid position and the DN for atypical

star.

Sub-pixel accuracy determination

Assuming that the telescope is moving in a straight path, it
is possible to subtract the motion of the telescope and
measure the residual®, To illustrate this, a scenario is
depicted in figure 12. The telescope is moving in a straight
path over the APS focal plane. The detected star centroids
arc not completely coincident with the real position. A line

4 The residual is defined as the distance between the measured star position
and the real star position,



(the residual) is drawn between the telescope position and
the detected star centroid.
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Figure 12. lllustration of the sub-pixel measurement The
figure covers an area on 4x4 pixels.

The result of subtracting the telescope motion from the star
centroid positionsin figure 11 is shown in figure 13.
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Figure 13. The centroiding residual.

The accuracy of the centroiding has been determined for
many stars of different types. Typical accuracy is displayed
intable 1 of the y position (the slew direction).

1dole' 1.”1 ypical residuals for difierent stars.

Star | Residuat (in pixels) | Average DN
A& ! 0.177 900
0.046 21000
(fa ) 0.090 1750
Slar 4 (oRghy) 0.048 20000

| Star S(faint) 0.098 1500 )
Star G(hright) 0.037 19000
| Star 7/ (faint) 0.139 1600
| Star & (bright) 0.057 13000

As observed in table 1, the APS is able to determine the
centroid of a star to approximately 1/10 of a pixel. In the
case that the star is very faint, the centroiding accuracy is
worse than 1/10 pixel. Thisis comparable to a conventional
CCD chip.

Light Sensitivity

The absolute light sensitivity of an APS chip is also very
important, when utilized in star tracker applications. The
APS chip has higher quantum efficiency than CCD chips,
but it also has lower geometric fill-factor, and the micro lens
solution used in some CCD’s have not yet been produced
for APS chips.

1’ o determince the light sensitivity, a star image was acquired
and identified manually using a star catalog. The measured
DN was normalized for magnitude, pupil area, exposure
time, and electrons/I>N. The star image is displayed in
figure 14, and the magnitude mecasurements are displayed in
table 2.
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Figure 14. A star image acquired with the APS chip, Field
of view is 5.5°. Exposure time is 3.06 Seconds. The F/no is
1.8. The numbers refer to the identified stars. For
reproduction purposes the imagec contrast has been
enhanced.

In the setup the gain of the amplifier was set to 30
electrons/DN. The exposure time was 3.06 seconds, and the
lens was 50-111111 focal length and F/no 1.8, i.e. the aperture
of the lens was 27.8 mm and the pupil area was 2428 mm’.
A normalized sensitivity of the APS chip isdcfirred as (for a
magnitude O star):

y ' M,
SignalDN ------2.87V .4
Sensitivity = DN > (1Y
Tlflpn.\'urv ’ A])(’I'Illl'(' R4

The conclusion based on table 2 is that the average
normalized sengitivity is ~13600 ¢/(scconds*mm?) for a
maghnitude O star, which is comparable to CCDs.

Dynamic range

There isalarge span of magnitudes that can bc encountered
during astronomical  observations. In  star  tracker
applications, the system will typically be adjusted to detect
as much light as possible for detecting many faint stars, A
CCD chip will tend to bloom, if there is a bright object in
the image (e.g., a planct, the moon). To explore this effect,
an image with a bright planet (Mars) was acquired with 30
seconds exposure t imc to determine i f the planet was
blooming and if it was possible to detect faint stars at thc
sametime. The result is displayed in figure 15.

Itis observed that faint stars of 8" magnitude can readily be
detected close to Mars, which approximately had magnitude
-1 at the time. This is a huge dynamic non-blooming range.

The reason that stars fainter than 8th magnitude arc not
detected is duc to the dark current, as the chip had an
operating temperature on —0.5°C to 0.5°C. Thisistypical for
a star tracker application with passive cooling.

5. SUMMARY

This paper reports how APS technology will perform when
utilized for star tracker applications. In a laboratory setup,
the readout noise of the Al’S chip was determined to be 94
electrons (though as low as 7 have been reported, for
photogate type APS chips). The full well of the APS pixel is
approximately 450,000 electrons. The achievable sub-pixel
accuracy was approximately 1/10 pixel and the absolute
sensitivity was comparable to CCD chips. The overal
conclusion is that the APS technology can be utilized in star
tracker applications, with similar performance to that of
CCD’s. However, lower power consumption, simplified
operation, larger dynamic range and potentially better
radiation robustness arc the strengths of the APS
technology.
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